Phylogenetic Relationships, Pathogenic Traits, and Wood-Destroying Properties of Porodaedalea Niemelaei M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biotype Differentiation in the Typhula Ishikariensis Complex and Their Allopatry in Hokkaido
日 植 病 報 48: 275-280 (1982) Ann. Phytopath. Soc. Japan 48: 275-280 (1982) Biotype Differentiation in the Typhula ishikariensis Complex and Their Allopatry in Hokkaido Naoyuki MATSUMOTO*, Toru SATO** and Takao ARAKI*** 松 本 直 幸 *・佐藤 徹 **・荒木 隆 男***:雪腐 黒 色 小 粒 菌 核 病 菌 の生 物 型 と そ れ らの 北 海 道 内 に お け る異 所 性 Abstract Typhula ishikariensis isolates were collected from various parts of Hokkaido. There were two genetically different groups which did not mate with each other; one was termed biotype A, and the other was further divided into two by cultural characteristics, i.e., biotypes B and C. Biotype A was identical to T. ishikariensis and T. ishikariensis var. ishikariensis. Biotype B was not identical to T. idahoensis or T. ishikariensis var. idahoensis. Biotype C was similar to T. ishikariensis var. canadensis. Biotype A tended to occur inland where deep snow cover lasts for a long time. Biotype B was obtained mainly from the coastal regions where snow cover is thin and short in time. The distribution of biotype C was irregular. Taxonomic significance of the genetics and allopatry in the T. ishikari- ensis complex is discussed. (Received August 31, 1981) Key Words: snow mold fungi, taxonomy, distribution. Introduction Pathogenic species of Typhula had been confused in taxonomy until McDonald14) reviewed the literature on these fungi in 1961. Although he suggested the need for the comparison of many specimens from different sources by one investigator, he placed T. ishikariensis S. Imai and T. -
How Many Fungi Make Sclerotia?
fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011). -
Minireview Snow Molds: a Group of Fungi That Prevail Under Snow
Microbes Environ. Vol. 24, No. 1, 14–20, 2009 http://wwwsoc.nii.ac.jp/jsme2/ doi:10.1264/jsme2.ME09101 Minireview Snow Molds: A Group of Fungi that Prevail under Snow NAOYUKI MATSUMOTO1* 1Department of Planning and Administration, National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira-ku, Sapporo 062–8555, Japan (Received January 5, 2009—Accepted January 30, 2009—Published online February 17, 2009) Snow molds are a group of fungi that attack dormant plants under snow. In this paper, their survival strategies are illustrated with regard to adaptation to the unique environment under snow. Snow molds consist of diverse taxonomic groups and are divided into obligate and facultative fungi. Obligate snow molds exclusively prevail during winter with or without snow, whereas facultative snow molds can thrive even in the growing season of plants. Snow molds grow at low temperatures in habitats where antagonists are practically absent, and host plants deteriorate due to inhibited photosynthesis under snow. These features characterize snow molds as opportunistic parasites. The environment under snow represents a habitat where resources available are limited. There are two contrasting strategies for resource utilization, i.e., individualisms and collectivism. Freeze tolerance is also critical for them to survive freezing temper- atures, and several mechanisms are illustrated. Finally, strategies to cope with annual fluctuations in snow cover are discussed in terms of predictability of the habitat. Key words: snow mold, snow cover, low temperature, Typhula spp., Sclerotinia borealis Introduction Typical snow molds have a distinct life cycle, i.e., an active phase under snow and a dormant phase from spring to In northern regions with prolonged snow cover, plants fall. -
Climate Change Vulnerability and Adaptation in the Intermountain Region Part 1
United States Department of Agriculture Climate Change Vulnerability and Adaptation in the Intermountain Region Part 1 Forest Rocky Mountain General Technical Report Service Research Station RMRS-GTR-375 April 2018 Halofsky, Jessica E.; Peterson, David L.; Ho, Joanne J.; Little, Natalie, J.; Joyce, Linda A., eds. 2018. Climate change vulnerability and adaptation in the Intermountain Region. Gen. Tech. Rep. RMRS-GTR-375. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Part 1. pp. 1–197. Abstract The Intermountain Adaptation Partnership (IAP) identified climate change issues relevant to resource management on Federal lands in Nevada, Utah, southern Idaho, eastern California, and western Wyoming, and developed solutions intended to minimize negative effects of climate change and facilitate transition of diverse ecosystems to a warmer climate. U.S. Department of Agriculture Forest Service scientists, Federal resource managers, and stakeholders collaborated over a 2-year period to conduct a state-of-science climate change vulnerability assessment and develop adaptation options for Federal lands. The vulnerability assessment emphasized key resource areas— water, fisheries, vegetation and disturbance, wildlife, recreation, infrastructure, cultural heritage, and ecosystem services—regarded as the most important for ecosystems and human communities. The earliest and most profound effects of climate change are expected for water resources, the result of declining snowpacks causing higher peak winter -
Biodiversity of Wood-Decay Fungi in Italy
AperTO - Archivio Istituzionale Open Access dell'Università di Torino Biodiversity of wood-decay fungi in Italy This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/88396 since 2016-10-06T16:54:39Z Published version: DOI:10.1080/11263504.2011.633114 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 28 September 2021 This is the author's final version of the contribution published as: A. Saitta; A. Bernicchia; S.P. Gorjón; E. Altobelli; V.M. Granito; C. Losi; D. Lunghini; O. Maggi; G. Medardi; F. Padovan; L. Pecoraro; A. Vizzini; A.M. Persiani. Biodiversity of wood-decay fungi in Italy. PLANT BIOSYSTEMS. 145(4) pp: 958-968. DOI: 10.1080/11263504.2011.633114 The publisher's version is available at: http://www.tandfonline.com/doi/abs/10.1080/11263504.2011.633114 When citing, please refer to the published version. Link to this full text: http://hdl.handle.net/2318/88396 This full text was downloaded from iris - AperTO: https://iris.unito.it/ iris - AperTO University of Turin’s Institutional Research Information System and Open Access Institutional Repository Biodiversity of wood-decay fungi in Italy A. Saitta , A. Bernicchia , S. P. Gorjón , E. -
Basidiomycetous Yeast, Glaciozyma Antarctica, Forming Frost-Columnar Colonies on Frozen Medium
microorganisms Article Basidiomycetous Yeast, Glaciozyma antarctica, Forming Frost-Columnar Colonies on Frozen Medium Seiichi Fujiu 1,2,3, Masanobu Ito 1,3, Eriko Kobayashi 1,3, Yuichi Hanada 1,2, Midori Yoshida 4, Sakae Kudoh 5,* and Tamotsu Hoshino 1,6,* 1 Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Hokkaido, Japan; [email protected] (S.F.); [email protected] (M.I.); [email protected] (E.K.); [email protected] (Y.H.) 2 Graduate School of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0810, Hokkaido, Japan 3 School of Biological Sciences, Tokai University, 1-1-1, Minaminosawa 5, Minami-ku, Sapporo 005-0825, Hokkaido, Japan 4 Hokkaido Agricultural Research Center, NARO, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Hokkaido, Japan; [email protected] 5 Biology Group, National Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo 190-8518, Japan 6 Department of Life and Environmental Science, Faculty of Engineering, Hachinohe Institute of Technology, Obiraki 88-1, Myo, Hachinohe 031-8501, Aomori, Japan * Correspondence: [email protected] (S.K.); [email protected] (T.H.); Tel.: +81-42-512-0739 (S.K.); +81-178-25-8174 (T.H.); Fax: +81-42-528-3492 (S.K.); +81-178-25-6825 (T.H.) Abstract: The basidiomycetous yeast, Glaciozyma antarctica, was isolated from various terrestrial materials collected from the Sôya coast, East Antarctica, and formed frost-columnar colonies on agar plates frozen at −1 ◦C. -
Snow Molds of Turfgrasses, RPD No
report on RPD No. 404 PLANT July 1997 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN SNOW MOLDS OF TURFGRASSES Snow molds are cold tolerant fungi that grow at freezing or near freezing temperatures. Snow molds can damage turfgrasses from late fall to spring and at snow melt or during cold, drizzly periods when snow is absent. It causes roots, stems, and leaves to rot when temperatures range from 25° to 60°F (-3° to 15°C). When the grass surface dries out and the weather warms, snow mold fungi cease to attack; however, infection can reappear in the area year after year. Snow molds are favored by excessive early fall applications of fast release nitrogenous fertilizers, Figure 1. Gray snow mold on a home lawn (courtesy R. Alden excessive shade, a thatch greater than 3/4 inch Miller). thick, or mulches of straw, leaves, synthetics, and other moisture-holding debris on the turf. Disease is most serious when air movement and soil drainage are poor and the grass stays wet for long periods, e.g., where snow is deposited in drifts or piles. All turfgrasses grown in the Midwest are sus- ceptible to one or more snow mold fungi. They include Kentucky and annual bluegrasses, fescues, bentgrasses, ryegrasses, bermudagrass, and zoysiagrasses with bentgrasses often more severely damaged than coarser turfgrasses. Figure 2. Pink snow mold or Fusarium patch. patches are 8-12 There are two types of snow mold in the inches across, covered with pink mold as snow melts (courtesy R.W. Smiley). Midwest: gray or speckled snow mold, also known as Typhula blight or snow scald, and pink snow mold or Fusarium patch. -
Septal Pore Caps in Basidiomycetes Composition and Ultrastructure
Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septumporie-kappen in Basidiomyceten Samenstelling en Ultrastructuur (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 17 december 2007 des middags te 16.15 uur door Kenneth Gregory Anthony van Driel geboren op 31 oktober 1975 te Terneuzen Promotoren: Prof. dr. A.J. Verkleij Prof. dr. H.A.B. Wösten Co-promotoren: Dr. T. Boekhout Dr. W.H. Müller voor mijn ouders Cover design by Danny Nooren. Scanning electron micrographs of septal pore caps of Rhizoctonia solani made by Wally Müller. Printed at Ponsen & Looijen b.v., Wageningen, The Netherlands. ISBN 978-90-6464-191-6 CONTENTS Chapter 1 General Introduction 9 Chapter 2 Septal Pore Complex Morphology in the Agaricomycotina 27 (Basidiomycota) with Emphasis on the Cantharellales and Hymenochaetales Chapter 3 Laser Microdissection of Fungal Septa as Visualized by 63 Scanning Electron Microscopy Chapter 4 Enrichment of Perforate Septal Pore Caps from the 79 Basidiomycetous Fungus Rhizoctonia solani by Combined Use of French Press, Isopycnic Centrifugation, and Triton X-100 Chapter 5 SPC18, a Novel Septal Pore Cap Protein of Rhizoctonia 95 solani Residing in Septal Pore Caps and Pore-plugs Chapter 6 Summary and General Discussion 113 Samenvatting 123 Nawoord 129 List of Publications 131 Curriculum vitae 133 Chapter 1 General Introduction Kenneth G.A. van Driel*, Arend F. -
Polypore Diversity in North America with an Annotated Checklist
Mycol Progress (2016) 15:771–790 DOI 10.1007/s11557-016-1207-7 ORIGINAL ARTICLE Polypore diversity in North America with an annotated checklist Li-Wei Zhou1 & Karen K. Nakasone2 & Harold H. Burdsall Jr.2 & James Ginns3 & Josef Vlasák4 & Otto Miettinen5 & Viacheslav Spirin5 & Tuomo Niemelä 5 & Hai-Sheng Yuan1 & Shuang-Hui He6 & Bao-Kai Cui6 & Jia-Hui Xing6 & Yu-Cheng Dai6 Received: 20 May 2016 /Accepted: 9 June 2016 /Published online: 30 June 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract Profound changes to the taxonomy and classifica- 11 orders, while six other species from three genera have tion of polypores have occurred since the advent of molecular uncertain taxonomic position at the order level. Three orders, phylogenetics in the 1990s. The last major monograph of viz. Polyporales, Hymenochaetales and Russulales, accom- North American polypores was published by Gilbertson and modate most of polypore species (93.7 %) and genera Ryvarden in 1986–1987. In the intervening 30 years, new (88.8 %). We hope that this updated checklist will inspire species, new combinations, and new records of polypores future studies in the polypore mycota of North America and were reported from North America. As a result, an updated contribute to the diversity and systematics of polypores checklist of North American polypores is needed to reflect the worldwide. polypore diversity in there. We recognize 492 species of polypores from 146 genera in North America. Of these, 232 Keywords Basidiomycota . Phylogeny . Taxonomy . species are unchanged from Gilbertson and Ryvarden’smono- Wood-decaying fungus graph, and 175 species required name or authority changes. -
87-Fernanda-Cid.Pdf
UNIVERSIDAD DE LA FRONTERA Facultad de Ingeniería y Ciencias Doctorado en Ciencias de Recursos Naturales Characterization of bacterial communities from Deschampsia antarctica phyllosphere and genome sequencing of culturable bacteria with ice recrystallization inhibition activity DOCTORAL THESIS IN FULFILLMENT OF THE REQUERIMENTS FOR THE DEGREE DOCTOR OF SCIENCES IN NATURAL RESOURCES FERNANDA DEL PILAR CID ALDA TEMUCO-CHILE 2018 “Characterization of bacterial communities from Deschampsia antarctica phyllosphere and genome sequencing of culturable bacteria with ice recrystallization inhibition activity” Esta tesis fue realizada bajo la supervisión del Director de tesis, Dr. Milko A. Jorquera Tapia, profesor asociado del Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera y co-dirigida por el Dr. León A. Bravo Ramírez, profesor titular del Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera. Esta tesis ha sido además aprobada por la comisión examinadora. Fernanda del Pilar Cid Alda …………………………………………… ……………………………………. Dr. MILKO JORQUERA T. Dr. Francisco Matus DIRECTOR DEL PROGRAMA DE …………………………………………. DOCTORADO EN CIENCIAS DE Dr. LEON BRAVO R. RECURSOS NATURALES …………………………………………. Dra. MARYSOL ALVEAR Z. ............................................................ Dr. Juan Carlos Parra ………………………………………… DIRECTOR DE POSTGRADO Dra. PAULINA BULL S. UNIVERSIDAD DE LA FRONTERA ………………………………………… Dr. LUIS COLLADO G. ………………………………………… Dra. ANA MUTIS T Dedico esta tesis a mis padres, Lillie Alda Leiva y Fernando Cid Verdugo quienes dedicaron sus vidas a la tarea de enseñar en la Universidad de La Frontera, Temuco-Chile. Abril, 2018 Agradecimientos /Acknowledgements Agradecimientos /Acknowledgements This study was supported by the following research projects: Doctoral Scholarship from Conicyt (no. 21140534) and La Frontera University. -
Root Diseases with White Pocket Rots Big White Pocket Rot and Red Root Rot
Root Diseases with White Pocket Rots Big white pocket rot and red root rot Pathogen—Several pathogens cause a white pocket rot in the roots and butts of conifers in the Rocky Mountain Region. However, discussed in this entry are Phellopilus (Phellinus) nigrolimitatus, which causes a root disease called big white pocket rot and two species, Onnia (Inonotus) tomentosa and leporina (formerly misnamed O. circinata), which cause a disease known as red root rot, or tomentosus and circinatus root rot, respectively. The following two pathogens (described separately in this guide) also cause white pocket rots and may be confused with the fungi described in this section: Porodaedalea (Phellinus) pini often grows down into roots and causes red ring rot in conifer stems; annosus root rot may also appear as a white pocket rot. Hosts—Big white pocket rot and red root rot can infect most conifers, but they infect mostly spruce species in this Region. Signs and Symptoms—Big white pocket rot (caused by Phellopilus nigrolimitatus) usually has no external indications. The fruiting body (conk) is uncommon and usually forms after the tree is dead. Conks are perennial, are flat on the bark, and often have a small shelf or cap at the upper end that is somewhat soft and spongy. The pore surface is cinnamon-colored and smooth with very small pores. The internal flesh is brown and typically has one or more black lines. Red root rot (caused by Onnia species) usually has no Figure 1. Onnia tomentosa, showing caps from above. Photo: Jim external symptoms, but there may be some basal resino- Worrall, USDA Forest Service. -
Sommerfeltia 31 Innmat 20080203.Indd
SOMMERFELTIA 31 (2008) 125 SNOW MOLD FUNGUS, TYPHULA ISHIKARIENSIS GROUP III, IN ARC- TIC NORWAY CAN GROW AT A SUB-LETHAL TEMPERATURE AFTER FREEZING STRESS AND DURING FLOODING. T. Hoshino, A.M. Tronsmo & I. Yumoto Hoshino, T., Tronsmo, A.M. & Yumoto, I. 2008. Snow mold fungus, Typhula ishikariensis group III, in Arctic Norway can grow at a sub-lethal temperature after freezing stress and during flooding. – Sommerfeltia 31: 125-131. ISBN 82-7420-045-4. ISSN 0800-6865. Isolates of the snow mold fungus Typhula ishikariensis group III, which is predominant in Finnmark (northern Norway) and Svalbard, are more resistant to freezing stress than group I isolates from the southern part of Norway. Group III isolates showed irregular growth on potato dextrose agar (PDA) plates when subjected to heat stress at 10˚C. However, group III isolates showed relatively good growth on PDA at 10˚C after freezing treatment. The optimal temperatures for mycelial growth were 5˚C on PDA and 10˚C in potato dextrose broth (PDB), and group III isolates showed normal mycelial growth at 10˚C in PDB. Mycelium of group III isolates cultivated in water poured into PDA plates, and normal hyphal extension was observed only in the liquid media. Hyphal growth became irregular when mycelia had extended above the surface of the liquid media. These results suggested that group III isolates can grow at a sub-lethal temperature after freezing stress and during flooding. Soil freezing and thawing occurs regularly in the Arctic, and physiological characteristics of group III isolates are well adapted to climatic conditions in the Arctic.