Biotype Differentiation in the Typhula Ishikariensis Complex and Their Allopatry in Hokkaido

Total Page:16

File Type:pdf, Size:1020Kb

Biotype Differentiation in the Typhula Ishikariensis Complex and Their Allopatry in Hokkaido 日 植 病 報 48: 275-280 (1982) Ann. Phytopath. Soc. Japan 48: 275-280 (1982) Biotype Differentiation in the Typhula ishikariensis Complex and Their Allopatry in Hokkaido Naoyuki MATSUMOTO*, Toru SATO** and Takao ARAKI*** 松 本 直 幸 *・佐藤 徹 **・荒木 隆 男***:雪腐 黒 色 小 粒 菌 核 病 菌 の生 物 型 と そ れ らの 北 海 道 内 に お け る異 所 性 Abstract Typhula ishikariensis isolates were collected from various parts of Hokkaido. There were two genetically different groups which did not mate with each other; one was termed biotype A, and the other was further divided into two by cultural characteristics, i.e., biotypes B and C. Biotype A was identical to T. ishikariensis and T. ishikariensis var. ishikariensis. Biotype B was not identical to T. idahoensis or T. ishikariensis var. idahoensis. Biotype C was similar to T. ishikariensis var. canadensis. Biotype A tended to occur inland where deep snow cover lasts for a long time. Biotype B was obtained mainly from the coastal regions where snow cover is thin and short in time. The distribution of biotype C was irregular. Taxonomic significance of the genetics and allopatry in the T. ishikari- ensis complex is discussed. (Received August 31, 1981) Key Words: snow mold fungi, taxonomy, distribution. Introduction Pathogenic species of Typhula had been confused in taxonomy until McDonald14) reviewed the literature on these fungi in 1961. Although he suggested the need for the comparison of many specimens from different sources by one investigator, he placed T. ishikariensis S. Imai and T. idahoensis Remsberg in synonymy. Bruehl et al.2,3) discriminated between both species on the bases of morphology and genetics. They mated to a limited extent, but most of the hybrid offsprings were presumed incapable of survival in nature. Arsvoll and Smith1), on the other hand, did not regard T. idahoensis as a separate species on genetical evidence and established three varieties in T. ishikariensis, i.e., var. ishikariensis, var. idahoensis, and var. canadensis. They could obtain inter- variety hybrids which formed normal basidiocarps. Genetical relationship between var. idahoensis and var. canadensis is closer than that between var. ishikariensis and var. idahoensis or var. canadensis. Christen and Bruehl8) and Bruehl and Machtmes5) * Hokkaido National Agricultural Experiment Station , Hitsujigaoka 1, Toyohira-ku, Sapporo 061-01 北 海 道 農 業 試 験 場 ** Present address: National Grassland Research Institute , Nishinasuno, Tochigi 329-27 草 地 試 験 場 *** Present address: National Institute of Agricultural Sciences , Kannondai, Yatabe, Ibaraki 305 農 業 技 術 研 究 所 276 日本植 物病 理 学 会 報 第48巻 第3号 昭 和57年7月 thereafter reconsidered that interspecific hybrids of T. ishikariensis•~T. idahoensis could exist in nature since they found putative interspecific hybrids in nature. In this study, we examined whether such relationships existed within our T. ishikariensis isolates and found similar differentiation. Materials and Methods Natural dikaryons of T. ishikariensis of different origins in Hokkaido were obtained from either basidiocarps or surface-sterilized sclerotia by placing them on potato-dextrose agar (PDA) at 10C. Monokaryons were obtained as follows; a basidiocarp formed in nature or in an artificial condition (12-hr photoperiod, 10C) was secured with adhesive tape to the inside of a Petri dish lid, and basidiopores were allowed to discharge onto the dish containing sterile water. The spore suspension was spread on PDA plates. Germlings were transferred to PDA slants several days later and examined on clamp connections after a few weeks. The absence of clamp connections was used for the criterion of monokaryon. The mono- or dikaryotic condition of the isolates was confirmed by Giemsa staining. Mating experiments between monokaryons (mon-mon mating) or between dikaryon and monokaryon (di-mon mating) were conducted as described by Bruehl et al.3) with slight modifications. Agar discs 5mm in diam with mycelia were cut from the margin of actively growing cultures and placed 1.5cm apart in pairs on PDA plates. After two weeks a small block was cut from the junction of the colonies for mon-mon matings or from the original monokaryon colony for di-mon matings and transferred to the unoccupied portion of the same plate. Growth from the block was examined on clamp connections after several days. The symbol "+" shows the compatible combination in which mating occurred and the offspring grew vigorously, having normal hyphae with abundant clamp connections. When the growth was normal and vigorous but had no clamp connections, the combination was regarded as incompatible. The symbol "-" is given in this case. The symbol "•}" indicates the combination in which the growth was meager and abnormal, having a few clamp connections. All the experiments were conducted at 10C. Results Grouping of T. ishikariensis isolates More than one hundred isolates were used for the mating experiments, and a portion of the results is illustrated in Tables 1 and 2. Di-mon mating experiments with Hokkaido dikaryons revealed that there were two genetically different groups (Table 1). One group of the isolates which mated with both the monokaryon A 7-6 and the American T. ishikariensis monokaryon 70-5-7* will be referred to as biotype A. The other group consisting of the isolates which did not mate with these two monokaryons but mated with the monokaryn Tu 6 and sometimes with the American T. idahoensis monokaryon 5999-5-3* could be further divided into two by cultural morphology, i.e., biotypes B and * 輸入 許 可 番 号:農 林 水 産 省 指 令53横 植 第1339号(昭 和53年5月19日) ,同53横 植 第2156号(昭 和53年8月22 日),お よび 同54横 植 第2753号(昭 和54年12月12日). Ann. Phytopath. Soc. Japan 48 (3). July, 1982 277 Table 1. Grouping of Typhula ishikariensis isolates from Hokkaido by mating experiments a) Mating offspring vigorous, having abundant clamp connections. b) Mating offspring vigorous, but clamp connections lacking. c) Mating offspring abnormal with poor growth. A few clamp connections present. Table 2. Mating reaction of monokaryons of Typhula ishikariensis biotypes to T. ishikariensis and T. idahoensis dikaryons from USA and to T. ishikariensis var. canadensis dikaryons from Canada a) Mating offspring vigorous, having abundant clamp connections. b) Mating offspring vigorous, but clamp connections lacking. c) Mating offspring abnormal with poor growth. A few clamp connections present. C. Biotype C resembled T. ishikariensis var. canadensis. Crosses between biotype B dikaryons and the T. idahoensis monokaryon often failed to produce vigorous offsprings as did the isolates YOG-3, HCy-4, and HiTu-1. Monokaryons were obtained from each biotype and used for di-mon mating experi- ments with the dikaryons of T. ishikariensis and T. idahoensis from the USA* and T. ishikariensis var. canadensis from Canada* (Table 2). Monokaryons of biotype A were compatible with T. ishikariensis but incompatible with T. idahoensis and T. ishikariensis var. canadensis. In most crosses between biotype B monokaryons and T. ishikariensis dikaryons, the products usually exhibited "•}" reaction. In crosses with T. idahoensis, however, biotype B monokaryons were seldom dikaryotized. T. ishikariensis var. canadensis 278 日本 植 物 病理 学 会 報 第48巻 第3号 昭 和57年7月 was compatible with biotype B. Biotype C monokaryons reacted the same way as did biotype B monokaryons. Allopatry of the biotypes in Hokkaido The distribution patterns of biotypes A and B were allopatric in Hokkaido (Fig. 1). Biotype A tended to occur inland, where deeper snow cover lasts for a longer period of time (Fig. 2A) and sunshine in November is generally poor (Fig. 2B). T. incarnata Fig. 1. Localities of Typhula ishikariensis biotypes in Hokkaido. •› : biotype A, •œ: biotype B, •£: biotype C. A B Fig. 2. A: Mean annual number of days with snow cover equal to or more than 50cm. B: Mean hours of bright sunshine in November. Reproduced from Climatic Atlas of Japan vol.2 (1972), Japan Meteorological Agency, Chijinshokan, Tokyo. Ann. Phytopath. Soc. Japan 48 (3). July, 1982 279 Lasch ex Fr. was also prevalent there and was sometimes dominant over biotye A in some of the regions. Biotype B was obtained mainly from the remaining coastal regions along the Pacific Ocean and the Sea of Okhotsk. Biotype B overlapped with Sclerotinia borealis Bubak & Vleugel in eastern part of Hokkaido17). The distribution pattern of biotye C was irregular. Discussion The results show that there are three biotypes in T. ishikariensis isolates from Hokkaido. Biotype A would be identical to T. ishikariensis in the USA and to T. ishikari- ensis var. ishikariensis in Norway. Isolates of biotype A mated the same way as reported for these two taxa by other workers1,3), and moreover, common incompatibility factors were identified between Japanese and American isolates (Matsumoto, unpublished). Biotype A and the American T. ishikariensis isolates also resembled in cultural characteristics on P DA, i.e. scarce aerial mycelia, brown sclerotia, etc. When biotype B dikaryons were crossed with the T. idahoensis monokaryon, nearly half of the offsprings exhibited "•}" reaction, and biotype B monokaryons seldom mated with the T. idahoensis dikaryons. These findings suggest that these two taxa are not closely related in genetics. Cultural characteristics on PDA were also different; biotype B had abundant aerial mycelia and black sclerotia, whereas the T. idahoensis isolates resembled the American T. ishikariensis isolates. In fact, Bruehl and Machtmes5) proved it difficult to distinguish single isolates of T. ishikariensis and T. idahoensis in culture. Biotype C is almost identical to T. ishikariensis var. canadensis except that var. canadensis is highly compatible with var. idahoensis1). Putative intergrade isolates between biotypes B and C were occasionally obtained and were tentatively classified as biotype B because of their larger sclerotia. We assume that the allopatry of biotypes A and B may be due to the difference in climatic conditions before and during winter.
Recommended publications
  • How Many Fungi Make Sclerotia?
    fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011).
    [Show full text]
  • Minireview Snow Molds: a Group of Fungi That Prevail Under Snow
    Microbes Environ. Vol. 24, No. 1, 14–20, 2009 http://wwwsoc.nii.ac.jp/jsme2/ doi:10.1264/jsme2.ME09101 Minireview Snow Molds: A Group of Fungi that Prevail under Snow NAOYUKI MATSUMOTO1* 1Department of Planning and Administration, National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira-ku, Sapporo 062–8555, Japan (Received January 5, 2009—Accepted January 30, 2009—Published online February 17, 2009) Snow molds are a group of fungi that attack dormant plants under snow. In this paper, their survival strategies are illustrated with regard to adaptation to the unique environment under snow. Snow molds consist of diverse taxonomic groups and are divided into obligate and facultative fungi. Obligate snow molds exclusively prevail during winter with or without snow, whereas facultative snow molds can thrive even in the growing season of plants. Snow molds grow at low temperatures in habitats where antagonists are practically absent, and host plants deteriorate due to inhibited photosynthesis under snow. These features characterize snow molds as opportunistic parasites. The environment under snow represents a habitat where resources available are limited. There are two contrasting strategies for resource utilization, i.e., individualisms and collectivism. Freeze tolerance is also critical for them to survive freezing temper- atures, and several mechanisms are illustrated. Finally, strategies to cope with annual fluctuations in snow cover are discussed in terms of predictability of the habitat. Key words: snow mold, snow cover, low temperature, Typhula spp., Sclerotinia borealis Introduction Typical snow molds have a distinct life cycle, i.e., an active phase under snow and a dormant phase from spring to In northern regions with prolonged snow cover, plants fall.
    [Show full text]
  • Basidiomycetous Yeast, Glaciozyma Antarctica, Forming Frost-Columnar Colonies on Frozen Medium
    microorganisms Article Basidiomycetous Yeast, Glaciozyma antarctica, Forming Frost-Columnar Colonies on Frozen Medium Seiichi Fujiu 1,2,3, Masanobu Ito 1,3, Eriko Kobayashi 1,3, Yuichi Hanada 1,2, Midori Yoshida 4, Sakae Kudoh 5,* and Tamotsu Hoshino 1,6,* 1 Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Hokkaido, Japan; [email protected] (S.F.); [email protected] (M.I.); [email protected] (E.K.); [email protected] (Y.H.) 2 Graduate School of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Hokkaido, Japan 3 School of Biological Sciences, Tokai University, 1-1-1, Minaminosawa 5, Minami-ku, Sapporo 005-0825, Hokkaido, Japan 4 Hokkaido Agricultural Research Center, NARO, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Hokkaido, Japan; [email protected] 5 Biology Group, National Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo 190-8518, Japan 6 Department of Life and Environmental Science, Faculty of Engineering, Hachinohe Institute of Technology, Obiraki 88-1, Myo, Hachinohe 031-8501, Aomori, Japan * Correspondence: [email protected] (S.K.); [email protected] (T.H.); Tel.: +81-42-512-0739 (S.K.); +81-178-25-8174 (T.H.); Fax: +81-42-528-3492 (S.K.); +81-178-25-6825 (T.H.) Abstract: The basidiomycetous yeast, Glaciozyma antarctica, was isolated from various terrestrial materials collected from the Sôya coast, East Antarctica, and formed frost-columnar colonies on agar plates frozen at −1 ◦C.
    [Show full text]
  • Snow Molds of Turfgrasses, RPD No
    report on RPD No. 404 PLANT July 1997 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN SNOW MOLDS OF TURFGRASSES Snow molds are cold tolerant fungi that grow at freezing or near freezing temperatures. Snow molds can damage turfgrasses from late fall to spring and at snow melt or during cold, drizzly periods when snow is absent. It causes roots, stems, and leaves to rot when temperatures range from 25° to 60°F (-3° to 15°C). When the grass surface dries out and the weather warms, snow mold fungi cease to attack; however, infection can reappear in the area year after year. Snow molds are favored by excessive early fall applications of fast release nitrogenous fertilizers, Figure 1. Gray snow mold on a home lawn (courtesy R. Alden excessive shade, a thatch greater than 3/4 inch Miller). thick, or mulches of straw, leaves, synthetics, and other moisture-holding debris on the turf. Disease is most serious when air movement and soil drainage are poor and the grass stays wet for long periods, e.g., where snow is deposited in drifts or piles. All turfgrasses grown in the Midwest are sus- ceptible to one or more snow mold fungi. They include Kentucky and annual bluegrasses, fescues, bentgrasses, ryegrasses, bermudagrass, and zoysiagrasses with bentgrasses often more severely damaged than coarser turfgrasses. Figure 2. Pink snow mold or Fusarium patch. patches are 8-12 There are two types of snow mold in the inches across, covered with pink mold as snow melts (courtesy R.W. Smiley). Midwest: gray or speckled snow mold, also known as Typhula blight or snow scald, and pink snow mold or Fusarium patch.
    [Show full text]
  • 87-Fernanda-Cid.Pdf
    UNIVERSIDAD DE LA FRONTERA Facultad de Ingeniería y Ciencias Doctorado en Ciencias de Recursos Naturales Characterization of bacterial communities from Deschampsia antarctica phyllosphere and genome sequencing of culturable bacteria with ice recrystallization inhibition activity DOCTORAL THESIS IN FULFILLMENT OF THE REQUERIMENTS FOR THE DEGREE DOCTOR OF SCIENCES IN NATURAL RESOURCES FERNANDA DEL PILAR CID ALDA TEMUCO-CHILE 2018 “Characterization of bacterial communities from Deschampsia antarctica phyllosphere and genome sequencing of culturable bacteria with ice recrystallization inhibition activity” Esta tesis fue realizada bajo la supervisión del Director de tesis, Dr. Milko A. Jorquera Tapia, profesor asociado del Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera y co-dirigida por el Dr. León A. Bravo Ramírez, profesor titular del Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera. Esta tesis ha sido además aprobada por la comisión examinadora. Fernanda del Pilar Cid Alda …………………………………………… ……………………………………. Dr. MILKO JORQUERA T. Dr. Francisco Matus DIRECTOR DEL PROGRAMA DE …………………………………………. DOCTORADO EN CIENCIAS DE Dr. LEON BRAVO R. RECURSOS NATURALES …………………………………………. Dra. MARYSOL ALVEAR Z. ............................................................ Dr. Juan Carlos Parra ………………………………………… DIRECTOR DE POSTGRADO Dra. PAULINA BULL S. UNIVERSIDAD DE LA FRONTERA ………………………………………… Dr. LUIS COLLADO G. ………………………………………… Dra. ANA MUTIS T Dedico esta tesis a mis padres, Lillie Alda Leiva y Fernando Cid Verdugo quienes dedicaron sus vidas a la tarea de enseñar en la Universidad de La Frontera, Temuco-Chile. Abril, 2018 Agradecimientos /Acknowledgements Agradecimientos /Acknowledgements This study was supported by the following research projects: Doctoral Scholarship from Conicyt (no. 21140534) and La Frontera University.
    [Show full text]
  • Sommerfeltia 31 Innmat 20080203.Indd
    SOMMERFELTIA 31 (2008) 125 SNOW MOLD FUNGUS, TYPHULA ISHIKARIENSIS GROUP III, IN ARC- TIC NORWAY CAN GROW AT A SUB-LETHAL TEMPERATURE AFTER FREEZING STRESS AND DURING FLOODING. T. Hoshino, A.M. Tronsmo & I. Yumoto Hoshino, T., Tronsmo, A.M. & Yumoto, I. 2008. Snow mold fungus, Typhula ishikariensis group III, in Arctic Norway can grow at a sub-lethal temperature after freezing stress and during flooding. – Sommerfeltia 31: 125-131. ISBN 82-7420-045-4. ISSN 0800-6865. Isolates of the snow mold fungus Typhula ishikariensis group III, which is predominant in Finnmark (northern Norway) and Svalbard, are more resistant to freezing stress than group I isolates from the southern part of Norway. Group III isolates showed irregular growth on potato dextrose agar (PDA) plates when subjected to heat stress at 10˚C. However, group III isolates showed relatively good growth on PDA at 10˚C after freezing treatment. The optimal temperatures for mycelial growth were 5˚C on PDA and 10˚C in potato dextrose broth (PDB), and group III isolates showed normal mycelial growth at 10˚C in PDB. Mycelium of group III isolates cultivated in water poured into PDA plates, and normal hyphal extension was observed only in the liquid media. Hyphal growth became irregular when mycelia had extended above the surface of the liquid media. These results suggested that group III isolates can grow at a sub-lethal temperature after freezing stress and during flooding. Soil freezing and thawing occurs regularly in the Arctic, and physiological characteristics of group III isolates are well adapted to climatic conditions in the Arctic.
    [Show full text]
  • Chapter 3 Dikaryon-Monokaryon Mating Reactions of Typllula
    63 Chapter 3 Dikaryon-monokaryon mating reactions of TypllUla irhikariensis (mat complex isolates from Wisconsin golf courses with tester isolates from Japan, Norway, Russia and Canada 64 ABSTRACT Speckled snow mold, caused by the TypJwla ishikariensis (TISH) complex, is a common lUrfgrass disease in areas that receive extended periods of snow cover. There are two biological species (BSI and aSH) within this complex and it has been reported that they vary in their ability to be managed- aSH isolates are believed to be soil-borne and more aggressive than the ast isolates. TISH isolates from Wisconsin golf courses were grouped ilCcording to the morphological characteristics of BSI and BSII. From mating experiments with 8Sl and BSII tester isolates from Japan, Norway, Canada and Russia. it was revealed that both mating groups were collected from Wisconsin. III vitro, Wisconsin dikaryotic isolates were paired with monokaryotic aSI and BSII tester isolates. Clamp connection fonnation of the tester isolate indicated a positive mating reaction. Twenty-three percent of the Wisconsin isolates were morphologically similar to, and mated with the BSI isolates, while 77% were morphologically similar to, and mated with aSH isolates. Identifying and understanding the biological differences between BSI and BSII of the TISH complex should improve Typhula blight management. 65 INTRODUCTION Various methods of identification of Typlm/a species have assisted plant pathologists in diagnosing Typhula blights that cause damage to economically important plants. Early mycologists relied heavily on the characteristics of the fruiting body to identify the Typhula species (Persoon, 1801; Fries, 1821; Karsten, 1882). UnfortUnately, the fruiting bodies of the plant pathogenic Typllula species are rarely found in nature and arc not likely to be associated with the damaged plants.
    [Show full text]
  • 2.2 Culturing Sub-Antarctic Macquarie Island Fungi
    Fungal diversity in SubAntarctic Macquarie Island and the effect of hydrocarbon contamination on this fungal diversity Chengdong Zhang School of Biotechnology and Biomolecular Sciences University of New South Wales A thesis submitted in fulfillment of the requirements for the degree of Master of Philosophy in Science Supervisor: Dr. Belinda Ferrari Co Supervisor: Dr. Brendan Burns 1 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Zhang First name: Chengdong Other name/s: Abbreviation for degree as given in the University calendar: Master of Philosophy in Science School: School of Biotechnology and Biomolecular Sciences Faculty: Faculty of Science Title: Fungal diversity in Sub-Antarctic Macquarie Island and the effect of hydrocarbon contamination on this fungal diversity Abstract 350 words maximum: (PLEASE TYPE) Fungi form the largest group of eukaryotic organisms and are widely distributed on Earth. Estimates suggest that at least 1.5 million species exist in nature, yet only 5% have been recovered into pure culture. The fungal diversity of Sub-Antarctic Macquarie Island soil is largely unknown. In this study, a low nutrient fungal culturing approach was developed and used alongside a traditional high nutrient approach to recover Macquarie Island ungi from pristine and a series of Special Antarctic Blend (SAB) diesel fuel spiked soil samples. The low nutrient culturing approach recovered a significantly different (P<0.01) fungal population compared with the high nutrient media approach. In total, 91 yeast and filamentous fungi species were recovered from the soil samples, including 63 yet unidentified species. Macquarie Island has been seriously contaminated by SAB diesel fuel due to the operation of Australia Antarctic research station.
    [Show full text]
  • Biological Control of Typhula Ishikariensis on Perennial Ryegrass
    日植 病 報 58: 741-751 (1992) Ann. Phytopath. Soc. Japan 58: 741-751 (1992) Biological Control of Typhula ishikariensis on Perennial Ryegrass Naoyuki MATSUMOTO* and Akitoshi TAJIMI** Abstract Low-temperature fungi were collected from plants just after snowmelt, and their antagonistic activity against Typhula ishikariensis, a snow mold fungus, was determined using orchardgrass seedlings. Isolates from gramineous plant debris, considered to be T. phacorrhiza, suppressed the disease caused by T. ishikariensis biotype A or B. Antagonists differed in their effectiveness against these biotypes. Isolates antagonistic to biotype A, which is the principal snow mold of perennial ryegrass in northern Hokkaido, were localized in this district. Despite prolonged snow, susceptible, perennial ryegrass is success- fully grown there. These findings suggest the natural occurrence of biological control of the disease in perennial ryegrass pastures in northern Hokkaido. Ground tissues of orchard- grass or alfalfa reduced activities of antagonists when mixed in the inoculum. Plant litter such as fallen maple leaves and rice straw favored antagonism. Application of the antago- nists in a naturally infested field planted with perennial ryegrass resulted in an yield increase of 26.5% compared with the untreated control where fall cutting favored the occurrence of snow mold. Where plants were not cut in fall and snow mold damage was slight, yield increase was insignificant. (Received April 3, 1992) Key words: biological control, snow mold, perennial ryegrass, Typhula ishikariensis. INTRODUCTION Perennial ryegrass (Lolium perenne L.) is widely grown in temperate regions as it has excellent qualities such as high digestibility and palatability to cattle. However in the past this crop has seldom been cultivated in areas with high snow cover where snow mold prevails1).
    [Show full text]
  • Ice Binding Proteins: Diverse Biological Roles and Applications in Different Types of Industry
    biomolecules Review Ice Binding Proteins: Diverse Biological Roles and Applications in Different Types of Industry Aneta Białkowska *, Edyta Majewska, Aleksandra Olczak and Aleksandra Twarda-Clapa Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łód´z,Poland; [email protected] (E.M.); [email protected] (A.O.); [email protected] (A.T.-C.) * Correspondence: [email protected] Received: 30 December 2019; Accepted: 7 February 2020; Published: 11 February 2020 Abstract: More than 80% of Earth’s surface is exposed periodically or continuously to temperatures below 5 ◦C. Organisms that can live in these areas are called psychrophilic or psychrotolerant. They have evolved many adaptations that allow them to survive low temperatures. One of the most interesting modifications is production of specific substances that prevent living organisms from freezing. Psychrophiles can synthesize special peptides and proteins that modulate the growth of ice crystals and are generally called ice binding proteins (IBPs). Among them, antifreeze proteins (AFPs) inhibit the formation of large ice grains inside the cells that may damage cellular organelles or cause cell death. AFPs, with their unique properties of thermal hysteresis (TH) and ice recrystallization inhibition (IRI), have become one of the promising tools in industrial applications like cryobiology, food storage, and others. Attention of the industry was also caught by another group of IBPs exhibiting a different activity—ice-nucleating proteins (INPs). This review summarizes the current state of art and possible utilizations of the large group of IBPs. Keywords: ice binding proteins; cryopreservation; antifreeze proteins 1.
    [Show full text]
  • WINTER DISEASES Biotic Winter Damage Photo: Agnar Kvalbein Photo
    HANDBOOK TURF GRASS WINTER SURVIVAL WINTER DISEASES Biotic winter damage Photo: Agnar Kvalbein Photo: Summary • Several fungal species can grow lopment and when other methods management practices is im- and damage grasses at low are not sufficient. Winter diseases portant to decide if a green shall temperatures. The most common may, however, be an exception to be sprayed or not. and economically important win- this principle in areas with long-term ter diseases are microdochium snow cover. • Systemic fungicides shall be used patch and Typhula blight. when the grass is still growing, • Information about the resistance to while contact fungicides shall be • In accordance with the principles disease of grass species and culti- used when growth has ceased of Integrated Pest Management, vars, disease pressure, fertilization and mowing is terminated for fungicides shall not be applied with nitrogen or other nutrients, use the season. Today’s fungicides prophylactically, but only based of winter covers, aeration, drainage, may contain both systemic and on monitoring of disease deve- thatch control and other cultural contact active ingredients. General information about winter diseases and the environment under snow Biotic damage of turf grass during winter Because low temperature limits the acti- Some fungal damage can be repaired is common in the Nordic countries. Unlike vity of other microorganisms, the snow quickly, usually much faster than ice physical damage due to ice cover, freezing moulds have few natural enemies and damage. Fungicide applications or other temperatures, desiccation, etc., biotic face little competition for ’food’ in the measures to control other diseases during damage is caused by microorganisms, form of grasses and other plants under the growing season may also have an mainly fungi.
    [Show full text]
  • Genetic Relationships Among Typhula Ishikariensis Varieties from Wisconsin
    Weed Turf. Sci. 4(2):135~143 http://dx.doi.org/10.5660/WTS.2015.4.2.135 Print ISSN 2287-7924, Online ISSN 2288-3312 Research Article Weed & Turfgrass Science Weed & Turfgrass Science was renamed from bothformerly formerly both Korean Journal of Weed Science from Volume 3232(3), (3), 2012,2012, Koreanand formerly Jour- Koreannal of Turfgrass Journal of Science Turfgrass from Science Volume from 25(1), Volume 2011 25 and (1), 2011Asian a ndJournal Asian ofJournal Turfgrass of Turfgrass Science Science from Volume from Volume 26(2), 262012 (2), which2012 whichwere werelaunched launched by The by Korean The Korean Society Society of Weed of Weed Science Science and The and Turfgrass The Turfgrass Society Society of Korea of Korea founded found in 1981in 1981 and and 1987, 1987, respectively. respectively. Genetic Relationships among Typhula ishikariensis Varieties from Wisconsin Seog-Won Chang* Department of Golf Course Management, Korea Golf University, Hoengseong 225-811, Korea ABSTRACT. Typhula ishikariensis Imai is a causal agent of Typhula snow mold, one of the most important turfgrass diseases in northern regions of the United States. Within Wisconsin isolates, there are three district groups clustered with known isolates of T. ishikariensis var. ishikariensis, var. canadensis and var. idahoensis as identified by RAPD markers. To further investigate the genetic relationship among these groups (varieties), monokaryon-monokaryon and dikaryon-monokaryon mating experiments were conducted. Mating types from var. ishikariensis, var. canadensis and var. idahoensis isolates were paired in all possible combinations. Pairings between var. canadensis and var. idahoensis were highly compatible, while no compatibility was detected between var.
    [Show full text]