CPC Best Plant Conservation Practices to Support Species Survival in the Wild

Total Page:16

File Type:pdf, Size:1020Kb

CPC Best Plant Conservation Practices to Support Species Survival in the Wild CPC Best Plant Conservation Practices to Support Species Survival in the Wild Lilium occidentale ii CPC Best Plant Conservation Practices to Support Species Survival in the Wild CENTER FOR PLANT CONSERVATION iii About the Center for Plant Conservation CPC’s mission is to ensure stewardship of imperiled native plants. To do this, we implement the following tested and effective strategy: We advance science-based best practices in plant conservation through our network of conservation partners known as Participating Institutions. Our network actively applies these practices to save plants from extinction here in North America as part of the CPC National Collec- tion of Endangered Plants. We share best practices with conservationists all over the world and advocate for plants and their value to humankind. Copyright ©2018 The Center for Plant Conservation CPC encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgment of CPC as the source and copyright holder is given and that CPC’s endorsement of users’ views, products or services is not implied in any way. Portions of “Part 3 Genetic Guidelines for Acquiring, Maintaining, and Using a Conservation Collection” are adapted from Guerrant, E.O., Jr., P. L. Fiedler, K. Havens, and M. Maunder. Revised genetic sampling guidelines for conservation collections of rare and endangered plants. Ex Situ Plant Conservation: supporting species survival in the wild, edited by Edward O. Guerrant Jr., Kayri Havens, and Mike Maunder. Copyright © 2004 Island Press. Reproduced by permission of Island Press, Washington, D.C. Portions of “Part 4 Rare Plant Reintroduction and Other Conservation Translocations” are adapted from Maschinski, J., M.A. Albrecht, L. Monks, and K. E. Haskins. Center for Plant Conservation Best Reintroduction Practice Guidelines. Plant Reintroduction in a Changing Climate: Promises and Perils, edited by Joyce Maschinski and Kristin E. Haskins. Copyright © 2012 Island press. Reproduced by permission of Island Press, Washington, D.C. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.saveplants.org or addressed to [email protected]. iv Dedication In gratitude to all of those working to save plants from extinction v vi CONTENTS Acknowledgements xi Preamble xii Preface xv Why Should We Make Conservation Collections of Rare Plant Species? xvi What You Can Find in Each Section xvi Where to Go for Additional Help xix Who Should Use These Guidelines? xxi Photo Credits xxii CPC Board of Directors, Staff and Contributors xxiv w PART 1 Conventional Seed Banking to Support Species Survival in the Wild 1-1 A. Introduction 1-3 Joyce Maschinski, Christina Walters B. Collecting Seeds from Wild Rare Plant Populations 1-10 Joyce Maschinski, Christina Walters, Ed Guerrant, Sheila Murray, Michael Kunz, Heather Schneider, Jim Affolter, Tony Gurnoe, Naomi Fraga, Kay Havens, Pati Vitt, Katherine D. Heineman, and Christa Horn C. Splitting Samples for Safety Duplication Storage and Testing 1-25 Joyce Maschinski, Christina Walters, Kim McCue, David Remucal, James Ritchie, Evan Meyer, Robert Wesley, Michael Way, Suzzanne Chapman, Ryan Fitch, Rowan Blaik, Kay Havens, Pati Vitt, and Christa Horn D. Cleaning, Processing, Drying, and Storing Orthodox Seeds 1-31 Christina Walters, Joyce Maschinski, Kay Havens, Pati Vitt, Katherine D. Heineman, and Christa Horn E. Curating Small Samples: Increasing the Number of Seeds for Storage and Restoration 1-43 Joyce Maschinski, Christina Walters, Kris Haskins, Cheryl Birker, Johnny Randall, Lesley Randall, Kirstie Watkins, Margaret Clarke, Joe Davitt, Kay Havens, Pati Vitt, and Christa Horn vii w PART 2 Alternatives to Conventional Seed Banking 2-1 A. Introduction 2-3 Joyce Maschinski and Valerie Pence B. Collecting and Maintaining Exceptional Species in Tissue Culture and Cryopreservation 2-4 Valerie Pence, Murphy Westwood, Joyce Maschinski, Christy Powell, Nellie Sugii, Diana Fish, Julianne McGuinness, Pat Raven, Julian Duval, Tomas Herrera-Mishler, Andy Love, Christina Walters, Christa Horn, Matt Taylor, Thomas Ott, Steven Koehler, Julianne McGuinness and Matt Horning For Seeds 2-11 In Vitro Tissue Culture 2-11 Cryopreservation 2-15 C. Field Genebanks or Inter Situ Collection 2-22 Joyce Maschinski, Murphy Westwood, Kayri Havens, Sean Hoban, Stacy Anderson, and Seana Walsh Acquiring a Conservation Collection for Field Genebanks or Inter Situ Collection 2-23 Maintaining the Field Genebank or Inter Situ Conservation Collection 2-26 Capturing Material for Future Conservation Uses 2-30 w PART 3 Genetic Guidelines for Acquiring, Maintaining, and Using a Conservation Collection 3-1 A. Introduction 3-3 Joyce Maschinski, Kayri Havens, Jeremie Fant, Andrea Kramer, Pati Vitt, Jennifer Ramp Neale, Edward O. Guerrant, Jr., Christine Edwards, and Stephanie Steele B. Genetic Guidelines for Acquiring a Conservation Collection 3-5 Joyce Maschinski, Christina Walters, Ed Guerrant, Sheila Murray, Joyce Maschinski, Kayri Havens, Jeremie Fant, Andrea Kramer, Pati Vitt, Jennifer Ramp Neale, Edward O. Guerrant, Jr., Christine Edwards, and Stephanie Steele C. Genetic Guidelines for Maintaining a Conservation Collection 3-12 Joyce Maschinski, Kayri Havens, Jeremie Fant, Andrea Kramer, Pati Vitt, Jennifer Ramp Neale, Edward O. Guerrant, Jr., Christine Edwards, and Stephanie Steele viii D. Genetic Guidelines for Using Portions of the Conservation Collection for Reintroductions and Other Purposes 3-15 Joyce Maschinski, Kayri Havens, Jeremie Fant, Andrea Kramer, Pati Vitt, Jennifer Ramp Neale, Edward O. Guerrant, Jr., Christine Edwards, and Stephanie Steele w PART 4 Rare Plant Reintroduction and Other Conservation Translocations 4-1 A. Introduction 4-3 Joyce Maschinski, Matthew A. Albrecht, Jeremine Fant, Leonie Monks, and Kristin E. Haskins B. Justifying and Deciding Whether to Conduct a Reintroduction or Other Conservation Translocation 4-4 Joyce Maschinski, Matthew A. Albrecht, Jeremine Fant, Leonie Monks, and Kristin E. Haskins C. Preparing the Reintroduction 4-8 Joyce Maschinski, Matthew A. Albrecht, Jeremine Fant, Leonie Monks, and Kristin E. Haskins Making the Plan 4-10 The Law, the Land, and Funding 4-12 Understanding Species’ Biology 4-14 Site Selection 4-15 Genetics Considerations 4-20 Source Material and Horticulture 4-24 Planning for Population Growth 4-31 D. Implementing the Reintroduction 4-33 Joyce Maschinski, Matthew A. Albrecht, Jeremine Fant, Leonie Monks, and Kristin E. Haskins E. After the Installation 4-37 Joyce Maschinski, Matthew A. Albrecht, Jeremine Fant, Leonie Monks, Jimmy Lange, Emily Coffey, Holly Forbes, Jennifer Ceska and Kristin E. Haskins Conduct Aftercare of the Restored Population 4-37 Design Appropriate Monitoring Plans 4-39 Documentation 4-47 ix w PART 5 Documentation and Data Sharing 5-1 A. Introduction 5-3 Joyce Maschinski and Katherine D. Heineman B. Documentation 5-4 Joyce Maschinski, Johnny Randall and Katherine D. Heineman C. Distributing Samples and Information 5-8 Joyce Maschinski, Christina Walters, Katherine D. Heineman, Rowan Blaik, Anne Frances, Christa Horn, Anita Tiller, Pam Allenstein, Stacy Anderson, Spencer Crews, John Horne, Jim Locklear, Kay Havens, Pati Vitt, and Jackie Higgins Glossary G-1 Supplementary Materials S-1 x Acknowledgments These best practices represent a compilation of previous CPC guidelines with up- dated recommendations from current research on rare plant conservation. We thank the authors and editors Don Falk, Kent Holsinger, Greg Wieland, Peggy Olwell, Con- stance Millar, Edward O. Guerrant, Jr., Kay Havens, Mike Maunder, and Kris Haskins for generating Guidelines for the Management of Orthodox Seeds (Wieland 1995), Center for Plant Conservation Sampling Guidelines for Conservation of Endangered Plants (Falk and Holsinger 1991), Revised Sampling Guidelines for Conservation Collections of Rare and Endangered Plants (Guerrant et al. 2004), Guidelines for Developing a Rare Plant Reintroduction Plan (CPC 1996), and Center for Plant Conservation Best Reintroduction Practice Guidelines (Maschinski et al. 2012). These are the foundation of these consoli- dated guidelines. These best practices also incorporate protocols from FAO’s Genebank Standards for Agriculture (FAO 2014) and MSBP Seed Conservation Standards (MSB 2015) and we gratefully acknowledge those contributions to our recommendations. CPC board members, conservation officers, and guests at CPC National meetings in 2016, 2017, and 2018 met in small groups to discuss and revise components of these guidelines. Many contributed ideas for new considerations needed to conserve rare plants. We are especially indebted to Christina Walters for her insights about practices and possibilities for best storing seeds and Valerie Pence for sharing her expertise about tissue culture and cryopreservation. Sean Hoban and Seana Walsh provided practical advice about maintaining rare plants in living display collections when seed storage isn’t possible. Discussions with plant population geneticists Kay Havens, Jeremie Fant, Andrea Kramer, Jennifer Ramp Neal, Christie Edwards, and Stephanie Steele improved and updated genetic guidelines. Armed with analysis of reintroduc- tion meta-data, Matthew Albrecht helped update the reintroduction guidelines. Pati Vitt
Recommended publications
  • A Numerical Taxonomy of the Genus Rosularia (Dc.) Stapf from Pakistan and Kashmir
    Pak. J. Bot., 44(1): 349-354, 2012. A NUMERICAL TAXONOMY OF THE GENUS ROSULARIA (DC.) STAPF FROM PAKISTAN AND KASHMIR GHULAM RASOOL SARWAR* AND MUHAMMAD QAISER Centre for Plant Conservation, University of Karachi, Karachi-75270, Pakistan Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Karachi, Pakistan Abstract Numerical analysis of the taxa belonging to the genus Rosularia (DC.) Stapf was carried out to find out their phenetic relationship. Data from different disciplines viz. general, pollen and seed morphology, chemistry and distribution pattern were used. As a result of cluster analysis two distinct groups are formed. Out of which one group consists of R. sedoides (Decne.) H. Ohba and R. alpestris A. Boriss. while other group comprises R. adenotricha (Wall. ex Edgew.) Jansson ssp. adenotricha , R. adenotricha ssp. chitralica, G.R. Sarwar, R. rosulata (Edgew.) H. Ohba and R. viguieri (Raym.-Hamet ex Frod.) G.R. Sarwar. Distribution maps of all the taxa, along with key to the taxa are also presented. Introduction studied the genus Rosularia and indicated that the genus is polyphyletic. Mayuzumi & Ohba (2004) analyzed the Rosularia is a small genus composed of 28 species, relationships within the genus Rosularia. According to distributed in arid or semiarid regions ranging from N. different workers Rosularia is polyphyletic. Africa to C. Asia through E. Mediterranean (Mabberley, There are no reports on numerical studies of 2008). Some of the taxa of Rosularia are in general Crassulaceae except the genus Sedum from Pakistan cultivation and several have great appeal due to their (Sarwar & Qaiser, 2011). The primary aim of this study is extraordinarily regular rosettes on the leaf colouring in to analyze diagnostic value of morphological characters in various seasons.
    [Show full text]
  • "Plant Anatomy". In: Encyclopedia of Life Sciences
    Plant Anatomy Introductory article Gregor Barclay, University of the West Indies, St Augustine, Trinidad and Tobago Article Contents . Introduction Plant anatomy describes the structure and organization of the cells, tissues and organs . Meristems of plants in relation to their development and function. Dermal Layers . Ground Tissues Introduction . Vascular Tissues . The Organ System Higher plants differ enormously in their size and appear- . Acknowledgements ance, yet all are constructed of tissues classed as dermal (delineating boundaries created at tissue surfaces), ground (storage, support) or vascular (transport). These are meristems arise in the embryo, the ground meristem, which organized to form three vegetative organs: roots, which produces cortex and pith, and the procambium, which function mainly to provide anchorage, water, and nutri- produces primary vascular tissues. In shoot and root tips, ents;stems, which provide support;and leaves, which apical meristems add length to the plant, and axillary buds produce food for growth. Organs are variously modified to give rise to branches. Intercalary meristems, common in perform functions different from those intended, and grasses, are found at the nodes of stems (where leaves arise) indeed the flowers of angiosperms are merely collections of and in the basal regions of leaves, and cause these organs to leaves highly modified for reproduction. The growth and elongate. All of these are primary meristems, which development of tissues and organs are controlled in part by establish the pattern of primary growth in plants. groups of cells called meristems. This introduction to plant Stems and roots add girth through the activity of anatomy begins with a description of meristems, then vascular cambium and cork cambium, lateral meristems describes the structure and function of the tissues and that arise in secondary growth, a process common in organs, modifications of the organs, and finally describes dicotyledonous plants (Figure 2).
    [Show full text]
  • Darwinia Hortiorum (Myrtaceae: Chamelaucieae), a New Species from the Darling Range, Western Australia
    K.R.Nuytsia Thiele, 20: 277–281 Darwinia (2010) hortiorum (Myrtaceae: Chamelaucieae), a new species 277 Darwinia hortiorum (Myrtaceae: Chamelaucieae), a new species from the Darling Range, Western Australia Kevin R. Thiele Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Email: [email protected] Abstract Thiele, K.R. Darwinia hortiorum (Myrtaceae: Chamelaucieae), a new species from the Darling Range, Western Australia. Nuytsia 20: 277–281 (2010). The distinctive, new, rare species Darwinia hortiorum is described, illustrated and discussed. Uniquely in the genus it has strongly curved- zygomorphic flowers with the sigmoid styles arranged so that they group towards the centre of the head-like inflorescences. Introduction Darwinia Rudge comprises c. 90 species, mostly from the south-west of Western Australia with c. 15 species in New South Wales, Victoria and South Australia. Phylogenetic analyses (M. Barrett, unpublished) have shown that the genus is polyphyletic, with distinct eastern and western Australian clades. Along with the related genera Actinodium Schauer, Chamelaucium Desf., Homoranthus A.Cunn. ex Schauer and Pileanthus Labill., the Darwinia clades are nested in a paraphyletic Verticordia DC. Many undescribed species of Darwinia are known in Western Australia, and these are being progressively described (Rye 1983; Marchant & Keighery 1980; Marchant 1984; Keighery & Marchant 2002; Keighery 2009). A significant number of taxa in the genus are narrowly endemic or rare and are of high conservation significance. Although taxonomic reassignment of the Western Australian species of Darwinia may be required in the future, resolving the status of these undescribed species and describing them under their current genus helps provide information for conservation assessments and survey.
    [Show full text]
  • CRASSULACEAE 景天科 Jing Tian Ke Fu Kunjun (傅坤俊 Fu Kun-Tsun)1; Hideaki Ohba 2 Herbs, Subshrubs, Or Shrubs
    Flora of China 8: 202–268. 2001. CRASSULACEAE 景天科 jing tian ke Fu Kunjun (傅坤俊 Fu Kun-tsun)1; Hideaki Ohba 2 Herbs, subshrubs, or shrubs. Stems mostly fleshy. Leaves alternate, opposite, or verticillate, usually simple; stipules absent; leaf blade entire or slightly incised, rarely lobed or imparipinnate. Inflorescences terminal or axillary, cymose, corymbiform, spiculate, racemose, paniculate, or sometimes reduced to a solitary flower. Flowers usually bisexual, sometimes unisexual in Rhodiola (when plants dioecious or rarely gynodioecious), actinomorphic, (3 or)4– 6(–30)-merous. Sepals almost free or basally connate, persistent. Petals free or connate. Stamens as many as petals in 1 series or 2 × as many in 2 series. Nectar scales at or near base of carpels. Follicles sometimes fewer than sepals, free or basally connate, erect or spreading, membranous or leathery, 1- to many seeded. Seeds small; endosperm scanty or not developed. About 35 genera and over 1500 species: Africa, America, Asia, Europe; 13 genera (two endemic, one introduced) and 233 species (129 endemic, one introduced) in China. Some species of Crassulaceae are cultivated as ornamentals and/or used medicinally. Fu Shu-hsia & Fu Kun-tsun. 1984. Crassulaceae. In: Fu Shu-hsia & Fu Kun-tsun, eds., Fl. Reipubl. Popularis Sin. 34(1): 31–220. 1a. Stamens in 1 series, usually as many as petals; flowers always bisexual. 2a. Leaves always opposite, joined to form a basal sheath; inflorescences axillary, often shorter than subtending leaf; plants not developing enlarged rootstock ................................................................ 1. Tillaea 2b. Leaves alternate, occasionally opposite proximally; inflorescence terminal, often very large; plants sometimes developing enlarged, perennial rootstock.
    [Show full text]
  • Genera in Myrtaceae Family
    Genera in Myrtaceae Family Genera in Myrtaceae Ref: http://data.kew.org/vpfg1992/vascplnt.html R. K. Brummitt 1992. Vascular Plant Families and Genera, Royal Botanic Gardens, Kew REF: Australian – APC http://www.anbg.gov.au/chah/apc/index.html & APNI http://www.anbg.gov.au/cgi-bin/apni Some of these genera are not native but naturalised Tasmanian taxa can be found at the Census: http://tmag.tas.gov.au/index.aspx?base=1273 Future reference: http://tmag.tas.gov.au/floratasmania [Myrtaceae is being edited at mo] Acca O.Berg Euryomyrtus Schaur Osbornia F.Muell. Accara Landrum Feijoa O.Berg Paragonis J.R.Wheeler & N.G.Marchant Acmena DC. [= Syzigium] Gomidesia O.Berg Paramyrciaria Kausel Acmenosperma Kausel [= Syzigium] Gossia N.Snow & Guymer Pericalymma (Endl.) Endl. Actinodium Schauer Heteropyxis Harv. Petraeomyrtus Craven Agonis (DC.) Sweet Hexachlamys O.Berg Phymatocarpus F.Muell. Allosyncarpia S.T.Blake Homalocalyx F.Muell. Pileanthus Labill. Amomyrtella Kausel Homalospermum Schauer Pilidiostigma Burret Amomyrtus (Burret) D.Legrand & Kausel [=Leptospermum] Piliocalyx Brongn. & Gris Angasomyrtus Trudgen & Keighery Homoranthus A.Cunn. ex Schauer Pimenta Lindl. Angophora Cav. Hottea Urb. Pleurocalyptus Brongn. & Gris Archirhodomyrtus (Nied.) Burret Hypocalymma (Endl.) Endl. Plinia L. Arillastrum Pancher ex Baill. Kania Schltr. Pseudanamomis Kausel Astartea DC. Kardomia Peter G. Wilson Psidium L. [naturalised] Asteromyrtus Schauer Kjellbergiodendron Burret Psiloxylon Thouars ex Tul. Austromyrtus (Nied.) Burret Kunzea Rchb. Purpureostemon Gugerli Babingtonia Lindl. Lamarchea Gaudich. Regelia Schauer Backhousia Hook. & Harv. Legrandia Kausel Rhodamnia Jack Baeckea L. Lenwebia N.Snow & ZGuymer Rhodomyrtus (DC.) Rchb. Balaustion Hook. Leptospermum J.R.Forst. & G.Forst. Rinzia Schauer Barongia Peter G.Wilson & B.Hyland Lindsayomyrtus B.Hyland & Steenis Ristantia Peter G.Wilson & J.T.Waterh.
    [Show full text]
  • Flora and Vegetation Of
    __________________________________________________________________________________________ FLORA AND VEGETATION OF AVIVA LEASE AREA Prepared for: URS Australia Pty Ltd on behalf of Aviva Corporation Ltd Prepared by: Mattiske Consulting Pty Ltd February 2009 MATTISKE CONSULTING PTY LTD URS0808/195/08 MATTISKE CONSULTING PTY LTD __________________________________________________________________________________________ TABLE OF CONTENTS Page 1. SUMMARY ................................................................................................................................................ 1 2. INTRODUCTION ...................................................................................................................................... 3 2.1 Location .............................................................................................................................................. 3 2.2 Climate ................................................................................................................................................ 3 2.3 Landforms and Soils ........................................................................................................................... 4 2.4 Vegetation ........................................................................................................................................... 4 2.5 Declared Rare, Priority and Threatened Species ................................................................................. 4 2.6 Threatened Ecological Communities (TEC’s) ...................................................................................
    [Show full text]
  • Use of Cotyledon Orbiculata L. in Treatment of Plantar Wart (Verruca Plantaris)
    Arch Dis Child: first published as 10.1136/adc.38.197.75 on 1 February 1963. Downloaded from USE OF COTYLEDON ORBICULATA L. IN TREATMENT OF PLANTAR WART (VERRUCA PLANTARIS) BY THEODORE JAMES From Pinelanls, The Cape of Good Hope, South Africa (RECEIVED FOR PUBLICAnON AUGusr 13, 1962) The plantar wart (verruca plantaris) by its very Method of Treatment position is crippling, and removal is desirable The thick succulent leaf is put in an oven where its because of the ambulatory pain. However, two temperature is brought to about 200- F. When it is authors Coles (1958) and Churney (1961), have removed from the oven the thin surface layer of the given much thought to the management of the slightly concave side of the leaf is removed, or if the leaf plantar wart, and their conclusions are diametrically is unusually thick it may be bisected down its length, opposed. Coles (1958) states that the treatment of and the raw wet surface thus exposed is placed immedi- plantar warts in schoolchildren should be ately over the wart which needs no preliminary prepara- radical, tion. The leaf is kept in position over the wart by in the form of diathermy under general anaesthesia. an occlusive bandage of non-porous 'elastoplast' wrapped Most practising paediatricians would not accept two or three times round the foot to ensure that the this. Churney (1961) says that 'plantar warts leaf-dressing is kept in place. This occlusive type of should seldom be removed because of the poor dressing of 'elastoplast' precludes evaporation of the results and frequent disability following this pro- leaf juice.
    [Show full text]
  • Descriptions of the Plant Types
    APPENDIX A Descriptions of the plant types The plant life forms employed in the model are listed, with examples, in the main text (Table 2). They are described in this appendix in more detail, including environmental relations, physiognomic characters, prototypic and other characteristic taxa, and relevant literature. A list of the forms, with physiognomic characters, is included. Sources of vegetation data relevant to particular life forms are cited with the respective forms in the text of the appendix. General references, especially descriptions of regional vegetation, are listed by region at the end of the appendix. Plant form Plant size Leaf size Leaf (Stem) structure Trees (Broad-leaved) Evergreen I. Tropical Rainforest Trees (lowland. montane) tall, med. large-med. cor. 2. Tropical Evergreen Microphyll Trees medium small cor. 3. Tropical Evergreen Sclerophyll Trees med.-tall medium seier. 4. Temperate Broad-Evergreen Trees a. Warm-Temperate Evergreen med.-small med.-small seier. b. Mediterranean Evergreen med.-small small seier. c. Temperate Broad-Leaved Rainforest medium med.-Iarge scler. Deciduous 5. Raingreen Broad-Leaved Trees a. Monsoon mesomorphic (lowland. montane) medium med.-small mal. b. Woodland xeromorphic small-med. small mal. 6. Summergreen Broad-Leaved Trees a. typical-temperate mesophyllous medium medium mal. b. cool-summer microphyllous medium small mal. Trees (Narrow and needle-leaved) Evergreen 7. Tropical Linear-Leaved Trees tall-med. large cor. 8. Tropical Xeric Needle-Trees medium small-dwarf cor.-scler. 9. Temperate Rainforest Needle-Trees tall large-med. cor. 10. Temperate Needle-Leaved Trees a. Heliophilic Large-Needled medium large cor. b. Mediterranean med.-tall med.-dwarf cor.-scler.
    [Show full text]
  • Reinstatement and Revision of the Genus Chaetospora (Cyperaceae: Schoeneae)
    Volume 23: 95–112 ELOPEA Publication date: 2 July 2020 T dx.doi.org/10.7751/telopea14345 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Reinstatement and revision of the genus Chaetospora (Cyperaceae: Schoeneae) Russell L. Barrett1,3, Karen L. Wilson1 and Jeremy J. Bruhl2 1National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, Mrs Macquaries Road, Sydney, New South Wales 2000, Australia 2Botany, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia 3Author for Correspondence: [email protected] Abstract Three species are recognised within the reinstated and recircumscribed genus Chaetospora R.Br. Chaetospora is lectotypified on C. curvifolia R.Br. A new combination, Chaetospora subbulbosa (Benth.) K.L.Wilson & R.L.Barrett, is made for Schoenus subbulbosus Benth. Lectotypes are selected for Chaetospora aurata Nees, Chaetospora curvifolia R.Br., Chaetospora turbinata R.Br., Elynanthus capitatus Nees, Schoenus subbulbosus Benth., Schoenus subg. Pseudomesomelaena Kük. and Schoenus sect. Sphaerocephali Benth. Two species are endemic to south-western Australia, while the third is endemic to south-eastern Australia. Full descriptions, illustrations and a key to species are provided. All species have anatomy indicative of C3 photosynthesis. Introduction Chaetospora R.Br. is here reinstated as a segregate from Schoenus L., with a novel circumscription. Schoenus is a nearly globally-distributed genus exhibiting a significant range of morphological variation (Rye et al. 1987; Sharpe 1989; Wilson 1993, 1994a,b; Bruhl 1995; Goetghebeur 1998; Wheeler and Graham 2002; Wilson et al.
    [Show full text]
  • Managing Bird Damage
    Managing Bird Damage Managing Bird Managing Bird Damage Bird damage is a significant problem in Australia with total to Fruit and Other Horticultural Crops damage to horticultural production estimated at nearly $300 million annually. Over 60 bird species are known to damage horticultural crops. These species possess marked differences in feeding strategies and movement patterns which influence the nature, timing and severity of the damage they cause. Reducing bird damage is difficult because of the to Fruit and Other Horticultural Crops Fruit and Other Horticultural to unpredictability of damage from year to year and a lack of information about the cost-effectiveness of commonly used management practices. Growers therefore need information on how to better predict patterns of bird movement and abundance, and simple techniques to estimate the extent of damage to guide future management investment. This book promotes the adoption of a more strategic approach to bird management including use of better techniques to reduce damage and increased cooperation between neighbours. Improved collaboration and commit- John Tracey ment from industry and government is also essential along with reconciliation of legislation and responsibilities. Mary Bomford Whilst the focus of this review is pest bird impacts on Quentin Hart horticulture, most of the issues are of relevance to pest bird Glen Saunders management in general. Ron Sinclair DEPARTMENT OF AGRICULTURE, FISHERIES AND FORESTRY Managing Bird Damage Managing Bird Managing Bird Damage Bird damage is a significant problem in Australia with total to Fruit and Other Horticultural Crops damage to horticultural production estimated at nearly $300 million annually. Over 60 bird species are known to damage horticultural crops.
    [Show full text]
  • Products by Zone [PDF]
    SKU Name Zone 2 SD832 Sedum oreganum Zone 3 GC5348 Ajuga reptans 'Burgundy Glow' GC5347 Ajuga reptans 'Pink Elf' DE899 Delosperma nubigenum (Ice Plant) SD5281 Sedum album SD801 Sedum album 'Coral Carpet' SD802 Sedum album var. micranthum SD803 Sedum album var. murale SD5350 Sedum Autumn Fire SD5407 Sedum forsterianum 'Oracle' SD5258 Sedum kamtschaticum ‘Sweet and Sour’ SD824 Sedum kamtschaticum 'Takahira Dake' SD5309 Sedum kamtschaticum var. floriferum 'Weihenstephaner Gold' SD5342 Sedum reflexum 'Blue Spruce' SD5406 Sedum selskianum SD5510 Sedum spectabile 'Neon' SD5348 Sedum spurium 'Bronze Carpet' SD888 Sedum spurium 'Fuldaglut' - Fulda Glow, Fireglow, Glowing Fire SD5405 Sedum spurium 'Pink Jewel' SD5411 Sedum spurium 'Voodoo' Zone 4 GC5345 Ajuga reptans 'Black Scallop' GC5349 Ajuga reptans 'Min Crispa Red' DE5317 Delosperma congestum 'Gold Nugget' (Ice Plant) DE5280 Delosperma Mesa Verde (Ice Plant) DE5305 Delosperma 'Psfave' - Lavender Ice (Ice Plant) HE001 Jovibarba heuffelii 'Apache' HE002 Jovibarba heuffelii 'Beacon Hill' HE003 Jovibarba heuffelii 'Beatrice' HE038 Jovibarba heuffelii 'Blaze' HE034 Jovibarba heuffelii 'Brocade' HE004 Jovibarba heuffelii 'Bronze Ingot' HE030 Jovibarba heuffelii 'Bros' HE029 Jovibarba heuffelii 'Cherry Glow' HE005 Jovibarba heuffelii 'Chocolato' SC1506 Jovibarba heuffelii Collection (18) HE006 Jovibarba heuffelii 'Fandango' HE031 Jovibarba heuffelii 'Fante' HE007 Jovibarba heuffelii 'Giuseppi Spiny' HE008 Jovibarba heuffelii 'Gold Bug' HE037 Jovibarba heuffelii 'Goldrand' HE009 Jovibarba heuffelii
    [Show full text]
  • Biodiversity and Conservation Science Annual Report 2019-2020
    Biodiversity and Conservation Science Annual Report 2019-2020 Acknowledgements This report was prepared by the Department of Biodiversity, Conservation and Attractions (DBCA). For more information contact: Executive Director, Biodiversity and Conservation Science Department of Biodiversity, Conservation and Attractions 17 Dick Perry Avenue Kensington Western Australia 6151 Locked Bag 104 Bentley Delivery Centre Western Australia 6983 Telephone (08) 9219 9943 dbca.wa.gov.au The recommended reference for this publication is: Department of Biodiversity, Conservation and Attractions, 2020, Biodiversity and Conservation Science Annual Report 2019-20, Department of Biodiversity, Conservation and Attractions, Perth. Images Front cover main photo: Mt Trio, Stirling Range National Park. Photo – Damien Rathbone Front cover top photos left to right: Swan Canning Riverpark. Photo – Kerry Trayler/DBCA Mollerin Rock reserve. Photo – Val English/DBCA Shark Bay bandicoot. Photo – Saul Cowen/DBCA Shark Bay seagrass. Photo – Luke Skinner/DBCA Back cover top photos left to right: Post fire monitoring. Photo – Lachie McCaw/DBCA Kalbarri yellow bells. Photo – Kelly Shepherd/DBCA Western grasswren. Photo – Saul Cowen/DBCA Dragon Rocks Kunzea. Photo – Kelly Shepherd/DBCA Department of Biodiversity, Conservation and Attractions Biodiversity and Conservation Science Annual Report 2019–2020 Director’s Message I am pleased to present our Biodiversity and Conservation Science report for 2019-20 as we continue to deliver on the government’s commitment to build and share biodiversity knowledge for Western Australia. Our Science Strategic Plan and Program Plans articulate how our work contributes to delivery of the biodiversity science priorities for the State as the knowledge generated by our science is essential to ensure we conserve and value add to the unique biodiversity we have around us.
    [Show full text]