A ABINIT Software, 171 Ab Initio Molecular Dynamics (AIMD
Total Page:16
File Type:pdf, Size:1020Kb
Index A high-throughput screening, 162–163 ABINIT software, 171 thiophosphates, 158–159 Ab initio molecular dynamics (AIMD) Allen-Cahn equation, 69, 72, 74, 77, 78, 80 techniques Application programming interface (API), 177, advantages, 147–148 194, 198, 201, 203–206 alkali superionic conductors Argon oxygen degasser (AOD), 52 garnet superionic conductors, 160–162 high-throughput screening, 162–163 thiophosphates, 158–159 B BO variants, 148, 149 Band gap, 173, 178, 184, 185, 214–216, 218, CP variants, 148, 149 221 diffusivity, 149, 150 Bardeen-Cooper-Schrieffer (BCS) mechanism, disadvantages, 149 36 dopability, 152–153 Basic oxygen furnace (BOF) process, 51–53, iodide superionic conductors, 154–155 59–61 ionic conductivity, 150 Battery electrodes, 78–79 NVT ensemble, 152 Bi-Fe-O system, 40 probability density function, 151 Birch-Murnaghan (BM4) equation, 31 simulation temperature, 152 Boltzmann transport calculations, 184, 186 SOFCs, 156–158 BoltzTrap code, 184 spin, 152 Born-Oppenheimer (BO) variants, 148, 149, supercell sizes, 151–152 152 time step, 152 Butler-Volmer reaction rate, 79–81 total simulation time, 152 van Hove correlation function, 151 Additive manufacturing C gradient alloys, 33–35 Cahn-Hilliard equation, 69, 72, 74, 77–81, 112, process, 32 113 Ti-6Al-4V, 32–35 CALculation of PHAse Diagram (CALPHAD) Aflowlib, 171, 195 approach ˛AgI, 154, 155 description, 27–28 AIMD techniques. See Ab initio molecular first-principles calculations, 31–32 dynamics (AIMD) techniques Gibbs energy, 28–31, 42 Alkali superionic conductors gradient alloys, 34–35 garnet superionic conductors, 160–162 modeling method, 29–31 © Springer International Publishing AG 2018 227 D.Shin,J.Saal(eds.),Computational Materials System Design, https://doi.org/10.1007/978-3-319-68280-8 228 Index CALculation of PHAse Diagram (CALPHAD) characteristic length and time scales, approach (cont.) 116–118 pyrometallurgical process, 63, 65 classes, 106–107 reliable thermodynamic database, 91 coarse-grained atomistics SnS system, 39 CAC, 109, 110 thermochemical and phase equilibrium CADD, 110 data, 28, 29 CGMD, 109 Ti-Al-V phase diagrams, 33 QC method, 108–109 Car-Parrinello (CP) variants, 148, 149, 152 computational simulation, 133, 134 Casting process, 89–91, 95, 96, 99, 101, 102 crack nucleation processes, 131–132 CEM. See Cluster expansion method (CEM) discrete dislocation models, 113–114 Center for Hierarchical Materials Design dislocation field mechanics, 111 (CHiMaD), 206 dislocation nucleation, 118–119 CEQCSI software, 48 dynamic shear stress, 120 ChemApp, 63, 65, 90, 93 FIPs, 132–133 Chemical vapor deposition (CVD), 40 Gaussian distribution, 133 Clarke and Cahill-Pohl model, 186, 187 generalized continua Cluster expansion method (CEM), 31 CTB, 127 Coarse-grained atomistic approach discrete dislocation plasticity CAC, 109, 110 simulation, 129–130 CADD, 110 length scales, 128 CGMD, 109 micromorphic model, 129 QC method, 108–109 micropolar model, 129 Coarse-grained models, 16 generalized continua models, 115–116 Coarse-grained molecular dynamics (CGMD) grain orientations, 121 method, 109 grain-scale, 116 Coarse-grained phase field (CGPF) model, hierarchy, 106 112, 113 interface slip transfer Coarsening, 67, 90, 93, 94, 96, 97 CAC, 125 Coherent potential approximation (CPA), 31 CADD approach, 124 Coherent twin boundary (CTB), 126, 127 dislocation-grain boundary reactions, Comma-separated value (CSV) files, 205 123 Community frameworks, 81–82 EAM, 126 Compound energy formalism (CEF), 29, 30, LRB criteria, 124 49 NEB, 125 Comprehensive crystal structure database, 175 rules of thumb, 124 Computational fluid dynamics (CFD), 47, 49 length scale-dependent, 126 Computational thermodynamics mesoscale gap, 105 CALPHAD approach (see CALculation MPF theory, 112–113 of PHAse Diagram (CALPHAD) nonlocal reaction-diffusion model, 107 approach) reaction-convection model, 107 growth conditions scaling laws, 107 complex oxides, 39–42 single wave structure, 122 MgB2, 36–37 statistical dislocation models, 114 SnS system, 38–39 Crystallographic information file (CIF), 199 3D computer-aided design (CAD), 32, 35 Crystallography Open Database (COD), 175 Concurrent atomistic-continuum (CAC) 3D crystal plasticity finite element method method, 109, 110, 125 (CPFEM), 16 Concurrent multiscale modeling, 5 CZTSSe thin films, 38, 39 Coupled atomistic and discrete dislocation (CADD), 110 Crack nucleation processes, 131–132 D Crystalline plasticity Data mining, 199 Debye-Grüneisen method, 31 Index 229 Decarburization process, 51, 59–64 Fast ion conductors Dendrite AIMD studies of (see Ab initio molecular arm spacing, 90, 91, 93, 94, 96, 97 dynamics (AIMD) techniques) growth and formation, 77–78, 80, 81 applications, 147 tip, 90, 93, 96 properties, 147 Density functional perturbation theory (DFPT), Fatigue indicator parameters (FIPs), 132–133 173–175, 178, 179, 215 Fick’s 2nd law, 94 Density functional theory (DFT), 7, 28, 31–33, FiPy software, 81 67, 112, 117, 171–176, 178, 181, FireWorks, 175 184, 208, 215–221 First-order mass transfer equation, 49–50 Deoxidation phenomena, 49, 51, 53, 58, 61 First-principle calculations, 170, 171, 179, 186 De-phosphorization process, 51 Formation enthalpy, 41, 171, 172, 200 Deposition, 79–81 FSStel database, 49 Desulfurization (de-S) process, 51, 53, 57, 61 FTlite database, 93, 94 Direct numerical simulation (DNS), 15 FTmisc-FeLq database, 49 Discrete dislocation (DD), 108, 113–114 Doping, 152–153 Dryad Digital Repository, 179 G =’ microstructure, 73 GaN crystal, 80 E Garnet superionic conductors, 160–162 Effective Equilibrium Reaction Zone (EERZ) Gaussian distribution, 133 model Generalized continua models, 115–116 concept, 49–51 Generalized gradient approximation (GGA), in steel making (see Steelmaking process) 41, 172–174, 185 Elasticity, 78, 79, 113, 181, 182, 186 Geometrically necessary dislocations (GNDs), Elastic property, 78, 79 115, 127 high-throughput computing systems Gibbs free energy, 28–31, 42, 91 database, 182 Gradient alloys, 33–35 Poisson’s ratio, 182, 183 Grain growth, 75–76 Pugh’s ratio, 182, 183 Green-Kubo relation, 149 quality control steps, 181 VRH bulk and shear moduli, 182, 183 workflow, 181 H Electric Arc Furnace (EAF), 52 Hartree-Fock theory, 173 Electrodeposition, 79–81 Haven ratio, 150 Ellingham diagram, 40 Helmholtz energy, 31 Embedded atom method (EAM), 126 Herfindahl-Hirschman (HHI) index, 185 End-members, 29–31 Hexagonal closed-packed (hcp), 33, 91–94, 97, Equation of state, 31, 120 98 Equilibrium phase fractions, 34, 35, 37, 100 Heyd-Scuseria-Ernzerhof (HSE) function, 173 European Commission Joint Research Centre’s Hierarchical multiscale modeling, 5 MatDB, 194 High-cycle fatigue (HCF), 131 European Union’s NoMaD repository, 194 High-throughput computing systems accuracy and, 171 challenges, 186–188 F DFT calculations, 171–174 Face-centered cubic (fcc) phase, 33, 93, 94, 99, elastic property 100, 108 database, 182 FACT oxide (FToxid) solution database, 48, 49 Poisson’s ratio, 182, 183 FACT pure substance database (FACTPS), 49 Pugh’s ratio, 182, 183 FactSage packages, 27, 48, 49, 51, 59, 63, 90, quality control steps, 181 91, 93, 94 VRH bulk and shear moduli, 182, 183 Fast Fourier Transform (FFT), 16 workflow, 181 230 Index High-throughput computing systems (cont.) M novel thermoelectric materials Macro Processing, 51 Boltzmann transport calculations, 184 Materials Data Curation System (MDCS), 203, database, 184, 185 204 figure of merit, 183, 184 Materials data facility (MDF), 194, maximum power factor, 184, 185 206, 207 thermal conductivity, 186 Materials data infrastructure opportunities, 186–187 citrine informatics piezoelectric property algorithmic data mining, 199 constants, 179 data access, 203 database, 179 data import, 201–202 maximum longitudinal piezoelectric data storage, 202–203 modulus, 179, 180 PIF, 200 tensor, 177–179 definition, 193 workflow, 178 field effect, 194–197 High-throughput (HT) screening, 162–163 general architecture Hubbard U correction (GGACU), 41, 185 data access, 198 Hypertext transfer protocol (HTTP), 201, 203 data import, 194 data standards, 199 data storage, 198 I machine learning, 199 Inductive Design Exploration Method (IDEM), materials commons 19 data access, 206 Inorganic Crystal Structure Database (ICSD), data import, 205 175, 194, 196 data standards, 205 Integrated Computational Materials data storage, 206 Engineering (ICME), 1, 2 materials informatics (see Materials informatics) K MDCS Kim, Kim, and Suzuki (KKS) model, 70, 71 data access, 204–205 Kurz, Giovanola, and Trivedi (KGT) model, 93 data import, 204 data standards, 204 data storage, 204 L primary goal, 203 Ladle furnace (LF) process MDF EERZ model, 53, 54 data access, 207 Microsoft Excel™, 54, 55 data import, 207 nonmetallic inclusions, 58, 59 data standards, 206–207 operation schedule, 56 data storage, 207 oxide components, 57 MS&E community, 193 simulation results, 57 NMRR software, 203 temperature profile, 57, 58 XML schema, 204 Ladle metallurgical furnace (LMF). See Ladle Materials design furnace (LF) process definition, 6–7 Langevin noise method, 74 structure hierarchy Least absolute shrinkage and selection operator goal oriented design methods, 6, 7 (LASSO) approach, 219–221 length scales, 3–5 Lee-Robertson-Birnbaum (LRB) criteria, 124 mechanical properties/responses, 7 Li10GeP2S12 (LGPS) superionic conductor, multiscale modeling, 7–10 158, 159, 163 Olson’s overlapping Venn diagram, 7, 8 Li7La3Zr2O12 (LLZO), 158, 160, 161 process-structure-property-performance LixFePO4 particles, 78, 79 diagram, 7, 8 Local density approximations (LDA),