(PDF) DFT Software: Who, What, and How Much
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GPAW, Gpus, and LUMI
GPAW, GPUs, and LUMI Martti Louhivuori, CSC - IT Center for Science Jussi Enkovaara GPAW 2021: Users and Developers Meeting, 2021-06-01 Outline LUMI supercomputer Brief history of GPAW with GPUs GPUs and DFT Current status Roadmap LUMI - EuroHPC system of the North Pre-exascale system with AMD CPUs and GPUs ~ 550 Pflop/s performance Half of the resources dedicated to consortium members Programming for LUMI Finland, Belgium, Czechia, MPI between nodes / GPUs Denmark, Estonia, Iceland, HIP and OpenMP for GPUs Norway, Poland, Sweden, and how to use Python with AMD Switzerland GPUs? https://www.lumi-supercomputer.eu GPAW and GPUs: history (1/2) Early proof-of-concept implementation for NVIDIA GPUs in 2012 ground state DFT and real-time TD-DFT with finite-difference basis separate version for RPA with plane-waves Hakala et al. in "Electronic Structure Calculations on Graphics Processing Units", Wiley (2016), https://doi.org/10.1002/9781118670712 PyCUDA, cuBLAS, cuFFT, custom CUDA kernels Promising performance with factor of 4-8 speedup in best cases (CPU node vs. GPU node) GPAW and GPUs: history (2/2) Code base diverged from the main branch quite a bit proof-of-concept implementation had lots of quick and dirty hacks fixes and features were pulled from other branches and patches no proper unit tests for GPU functionality active development stopped soon after publications Before development re-started, code didn't even work anymore on modern GPUs without applying a few small patches Lesson learned: try to always get new functionality to the -
Free and Open Source Software for Computational Chemistry Education
Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching. -
D6.1 Report on the Deployment of the Max Demonstrators and Feedback to WP1-5
Ref. Ares(2020)2820381 - 31/05/2020 HORIZON2020 European Centre of Excellence Deliverable D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 Pablo Ordejón, Uliana Alekseeva, Stefano Baroni, Riccardo Bertossa, Miki Bonacci, Pietro Bonfà, Claudia Cardoso, Carlo Cavazzoni, Vladimir Dikan, Stefano de Gironcoli, Andrea Ferretti, Alberto García, Luigi Genovese, Federico Grasselli, Anton Kozhevnikov, Deborah Prezzi, Davide Sangalli, Joost VandeVondele, Daniele Varsano, Daniel Wortmann Due date of deliverable: 31/05/2020 Actual submission date: 31/05/2020 Final version: 31/05/2020 Lead beneficiary: ICN2 (participant number 3) Dissemination level: PU - Public www.max-centre.eu 1 HORIZON2020 European Centre of Excellence Deliverable D6.1 Report on the deployment of the MaX Demonstrators and feedback to WP1-5 Document information Project acronym: MaX Project full title: Materials Design at the Exascale Research Action Project type: European Centre of Excellence in materials modelling, simulations and design EC Grant agreement no.: 824143 Project starting / end date: 01/12/2018 (month 1) / 30/11/2021 (month 36) Website: www.max-centre.eu Deliverable No.: D6.1 Authors: P. Ordejón, U. Alekseeva, S. Baroni, R. Bertossa, M. Bonacci, P. Bonfà, C. Cardoso, C. Cavazzoni, V. Dikan, S. de Gironcoli, A. Ferretti, A. García, L. Genovese, F. Grasselli, A. Kozhevnikov, D. Prezzi, D. Sangalli, J. VandeVondele, D. Varsano, D. Wortmann To be cited as: Ordejón, et al., (2020): Report on the deployment of the MaX Demonstrators and feedback to WP1-5. Deliverable D6.1 of the H2020 project MaX (final version as of 31/05/2020). -
The Impact of Density Functional Theory on Materials Research
www.mrs.org/bulletin functional. This functional (i.e., a function whose argument is another function) de- scribes the complex kinetic and energetic interactions of an electron with other elec- Toward Computational trons. Although the form of this functional that would make the reformulation of the many-body Schrödinger equation exact is Materials Design: unknown, approximate functionals have proven highly successful in describing many material properties. Efficient algorithms devised for solving The Impact of the Kohn–Sham equations have been imple- mented in increasingly sophisticated codes, tremendously boosting the application of DFT methods. New doors are opening to in- Density Functional novative research on materials across phys- ics, chemistry, materials science, surface science, and nanotechnology, and extend- ing even to earth sciences and molecular Theory on Materials biology. The impact of this fascinating de- velopment has not been restricted to aca- demia, as DFT techniques also find application in many different areas of in- Research dustrial research. The development is so fast that many current applications could Jürgen Hafner, Christopher Wolverton, and not have been realized three years ago and were hardly dreamed of five years ago. Gerbrand Ceder, Guest Editors The articles collected in this issue of MRS Bulletin present a few of these suc- cess stories. However, even if the compu- Abstract tational tools necessary for performing The development of modern materials science has led to a growing need to complex quantum-mechanical calcula- tions relevant to real materials problems understand the phenomena determining the properties of materials and processes on are now readily available, designing a an atomistic level. -
Practice: Quantum ESPRESSO I
MODULE 2: QUANTUM MECHANICS Practice: Quantum ESPRESSO I. What is Quantum ESPRESSO? 2 DFT software PW-DFT, PP, US-PP, PAW FREE http://www.quantum-espresso.org PW-DFT, PP, PAW FREE http://www.abinit.org DFT PW, PP, Car-Parrinello FREE http://www.cpmd.org DFT PP, US-PP, PAW $3000 [moderate accuracy, fast] http://www.vasp.at DFT full-potential linearized augmented $500 plane-wave (FLAPW) [accurate, slow] http://www.wien2k.at Hartree-Fock, higher order correlated $3000 electron approaches http://www.gaussian.com 3 Quantum ESPRESSO 4 Quantum ESPRESSO Quantum ESPRESSO is an integrated suite of Open- Source computer codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials. Core set of codes, plugins for more advanced tasks and third party packages Open initiative coordinated by the Quantum ESPRESSO Foundation, across Italy. Contributed to by developers across the world Regular hands-on workshops in Trieste, Italy Open-source code: FREE (unlike VASP...) 5 Performance Small jobs (a few atoms) can be run on single node Includes determining convergence parameters, lattice constants Can use OpenMP parallelization on multicore machines Large jobs (~10’s to ~100’s atoms) can run in parallel using MPI to 1000’s of cores Includes molecular dynamics, large geometry relaxation, phonons Parallel performance tied to BLAS/LAPACK (linear algebra routines) and 3D FFT (fast Fourier transform) New GPU-enabled version available 6 Usability Documented online: -
The CECAM Electronic Structure Library and the Modular Software Development Paradigm
The CECAM electronic structure library and the modular software development paradigm Cite as: J. Chem. Phys. 153, 024117 (2020); https://doi.org/10.1063/5.0012901 Submitted: 06 May 2020 . Accepted: 08 June 2020 . Published Online: 13 July 2020 Micael J. T. Oliveira , Nick Papior , Yann Pouillon , Volker Blum , Emilio Artacho , Damien Caliste , Fabiano Corsetti , Stefano de Gironcoli , Alin M. Elena , Alberto García , Víctor M. García-Suárez , Luigi Genovese , William P. Huhn , Georg Huhs , Sebastian Kokott , Emine Küçükbenli , Ask H. Larsen , Alfio Lazzaro , Irina V. Lebedeva , Yingzhou Li , David López- Durán , Pablo López-Tarifa , Martin Lüders , Miguel A. L. Marques , Jan Minar , Stephan Mohr , Arash A. Mostofi , Alan O’Cais , Mike C. Payne, Thomas Ruh, Daniel G. A. Smith , José M. Soler , David A. Strubbe , Nicolas Tancogne-Dejean , Dominic Tildesley, Marc Torrent , and Victor Wen-zhe Yu COLLECTIONS Paper published as part of the special topic on Electronic Structure Software Note: This article is part of the JCP Special Topic on Electronic Structure Software. This paper was selected as Featured ARTICLES YOU MAY BE INTERESTED IN Recent developments in the PySCF program package The Journal of Chemical Physics 153, 024109 (2020); https://doi.org/10.1063/5.0006074 An open-source coding paradigm for electronic structure calculations Scilight 2020, 291101 (2020); https://doi.org/10.1063/10.0001593 Siesta: Recent developments and applications The Journal of Chemical Physics 152, 204108 (2020); https://doi.org/10.1063/5.0005077 J. Chem. Phys. 153, 024117 (2020); https://doi.org/10.1063/5.0012901 153, 024117 © 2020 Author(s). The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp The CECAM electronic structure library and the modular software development paradigm Cite as: J. -
Kepler Gpus and NVIDIA's Life and Material Science
LIFE AND MATERIAL SCIENCES Mark Berger; [email protected] Founded 1993 Invented GPU 1999 – Computer Graphics Visual Computing, Supercomputing, Cloud & Mobile Computing NVIDIA - Core Technologies and Brands GPU Mobile Cloud ® ® GeForce Tegra GRID Quadro® , Tesla® Accelerated Computing Multi-core plus Many-cores GPU Accelerator CPU Optimized for Many Optimized for Parallel Tasks Serial Tasks 3-10X+ Comp Thruput 7X Memory Bandwidth 5x Energy Efficiency How GPU Acceleration Works Application Code Compute-Intensive Functions Rest of Sequential 5% of Code CPU Code GPU CPU + GPUs : Two Year Heart Beat 32 Volta Stacked DRAM 16 Maxwell Unified Virtual Memory 8 Kepler Dynamic Parallelism 4 Fermi 2 FP64 DP GFLOPS GFLOPS per DP Watt 1 Tesla 0.5 CUDA 2008 2010 2012 2014 Kepler Features Make GPU Coding Easier Hyper-Q Dynamic Parallelism Speedup Legacy MPI Apps Less Back-Forth, Simpler Code FERMI 1 Work Queue CPU Fermi GPU CPU Kepler GPU KEPLER 32 Concurrent Work Queues Developer Momentum Continues to Grow 100M 430M CUDA –Capable GPUs CUDA-Capable GPUs 150K 1.6M CUDA Downloads CUDA Downloads 1 50 Supercomputer Supercomputers 60 640 University Courses University Courses 4,000 37,000 Academic Papers Academic Papers 2008 2013 Explosive Growth of GPU Accelerated Apps # of Apps Top Scientific Apps 200 61% Increase Molecular AMBER LAMMPS CHARMM NAMD Dynamics GROMACS DL_POLY 150 Quantum QMCPACK Gaussian 40% Increase Quantum Espresso NWChem Chemistry GAMESS-US VASP CAM-SE 100 Climate & COSMO NIM GEOS-5 Weather WRF Chroma GTS 50 Physics Denovo ENZO GTC MILC ANSYS Mechanical ANSYS Fluent 0 CAE MSC Nastran OpenFOAM 2010 2011 2012 SIMULIA Abaqus LS-DYNA Accelerated, In Development NVIDIA GPU Life Science Focus Molecular Dynamics: All codes are available AMBER, CHARMM, DESMOND, DL_POLY, GROMACS, LAMMPS, NAMD Great multi-GPU performance GPU codes: ACEMD, HOOMD-Blue Focus: scaling to large numbers of GPUs Quantum Chemistry: key codes ported or optimizing Active GPU acceleration projects: VASP, NWChem, Gaussian, GAMESS, ABINIT, Quantum Espresso, BigDFT, CP2K, GPAW, etc. -
Density Functional Theory and Nuclear Quantum Effects
1 Grassmann manifold, gauge, and quantum chemistry Lin Lin Department of Mathematics, UC Berkeley; Lawrence Berkeley National Laboratory Flatiron Institute, April 2019 2 Stiefel manifold • × > ℂ • Stiefel manifold (1935): orthogonal vectors in × ℂ , = | = ∗ ∈ ℂ 3 Grassmann manifold • Grassmann manifold (1848): set of dimensional subspace in ℂ , = , / : dimensional unitary group (i.e. the set of unitary matrices in × ) ℂ • Any point in , can be viewed as a representation of a point in , 4 Example (in optimization) min ( ) . = ∗ • = , . invariant to the choice of basis Optimization on a Grassmann manifold. ∈ ⇒ • The representation is called the gauge in quantum physics / chemistry. Gauge invariant. 5 Example (in optimization) min ( ) . = ∗ • Otherwise, if ( ) is gauge dependent Optimization on a Stiefel manifold. ⇒ • [Edelman, Arias, Smith, SIMAX 1998] many works following 6 This talk: Quantum chemistry • Time-dependent density functional theory (TDDFT) • Kohn-Sham density functional theory (KSDFT) • Localization. • Gauge choice is the key • Used in community software packages: Quantum ESPRESSO, Wannier90, Octopus, PWDFT etc 7 Time-dependent density functional theory Parallel transport gauge 8 Time-dependent density functional theory [Runge-Gross, PRL 1984] (spin omitted, : number of electrons) , = , , , = 1, … , , , = ( ,) ( , ) ′ ∗ ′ � Hamiltonian =1 1 , = + ( ) + [ ] 2 − Δ 9 Density matrix • Key quantity throughout the talk × • (t) = , … , . : number of discretized grid points to represent each Ψ 1 ∈ ℂ = ∗ Ψ Ψ = 10 Gauge invariance • Unitary rotation = , = ∗ = Φ Ψ= ( ) = ∗ ∗ ∗ ∗ ΦΦ Ψ Ψ ΨΨ • Propagation of the density matrix, von Neumann equation (quantum Liouville equation) = , = , ( ) , − 11 Gauge choice affects the time step Extreme case (boring Hamiltonian) ≡ 0 Initial condition 0 = 0 0 Exact solution = (0) Small time step − = (0) (Formally) arbitrarily large time step 12 P v.s. -
Quantum Chemistry (QC) on Gpus Feb
Quantum Chemistry (QC) on GPUs Feb. 2, 2017 Overview of Life & Material Accelerated Apps MD: All key codes are GPU-accelerated QC: All key codes are ported or optimizing Great multi-GPU performance Focus on using GPU-accelerated math libraries, OpenACC directives Focus on dense (up to 16) GPU nodes &/or large # of GPU nodes GPU-accelerated and available today: ACEMD*, AMBER (PMEMD)*, BAND, CHARMM, DESMOND, ESPResso, ABINIT, ACES III, ADF, BigDFT, CP2K, GAMESS, GAMESS- Folding@Home, GPUgrid.net, GROMACS, HALMD, HOOMD-Blue*, UK, GPAW, LATTE, LSDalton, LSMS, MOLCAS, MOPAC2012, LAMMPS, Lattice Microbes*, mdcore, MELD, miniMD, NAMD, NWChem, OCTOPUS*, PEtot, QUICK, Q-Chem, QMCPack, OpenMM, PolyFTS, SOP-GPU* & more Quantum Espresso/PWscf, QUICK, TeraChem* Active GPU acceleration projects: CASTEP, GAMESS, Gaussian, ONETEP, Quantum Supercharger Library*, VASP & more green* = application where >90% of the workload is on GPU 2 MD vs. QC on GPUs “Classical” Molecular Dynamics Quantum Chemistry (MO, PW, DFT, Semi-Emp) Simulates positions of atoms over time; Calculates electronic properties; chemical-biological or ground state, excited states, spectral properties, chemical-material behaviors making/breaking bonds, physical properties Forces calculated from simple empirical formulas Forces derived from electron wave function (bond rearrangement generally forbidden) (bond rearrangement OK, e.g., bond energies) Up to millions of atoms Up to a few thousand atoms Solvent included without difficulty Generally in a vacuum but if needed, solvent treated classically -
CPMD Tutorial Car–Parrinello Molecular Dynamics
CPMD Tutorial Car–Parrinello Molecular Dynamics Ari P Seitsonen CNRS & Universit´ePierre et Marie Curie, Paris CSC, October 2006 Introduction CPMD — concept 1 • Car-Parrinello Molecular Dynamics – Roberto Car & Michele Parrinello, Physical Review Letters 55, 2471 (1985) — 20+1 years of Car-Parrinello method! Roberto Car Michele Parrinello CPMD — concept 2 • CPMD code — http://www.cpmd.org/; based on the original code of Roberto Car and Michele Parrinello CPMD What is it, what is it not? • Computer code for performing static, dynamic simulations and analysis of electronic structure • About 200’000 lines of code — FORTRAN77 with a flavour towards F90 • (Freely) available via http://www.cpmd.org/ with source code • Most suitable for dynamical simulations of condensed systems or large molecules — less for small molecules or bulk properties of small crystals • Computationally highly optimised for vector and scalar supercomputers, shared and distributed memory machines and combinations thereof (SMP) Capabilities • Solution of electronic and ionic structure • XC-functional: LDA, GGA, meta-GGA, hybrid • Molecular dynamics in NVE, NVT, NPT ensembles • General constraints (MD and geometry optimisation) • Metadynamics ‡ • Free energy functional ‡ • Path integrals ‡ • QM/MM ‡ • Wannier functions • Response properties: TDDFT, NMR, Raman, IR, . • Norm conserving and ultra-soft pseudo potentials ‡ : Will not be considered during this course CPMD: Examples Amorphous Si CPMD: Examples Amorphous Si CPMD: Examples Liquid water: Solvation and transport of -
Pyscf: the Python-Based Simulations of Chemistry Framework
PySCF: The Python-based Simulations of Chemistry Framework Qiming Sun∗1, Timothy C. Berkelbach2, Nick S. Blunt3,4, George H. Booth5, Sheng Guo1,6, Zhendong Li1, Junzi Liu7, James D. McClain1,6, Elvira R. Sayfutyarova1,6, Sandeep Sharma8, Sebastian Wouters9, and Garnet Kin-Lic Chany1 1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125, USA 2Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA 3Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4Department of Chemistry, University of California, Berkeley, California 94720, USA 5Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom 6Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA 7Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China 8Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80302, USA 9Brantsandpatents, Pauline van Pottelsberghelaan 24, 9051 Sint-Denijs-Westrem, Belgium arXiv:1701.08223v2 [physics.chem-ph] 2 Mar 2017 Abstract PySCF is a general-purpose electronic structure platform designed from the ground up to emphasize code simplicity, so as to facilitate new method development and enable flexible ∗[email protected] [email protected] 1 computational workflows. The package provides a wide range of tools to support simulations of finite-size systems, extended systems with periodic boundary conditions, low-dimensional periodic systems, and custom Hamiltonians, using mean-field and post-mean-field methods with standard Gaussian basis functions. To ensure ease of extensibility, PySCF uses the Python language to implement almost all of its features, while computationally critical paths are implemented with heavily optimized C routines. -
Arxiv:2005.05756V2
“This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Oliveira, M.J.T. [et al.]. The CECAM electronic structure library and the modular software development paradigm. "The Journal of Chemical Physics", 12020, vol. 153, núm. 2, and may be found at https://aip.scitation.org/doi/10.1063/5.0012901. The CECAM Electronic Structure Library and the modular software development paradigm Micael J. T. Oliveira,1, a) Nick Papior,2, b) Yann Pouillon,3, 4, c) Volker Blum,5, 6 Emilio Artacho,7, 8, 9 Damien Caliste,10 Fabiano Corsetti,11, 12 Stefano de Gironcoli,13 Alin M. Elena,14 Alberto Garc´ıa,15 V´ıctor M. Garc´ıa-Su´arez,16 Luigi Genovese,10 William P. Huhn,5 Georg Huhs,17 Sebastian Kokott,18 Emine K¨u¸c¨ukbenli,13, 19 Ask H. Larsen,20, 4 Alfio Lazzaro,21 Irina V. Lebedeva,22 Yingzhou Li,23 David L´opez-Dur´an,22 Pablo L´opez-Tarifa,24 Martin L¨uders,1, 14 Miguel A. L. Marques,25 Jan Minar,26 Stephan Mohr,17 Arash A. Mostofi,11 Alan O'Cais,27 Mike C. Payne,9 Thomas Ruh,28 Daniel G. A. Smith,29 Jos´eM. Soler,30 David A. Strubbe,31 Nicolas Tancogne-Dejean,1 Dominic Tildesley,32 Marc Torrent,33, 34 and Victor Wen-zhe Yu5 1)Max Planck Institute for the Structure and Dynamics of Matter, D-22761 Hamburg, Germany 2)DTU Computing Center, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark 3)Departamento CITIMAC, Universidad de Cantabria, Santander, Spain 4)Simune Atomistics, 20018 San Sebasti´an,Spain 5)Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA 6)Department of Chemistry, Duke University, Durham, NC 27708, USA 7)CIC Nanogune BRTA and DIPC, 20018 San Sebasti´an,Spain 8)Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain 9)Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom 10)Department of Physics, IRIG, Univ.