FKBP4 Is a Malignant Indicator in Luminal a Subtype of Breast Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prostate Cancer Prognostics Using Biomarkers Prostatakrebsprognostik Mittels Biomarkern Prognostic Du Cancer De La Prostate Au Moyen De Biomarqueurs
(19) TZZ Z_T (11) EP 2 885 640 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 33/574 (2006.01) C12Q 1/68 (2018.01) 18.07.2018 Bulletin 2018/29 C40B 30/04 (2006.01) (21) Application number: 13829137.2 (86) International application number: PCT/US2013/055429 (22) Date of filing: 16.08.2013 (87) International publication number: WO 2014/028884 (20.02.2014 Gazette 2014/08) (54) PROSTATE CANCER PROGNOSTICS USING BIOMARKERS PROSTATAKREBSPROGNOSTIK MITTELS BIOMARKERN PROGNOSTIC DU CANCER DE LA PROSTATE AU MOYEN DE BIOMARQUEURS (84) Designated Contracting States: • GHADESSI, Mercedeh AL AT BE BG CH CY CZ DE DK EE ES FI FR GB New Westminster, British Columbia V3M 6E2 (CA) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • JENKINS, Robert, B. PL PT RO RS SE SI SK SM TR Rochester, Minnesota 55902 (US) • VERGARA CORREA, Ismael A. (30) Priority: 16.08.2012 US 201261684066 P Bundoora, Victoria 3083 (AU) 13.02.2013 US 201361764365 P 14.03.2013 US 201361783124 P (74) Representative: Cornish, Kristina Victoria Joy et al Kilburn & Strode LLP (43) Date of publication of application: Lacon London 24.06.2015 Bulletin 2015/26 84 Theobalds Road London WC1X 8NL (GB) (73) Proprietors: • Genomedx Biosciences, Inc. (56) References cited: Vancouver BC V6B 2W9 (CA) WO-A1-2009/143603 WO-A1-2013/090620 • MAYO FOUNDATION FOR MEDICAL WO-A2-2006/091776 WO-A2-2006/110264 EDUCATION AND RESEARCH WO-A2-2007/056049 US-A1- 2006 134 663 Rochester, MN 55905 (US) US-A1- 2007 037 165 US-A1- 2007 065 827 US-A1- -
Naringenin Regulates FKBP4/NR3C1/TMEM173 Signaling Pathway in Autophagy and Proliferation of Breast Cancer and Tumor-Infltrating Dendritic Cell Maturation
Naringenin Regulates FKBP4/NR3C1/TMEM173 Signaling Pathway in Autophagy and Proliferation of Breast Cancer and Tumor-Inltrating Dendritic Cell Maturation Hanchu Xiong ( [email protected] ) Zhejiang Provincial People's Hospital https://orcid.org/0000-0001-6075-6895 Zihan Chen First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Aliated Hospital Baihua Lin Zhejiang Provincial People's Hospital Cong Chen Zhejiang University School of Medicine Sir Run Run Shaw Hospital Zhaoqing Li Zhejiang University School of Medicine Sir Run Run Shaw Hospital Yongshi Jia Zhejiang Provincial People's Hospital Linbo Wang Zhejiang University School of Medicine Sir Run Run Shaw Hospital Jichun Zhou Zhejiang University School of Medicine Sir Run Run Shaw Hospital Research Keywords: FKBP4, TMEM173, Autophagy, Exosome, Dendritic cell, Breast cancer Posted Date: July 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-659646/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/38 Abstract Background TMEM173 is a pattern recognition receptor detecting cytoplasmic nucleic acids and transmits cGAS related signals that activate host innate immune responses. It has also been found to be involved in tumor immunity and tumorigenesis. Methods Bc-GenExMiner, PROMO and STRING database were used for analyzing clinical features and interplays of FKBP4, TMEM173 and NR3C1. Transient transfection, western blotting, quantitative real-time PCR, luciferase reporter assay, immunouorescence and nuclear and cytoplasmic fractionation were used for regulation of FKBP4, TMEM173 and NR3C1. Both knockdown and overexpression of FKBP4, TMEM173 and NR3C1 were used to analyze effects on autophagy and proliferation of breast cancer (BC) cells. -
De Novo Phosphatidylcholine Synthesis in Intestinal Lipid Metabolism and Disease
De Novo Phosphatidylcholine Synthesis in Intestinal Lipid Metabolism and Disease by John Paul Kennelly A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Nutrition and Metabolism Department of Agricultural, Food and Nutritional Science University of Alberta © John Paul Kennelly, 2018 Abstract Phosphatidylcholine (PC), the most abundant phospholipid in eukaryotic cells, is an important component of cellular membranes and lipoprotein particles. The enzyme CTP: phosphocholine cytidylyltransferase (CT) regulates de novo PC synthesis in response to changes in membrane lipid composition in all nucleated mammalian cells. The aim of this thesis was to determine the role that CTα plays in metabolic function and immune function in the murine intestinal epithelium. Mice with intestinal epithelial cell-specific deletion of CTα (CTαIKO mice) were generated. When fed a chow diet, CTαIKO mice showed normal lipid absorption after an oil gavage despite a ~30% decrease in small intestinal PC concentrations relative to control mice. These data suggest that biliary PC can fully support chylomicron output under these conditions. However, when acutely fed a high-fat diet, CTαIKO mice showed impaired intestinal fatty acid and cholesterol uptake from the intestinal lumen into enterocytes, resulting in lower postprandial plasma triglyceride concentrations. Impaired intestinal fatty acid uptake in CTαIKO mice was linked to disruption of intestinal membrane lipid transporters (Cd36, Slc27a4 and Npc1l1) and higher postprandial plasma Glucagon-like Peptide 1 and Peptide YY. Unexpectedly, there was a shift in expression of bile acid transporters to the proximal small intestine of CTαIKO mice, which was associated with enhanced biliary bile acid, PC and cholesterol output relative to control mice. -
Taylor Et Al REVISED MS28926-1.Pdf
1 The effect of micronutrient supplementation on growth and hepatic 2 metabolism in diploid and triploid Atlantic salmon (Salmo salar) parr 3 fed a low marine ingredient diet 4 5 John F. Taylor a*, Luisa M. Vera a, Christian De Santis a, Erik-Jan Lock b, Marit Espe b, 6 Kaja H. Skjærven b, Daniel Leeming c, Jorge del Pozo d, Jose Mota-Velasco e, Herve 7 Migaud a, Kristin Hamre b, Douglas R. Tocher a 8 9 a Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK 10 b Institute of Marine Research, PO box 1870 Nordnes, 5817 Bergen, Norway 11 c BioMar Ltd., Grangemouth, FK3 8UL, UK 12 d The Royal (Dick) School of Veterinary Studies, Edinburgh, EH25 9RG, UK 13 e Hendrix Genetics, Landcatch Natural Selection Ltd., Lochgilphead, PA31 8PE, UK 14 15 Running Title: Dietary micronutrient supplementation in Atlantic salmon 16 17 ms. has 31 pg.s, 4 figures, 9 tables, 4 suppl. files 18 19 Corresponding Author: 20 Dr John F. Taylor 21 Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK 22 Tel: +44-01786 467929 ; Fax: +44-01768 472133 23 [email protected] 24 Accepted refereed manuscript of: Taylor JF, Vera LM, De Santis C, Lock E, Espe M, Skjaerven KH, Leeming D, Del Pozo J, Mota-Velasco J, Migaud H, Hamre K & Tocher DR (2019) The effect of micronutrient supplementation on growth and hepatic metabolism in diploid and triploid Atlantic salmon (Salmo salar) parr fed a low marine ingredient diet. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 227, pp. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
TITLE PAGE Exome Sequencing Identifies Variants in FKBP4 That Are
TITLE PAGE Exome sequencing identifies variants in FKBP4 that are associated with recurrent fetal loss in humans Authors: Charalambos Demetriou1*, Estelle Chanudet2, GOSgene2, Agnel Joseph3, Maya Topf3, Anna C. Thomas1, Maria Bitner-Glindzicz1, Lesley Regan4, Philip Stanier1, Gudrun E. Moore1 Affiliations: 1Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK. 2Centre for Translational Omics - GOSgene, UCL Great Ormond Street Institute of Child Health, University College London, London, UK. 3Institute of Structural and Molecular Biology, Birkbeck College, London, UK. 4Department of Obstetrics and Gynaecology, St. Mary's Campus, Imperial College London, London, UK. Philip Stanier and Gudrun Moore contributed equally. *Corresponding author: Charalambos Demetriou Address: UCL Great Ormond Street Institute of Child Health 30 Guilford Street, Lonodn, WC1N 1EH Tel: 0044796 081 3545 Fax: 0044207 905 2832 Email address: [email protected] 1 ABSTRACT Recurrent pregnancy loss (RPL) is defined as two or more consecutive miscarriages and affects an estimated 1.5% of couples trying to conceive. RPL has been attributed to genetic, endocrine, immune and thrombophilic disorders, But many cases remain unexplained. We investigated a Bangladeshi family where the proband experienced 29 consecutive pregnancy losses with no successful pregnancies from three different marriages. Whole exome sequencing identified rare genetic variants in several candidate genes. These were further investigated in Asian and White European RPL cohorts, and in Bangladeshi controls. FKBP4, encoding the immunophilin FK506 binding protein 4, was identified as a plausible candidate, with three further novel variants identified in Asian patients. None were found in European patients or controls. -
FKBP3 Rabbit Pab
Leader in Biomolecular Solutions for Life Science FKBP3 Rabbit pAb Catalog No.: A6907 Basic Information Background Catalog No. The protein encoded by this gene is a member of the immunophilin protein family, A6907 which play a role in immunoregulation and basic cellular processes involving protein folding and trafficking. This encoded protein is a cis-trans prolyl isomerase that binds Observed MW the immunosuppressants FK506 and rapamycin, as well as histone deacetylases, the 30kDa transcription factor YY1, casein kinase II, and nucleolin. It has a higher affinity for rapamycin than for FK506 and thus may be an important target molecule for Calculated MW immunosuppression by rapamycin. 25kDa Category Primary antibody Applications WB, IF, IP Cross-Reactivity Human Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 2287 Q00688 IF 1:50 - 1:100 Immunogen 1:50 - 1:100 IP Recombinant fusion protein containing a sequence corresponding to amino acids 1-224 of human FKBP3 (NP_002004.1). Synonyms FKBP3;FKBP-25;FKBP-3;FKBP25;PPIase Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using FKBP3 antibody (A6907) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Enhanced Kit (RM00021). Exposure time: 30s. Immunoprecipitation analysis of 200ug extracts of MCF-7 cells, using 3 ug FKBP3 antibody (A6907). -
Protein Symbol Protein Name Rank Metric Score 4F2 4F2 Cell-Surface
Supplementary Table 2 Supplementary Table 2. Ranked list of proteins present in anti-Sema4D treated macrophage conditioned media obtained in the GSEA analysis of the proteomic data. Proteins are listed according to their rank metric score, which is the score used to position the gene in the ranked list of genes of the GSEA. Values are obtained from comparing Sema4D treated RAW conditioned media versus REST, which includes untreated, IgG treated and anti-Sema4D added RAW conditioned media. GSEA analysis was performed under standard conditions in November 2015. Protein Rank metric symbol Protein name score 4F2 4F2 cell-surface antigen heavy chain 2.5000 PLOD3 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 1.4815 ELOB Transcription elongation factor B polypeptide 2 1.4350 ARPC5 Actin-related protein 2/3 complex subunit 5 1.2603 OSTF1 teoclast-stimulating factor 1 1.2500 RL5 60S ribomal protein L5 1.2135 SYK Lysine--tRNA ligase 1.2135 RL10A 60S ribomal protein L10a 1.2135 TXNL1 Thioredoxin-like protein 1 1.1716 LIS1 Platelet-activating factor acetylhydrolase IB subunit alpha 1.1067 A4 Amyloid beta A4 protein 1.0911 H2B1M Histone H2B type 1-M 1.0514 UB2V2 Ubiquitin-conjugating enzyme E2 variant 2 1.0381 PDCD5 Programmed cell death protein 5 1.0373 UCHL3 Ubiquitin carboxyl-terminal hydrolase isozyme L3 1.0061 PLEC Plectin 1.0061 ITPA Inine triphphate pyrophphatase 0.9524 IF5A1 Eukaryotic translation initiation factor 5A-1 0.9314 ARP2 Actin-related protein 2 0.8618 HNRPL Heterogeneous nuclear ribonucleoprotein L 0.8576 DNJA3 DnaJ homolog subfamily -
FKBP4 Integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/Rela Complex To
Zong et al. Cell Death and Disease (2021) 12:602 https://doi.org/10.1038/s41419-021-03857-8 Cell Death & Disease ARTICLE Open Access FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/ Hsp70/RelA complex to promote lung adenocarcinoma progression via IKK/NF-κB signaling Shuai Zong1, Yulian Jiao1,XinLiu1,WenliMu1, Xiaotian Yuan1,YunyunQu1,2,YuXia1,ShuangLiu1,HuanxinSun1, Laicheng Wang1,BinCui1,XiaowenLiu1,PingLi3 and Yueran Zhao 1,4,5 Abstract FKBP4 belongs to the family of immunophilins, which serve as a regulator for steroid receptor activity. Thus, FKBP4 has been recognized to play a critical role in several hormone-dependent cancers, including breast and prostate cancer. However, there is still no research to address the role of FKBP4 on lung adenocarcinoma (LUAD) progression. We found that FKBP4 expression was elevated in LUAD samples and predicted significantly shorter overall survival based on TCGA and our cohort of LUAD patients. Furthermore, FKBP4 robustly increased the proliferation, metastasis, and invasion of LUAD in vitro and vivo. Mechanistic studies revealed the interaction between FKBP4 and IKK kinase complex. We found that FKBP4 potentiated IKK kinase activity by interacting with Hsp90 and IKK subunits and promoting Hsp90/IKK association. Also, FKBP4 promotes the binding of IKKγ to IKKβ, which supported the facilitation role in IKK complex assembly. We further identified that FKBP4 TPR domains are essential for FKBP4/IKK interaction 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; since its association with Hsp90 is required. In addition, FKBP4 PPIase domains are involved in FKBP4/IKKγ interaction. Interestingly, the association between FKBP4 and Hsp70/RelA favors the transport of RelA toward the nucleus. -
Identifying the Proteins to Which Small-Molecule Probes and Drugs Bind in Cells
Identifying the proteins to which small-molecule probes and drugs bind in cells Shao-En Onga,1, Monica Schenonea, Adam A. Margolinb, Xiaoyu Lic, Kathy Doa, Mary K. Doudd, D. R. Mania,b, Letian Kuaie, Xiang Wangd, John L. Woodf, Nicola J. Tollidayc, Angela N. Koehlerd, Lisa A. Marcaurellec, Todd R. Golubb, Robert J. Gouldd, Stuart L. Schreiberd,1, and Steven A. Carra,1 aProteomics Platform, bCancer Biology Program, cChemical Biology Platform, dChemical Biology Program, and eStanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142; and fChemistry Department, Colorado State University, Fort Collins, CO 80523 Contributed by Stuart L. Schreiber, January 15, 2009 (sent for review December 21, 2008) Most small-molecule probes and drugs alter cell circuitry by interact- known (the ‘‘target I.D. problem’’). It could provide strong clues to ing with 1 or more proteins. A complete understanding of the the mechanisms used by SMs to achieve their recognized actions interacting proteins and their associated protein complexes, whether and it could suggest potential unrecognized actions. the compounds are discovered by cell-based phenotypic or target- Strategies for ‘‘target identification’’ have been developed that based screens, is extremely rare. Such a capability is expected to be rely on genetic (9), computational (10, 11) and biochemical (12) highly illuminating—providing strong clues to the mechanisms used principles. Although several key molecular targets have been iden- by small-molecules to achieve their recognized actions and suggest- tified through affinity chromatography (13–15), it has not been ing potential unrecognized actions. We describe a powerful method widely applied as a general solution to target identification for a combining quantitative proteomics (SILAC) with affinity enrichment number of reasons. -
FKBP4 (Human) Recombinant Protein (Q01)
Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic FKBP4 (Human) Recombinant protein is a cis-trans prolyl isomerase that binds to the Protein (Q01) immunosuppressants FK506 and rapamycin. It has high structural and functional similarity to FK506-binding Catalog Number: H00002288-Q01 protein 1A (FKBP1A), but unlike FKBP1A, this protein does not have immunosuppressant activity when Regulation Status: For research use only (RUO) complexed with FK506. It interacts with interferon regulatory factor-4 and plays an important role in Product Description: Human FKBP4 partial ORF ( immunoregulatory gene expression in B and T AAH07924, 301 a.a. - 410 a.a.) recombinant protein with lymphocytes. This encoded protein is known to GST-tag at N-terminal. associate with phytanoyl-CoA alpha-hydroxylase. It can also associate with two heat shock proteins (hsp90 and Sequence: hsp70) and thus may play a role in the intracellular EYESSFSNEEAQKAQALRLASHLNLAMCHLKLQAFSA trafficking of hetero-oligomeric forms of the steroid AIESCNKALELDSNNEKGLFRRGEAHLAVNDFELARAD hormone receptors. This protein correlates strongly with FQKVLQLYPNNKAAKTQLAVCQQRIRRQLAREKKL adeno-associated virus type 2 vectors (AAV) resulting in a significant increase in AAV-mediated transgene Host: Wheat Germ (in vitro) expression in human cell lines. Thus this encoded protein is thought to have important implications for the Theoretical MW (kDa): 37.84 optimal use of AAV vectors in human gene therapy. -
Identification, Quantification and Investigation of Anti-Inflammatory Effects of Echinacea Purpurea Constituents
KANDHI, VAMSIKRISHNA, Ph.D. Identification, Quantification and Investigation of Anti-inflammatory Effects of Echinacea purpurea Constituents. (2012) Directed by Dr. Nadja B. Cech. 263 pp. Echinacea is among the top selling botanical medicines in the United States. Clinical trials have yielded contradictory reports on the efficacy of Echinacea preparations for treatment of colds, influenza, and inflammation, perhaps due to inconsistency in quality control and lack of information as to which constituents are responsible for their activity. Our overall goal with this research was to develop and apply mass spectrometry techniques to better understand the relationship between chemical composition of Echinacea extracts and their biological activity. This objective was achieved through three separate aims. (1) To determine whether in vitro anti-inflammatory activity of Echinacea purpurea extracts could be correlated with the presence of the alkylamides or caffeic acid derivatives, which have previously been reported to be bioactive. The ability of these extracts to inhibit production of TNF-alpha and PGE2 from influenza A-infected RAW 264.7 macrophage-like cells was assessed. Chemical analysis of the extracts revealed variations in levels of alkylamides, caftaric acid, and cichoric acid. The biological activity of these extracts, however, did not correlate with concentrations of any of these compounds. (2) To investigate the effects of Echinacea purpurea preparations and their constituents on protein expression by immune cells in vitro. Stable isotope labeling with amino acid in cell culture (SILAC), a quantitative proteomics approach, was employed to measure changes in protein expression by activated RAW 264.7 macrophage- type cells exposed to an Echinacea purpurea extract and several of its constituents.