Identifying the Proteins to Which Small-Molecule Probes and Drugs Bind in Cells

Total Page:16

File Type:pdf, Size:1020Kb

Identifying the Proteins to Which Small-Molecule Probes and Drugs Bind in Cells Identifying the proteins to which small-molecule probes and drugs bind in cells Shao-En Onga,1, Monica Schenonea, Adam A. Margolinb, Xiaoyu Lic, Kathy Doa, Mary K. Doudd, D. R. Mania,b, Letian Kuaie, Xiang Wangd, John L. Woodf, Nicola J. Tollidayc, Angela N. Koehlerd, Lisa A. Marcaurellec, Todd R. Golubb, Robert J. Gouldd, Stuart L. Schreiberd,1, and Steven A. Carra,1 aProteomics Platform, bCancer Biology Program, cChemical Biology Platform, dChemical Biology Program, and eStanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142; and fChemistry Department, Colorado State University, Fort Collins, CO 80523 Contributed by Stuart L. Schreiber, January 15, 2009 (sent for review December 21, 2008) Most small-molecule probes and drugs alter cell circuitry by interact- known (the ‘‘target I.D. problem’’). It could provide strong clues to ing with 1 or more proteins. A complete understanding of the the mechanisms used by SMs to achieve their recognized actions interacting proteins and their associated protein complexes, whether and it could suggest potential unrecognized actions. the compounds are discovered by cell-based phenotypic or target- Strategies for ‘‘target identification’’ have been developed that based screens, is extremely rare. Such a capability is expected to be rely on genetic (9), computational (10, 11) and biochemical (12) highly illuminating—providing strong clues to the mechanisms used principles. Although several key molecular targets have been iden- by small-molecules to achieve their recognized actions and suggest- tified through affinity chromatography (13–15), it has not been ing potential unrecognized actions. We describe a powerful method widely applied as a general solution to target identification for a combining quantitative proteomics (SILAC) with affinity enrichment number of reasons. It is often challenging to prepare SM affinity to provide unbiased, robust and comprehensive identification of the reagents that retain the desired cellular activity. Experiments with proteins that bind to small-molecule probes and drugs. The method SM baits, even more so than antibody-based immunoaffinity re- is scalable and general, requiring little optimization across different agents, require carefully chosen and effective controls as baits may compound classes, and has already had a transformative effect on our vary considerably in their chemical structures and binding proper- studies of small-molecule probes. Here, we describe in full detail the ties. Moreover, high stringency washes are required to minimize SCIENCES application of the method to identify targets of kinase inhibitors and contamination associated with nonspecific, and bait-independent, APPLIED BIOLOGICAL immunophilin binders. interactions of cellular proteins with the reagents. The latter shortcoming is especially significant as it biases toward high-affinity SILAC ͉ small molecules ͉ target identification interactions, decreasing the likelihood of identifying more weakly bound proteins or protein complexes that may play significant roles any small-molecule (SM) probe or drug discovery efforts in the polypharmacology of a SM. Mstart by selecting a target that is expected to modulate a Classically, identifying targets of SMs through biochemical pu- pathway or disease of interest. Some drug-discovery efforts opti- rification relied on large amounts of starting protein, extensive mize existing compounds so that they bind their intended targets protein fractionation, stringent wash conditions, gel visualization with higher specificity and affinity. By focusing on specific protein and excision of specific bands to yield only the most directly and classes (e.g., kinases), this paradigm of drug discovery routinely uses tightly bound proteins (13, 16, 17). With proteomic MS approaches in vitro assays with recombinant proteins in binding or biochemical (18), even affinity pull-down experiments generate large protein assays (refs. 1 and 2; also recently reviewed in ref. 3). Although such catalogs, inflating the list of candidate ‘‘hits’’ and requiring, some- large-scale screens can provide early leads that perform well against times arbitrary, prioritization of these proteins for validation. a specific target, the absence of a biological context results in higher Quantitative proteomics has proven to be a powerful tool for attrition rates in later stages of drug development arising from discriminating specific protein–protein interactions from back- unanticipated or undetected off-target effects, or lack of relevance ground interactions in affinity pull-downs (19, 20). Although this of the target protein to the underlying disease process. Further- was recently applied to profile kinases enriched in kinase inhibitor more, screens using purified protein substrates do not accurately pull-downs (21, 22), these experiments still assumed kinases as represent biological levels of target proteins, potentially leading to targets a priori and did not use quantitative data to define SM generation of incorrect hypotheses for on- or off-target drug effects. specific targets. From the standpoint of drug safety and efficacy, unbiased identi- Here, we describe an analytical framework combining quantita- fication of proteins and associated molecular complexes that bind tive mass spectrometry (MS)-based proteomics (23) with affinity to a drug allows direct evaluation of its polypharmacology (4) and chromatography for unbiased, sensitive, specific and comprehen- provides valuable insight into its mode of action and avenues for sive determination of SM-protein interactions within cellular pro- compound optimization. teomes. We use SILAC to distinguish cell populations for our SM Cell-based phenotypic screens allow the discovery of compounds affinity enrichments (23). Cells are cultured in growth medium that induce state transitions in cells or organisms without bias containing either ‘‘light,’’ natural isotope abundance forms, or the regarding specific targets, pathways or even processes. This discov- ‘‘heavy,’’ 13C, 15N-bearing versions of arginine and lysine. Growing ery-based approach has been used with increasing frequency and success in recent years (5, 6). The ability to define cell states globally and molecularly in the context of high-throughput screens, for Author contributions: S.-E.O., X.L., N.J.T., A.N.K., and L.A.M. designed research; S.-E.O., M.S., X.L., K.D., M.K.D., and L.A.M. performed research; S.-E.O., A.A.M., D.R.M., L.K., X.W., and J.L.W. example, using imaged cellular features (7) and mRNA expression contributed new reagents/analytic tools; S.-E.O., M.S., A.A.M., K.D., M.K.D., T.R.G., R.J.G., S.L.S., (8), suggests that its impact will continue to grow in the future. and S.A.C. analyzed data; and S.-E.O., T.R.G., R.J.G., S.L.S., and S.A.C. wrote the paper. However, as with SMs emerging from target-based screens, there The authors declare no conflict of interest. exists currently no reliable way to assess the complete set of proteins Freely available online through the PNAS open access option. that interact with SMs discovered in phenotype-based screens. Such 1To whom correspondence may be addressed. E-mail: [email protected], a capability is expected to be highly illuminating. It is especially stuart࿝[email protected], or [email protected]. critical with SMs identified in phenotype-based screens because This article contains supporting information online at www.pnas.org/cgi/content/full/ even the target relevant to the induced phenotype is usually not 0900191106/DCSupplemental. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0900191106 PNAS Early Edition ͉ 1of6 Downloaded by guest on September 30, 2021 Fig. 1. Identifying specific SM-protein interactions with quantitative proteomics. (A) SILAC identifies specific ABFK506-binding protein 4 Histone H1.3 protein interactions with SM baits. Cell populations are S AEASSGDHPTDTEMK ASGPPVSELITK Specific Non-specific Light SM Intensity -Beads Digest S fully labeled with light (black) and heavy amino acids Combine, Identify NS protein Intensity wash beads, and Intensity with (red) and lysates incubated either with SM-loaded beads boil beads, quantify trypsin NS (SM-Beads) and soluble SM competitor or SM-Beads SDS-PAGE by MS alone. Proteins interacting directly with the SM or via m/z Heavy SM-Beads Legend secondary and/or higher order interactions (marked ‘‘S’’ Small molecule 524 526 528 530 532 598 600 602 604 606 for specific) will be enriched in the heavy state over the Bead m/z m/z Proteins light and will be identified with differential ratios. Non- specific (NS) interactions of proteins will be enriched equally in both states and have ratios close to 1. (B) Experimental mass spectra showing specific protein interactions with the immunophilin ligand, AP1497. (Left) A peptide from FKBP4, a known binding partner to FK506, is observed with a highly differential ratio. (Right) In contrast, a histone H1.3 peptide is identified with a ratio close to 1, indicating no specific binding to the soluble SM competitor. and dividing cells incorporate these amino acids in their proteomes, the importance of appropriate controls along with highly accurate reaching full incorporation after 5 population doublings and pro- quantitative measures and statistical methods that allow the dis- 13 ducing the characteristic mass shift, 6 Da with C6-Argor8Dain crimination of real SM-protein interactions from nonspecific bind- 13 15 C6 N2-Lys containing peptides, observable by MS. Importantly,
Recommended publications
  • FKBP2 Antibody Cat
    FKBP2 Antibody Cat. No.: 23-414 FKBP2 Antibody Western blot analysis of extracts of various cell lines, using FKBP2 antibody (23-414) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit. Exposure time: 90s. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat Recombinant fusion protein containing a sequence corresponding to amino acids 22-142 IMMUNOGEN: of human FKBP2 (NP_004461.2). TESTED APPLICATIONS: IF, IHC, WB October 2, 2021 1 https://www.prosci-inc.com/fkbp2-antibody-23-414.html WB: ,1:500 - 1:2000 APPLICATIONS: IHC: ,1:100 - 1:200 IF: ,1:50 - 1:200 POSITIVE CONTROL: 1) MCF7 2) SKOV3 3) Jurkat 4) HeLa 5) Mouse thymus 6) Mouse liver PREDICTED MOLECULAR Observed: 14kDa WEIGHT: Properties PURIFICATION: Affinity purification CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PBS with 0.02% sodium azide, 50% glycerol, pH7.3. STORAGE CONDITIONS: Store at -20˚C. Avoid freeze / thaw cycles. Additional Info OFFICIAL SYMBOL: FKBP2 FKBP-13, FKBP13, PPIase, peptidyl-prolyl cis-trans isomerase FKBP2, 13 kDa FK506-binding protein, 13 kDa FKBP, FK506 binding protein 2, 13kDa, FK506-binding protein 2, PPIase ALTERNATE NAMES: FKBP2, epididymis secretory sperm binding protein, immunophilin FKBP13, proline isomerase, rapamycin-binding protein, rotamase GENE ID: 2286 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References October 2, 2021 2 https://www.prosci-inc.com/fkbp2-antibody-23-414.html The protein encoded by this gene is a member of the immunophilin protein family, which play a role in immunoregulation and basic cellular processes involving protein folding and trafficking.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins
    Technical note Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins: A Study for Peptidyl-Prolyl cis/trans Isomerases (PPIase) Andrzej Galat Retired from: Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA-Université Paris-Saclay, France; [email protected]; Tel.: +33-0164465072 Received: 21 December 2018; Accepted: 21 January 2019; Published: 11 February 2019 Abstract: In this technical note, we describe analyses of more than 15,000 sequences of FK506- binding proteins (FKBP) and cyclophilins, also known as peptidyl-prolyl cis/trans isomerases (PPIases). We have developed a novel way of displaying relative changes of amino acid (AA)- residues at a given sequence position by using heat-maps. This type of representation allows simultaneous estimation of conservation level in a given sequence position in the entire group of functionally-related paralogues (multigene family of proteins). We have also proposed that at least two FKBPs, namely FKBP36, encoded by the Fkbp6 gene and FKBP51, encoded by the Fkbp5 gene, can form dimers bound via a disulfide bridge in the nucleus. This type of dimer may have some crucial function in the regulation of some nuclear complexes at different stages of the cell cycle. Keywords: FKBP; cyclophilin; PPIase; heat-map; immunophilin 1 Introduction About 30 years ago, an exciting adventure began in finding some correlations between pharmacological activities of macrocyclic hydrophobic drugs, namely the cyclic peptide cyclosporine A (CsA), and two macrolides, namely FK506 and rapamycin, which have profound and clinically useful immunosuppressive effects, especially in organ transplantations and in combating some immune disorders.
    [Show full text]
  • Fkbp10 (NM 010221) Mouse Untagged Clone – MC201811 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MC201811 Fkbp10 (NM_010221) Mouse Untagged Clone Product data: Product Type: Expression Plasmids Product Name: Fkbp10 (NM_010221) Mouse Untagged Clone Tag: Tag Free Symbol: Fkbp10 Synonyms: AI325255; FKBP-10; FKBP-65; Fkbp-rs1; Fkbp1-rs; Fkbp6; FKBP65; Fkbprp Vector: PCMV6-Kan/Neo E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 Fkbp10 (NM_010221) Mouse Untagged Clone – MC201811 Fully Sequenced ORF: >BC029546 sequence for NM_010221 GTCCGCTCTCACTGCCGGCGTCCCTGGTCTGGGCACCATGTTCCTTGTGGGGTCCTCCAGCCACACCCTC CATCGGCTCCGCATACTGCCGTTGCTGTTGCTTCTACAGACCTTGGAGAGGGGACTGGGCCGTGCCAGCC CGGCCGGAGCCCCCTTGGAAGATGTGGTCATCGAGAGATACCACATCCCTCGGGCCTGTCCCCGAGAAGT GCAGATGGGGGATTTTGTGCGTTACCACTACAATGGCACTTTCGAAGACGGGAAAAAGTTTGACTCCAGC TATGACCGTAGCACCCTGGTGGCCATCGTTGTGGGCGTAGGCCGCCTCATCACCGGCATGGACCGGGGTC TCATGGGCATGTGTGTCAACGAGCGCCGCCGCCTCATTGTGCCTCCCCACCTGGGCTACGGCAGCATCGG TGTGGCGGGCCTCATCCCCCCTGATGCCACCCTCTATTTTGACGTGGTCCTGCTGGACGTGTGGAACAAA GCAGACACGGTGCAGTCAACTATCCTCCTGCGCCCTCCCTACTGCCCCCGAATGGTGCAGAACAGTGACT TTGTGCGCTATCACTACAATGGCACTCTGCTGGATGGCACTGCCTTTGACAACAGCTACAGTAGGGGAGG CACTTATGACACCTACATCGGCTCTGGTTGGCTGATCAAAGGCATGGACCAGGGGCTGCTGGGCATGTGC
    [Show full text]
  • FKBP8 Antibody Cat
    FKBP8 Antibody Cat. No.: 62-126 FKBP8 Antibody With HepG2 cell line lysate, the resolved proteins were electrophoretically transferred to PVDF membrane and incubated sequentially with primary antibody FKBP38 (1:1000, 4˚C,overnight ) and horseradish peroxidase–conjugated second antibody. After washing, the bound antibody complex was detected using an ECL chemiluminescence reagentand XAR film (Kodak). Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human HOMOLOGY: Predicted species reactivity based on immunogen sequence: Mouse, Rat This FKBP8 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 199-226 amino acids from the Central region of human FKBP8. TESTED APPLICATIONS: WB APPLICATIONS: For WB starting dilution is: 1:1000 PREDICTED MOLECULAR 45 kDa WEIGHT: September 28, 2021 1 https://www.prosci-inc.com/fkbp8-antibody-62-126.html Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: FKBP8 Peptidyl-prolyl cis-trans isomerase FKBP8, PPIase FKBP8, 38 kDa FK506-binding protein, ALTERNATE NAMES: 38 kDa FKBP, FKBP-38, hFKBP38, FK506-binding protein 8, FKBP-8, FKBPR38, Rotamase, FKBP8, FKBP38 ACCESSION NO.: Q14318 PROTEIN GI NO.: 193806337 GENE ID: 23770 USER NOTE: Optimal dilutions for each application to be determined by the researcher.
    [Show full text]
  • Naringenin Regulates FKBP4/NR3C1/TMEM173 Signaling Pathway in Autophagy and Proliferation of Breast Cancer and Tumor-Infltrating Dendritic Cell Maturation
    Naringenin Regulates FKBP4/NR3C1/TMEM173 Signaling Pathway in Autophagy and Proliferation of Breast Cancer and Tumor-Inltrating Dendritic Cell Maturation Hanchu Xiong ( [email protected] ) Zhejiang Provincial People's Hospital https://orcid.org/0000-0001-6075-6895 Zihan Chen First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Aliated Hospital Baihua Lin Zhejiang Provincial People's Hospital Cong Chen Zhejiang University School of Medicine Sir Run Run Shaw Hospital Zhaoqing Li Zhejiang University School of Medicine Sir Run Run Shaw Hospital Yongshi Jia Zhejiang Provincial People's Hospital Linbo Wang Zhejiang University School of Medicine Sir Run Run Shaw Hospital Jichun Zhou Zhejiang University School of Medicine Sir Run Run Shaw Hospital Research Keywords: FKBP4, TMEM173, Autophagy, Exosome, Dendritic cell, Breast cancer Posted Date: July 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-659646/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/38 Abstract Background TMEM173 is a pattern recognition receptor detecting cytoplasmic nucleic acids and transmits cGAS related signals that activate host innate immune responses. It has also been found to be involved in tumor immunity and tumorigenesis. Methods Bc-GenExMiner, PROMO and STRING database were used for analyzing clinical features and interplays of FKBP4, TMEM173 and NR3C1. Transient transfection, western blotting, quantitative real-time PCR, luciferase reporter assay, immunouorescence and nuclear and cytoplasmic fractionation were used for regulation of FKBP4, TMEM173 and NR3C1. Both knockdown and overexpression of FKBP4, TMEM173 and NR3C1 were used to analyze effects on autophagy and proliferation of breast cancer (BC) cells.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Mouse FKBP10 ORF Mammalian Expression Plasmid, N-His Tag
    Mouse FKBP10 ORF mammalian expression plasmid, N-His tag Catalog Number: MG5A1953-NH General Information Plasmid Resuspension protocol Gene : FK506 binding protein 10 1. Centrifuge at 5,000×g for 5 min. Official Symbol : FKBP10 2. Carefully open the tube and add 100 l of sterile water to Synonym : Fkbp6; FKBP65; Fkbprp; FKBP-10; dissolve the DNA. FKBP-65; AI325255; Fkbp-rs1; Fkbp1-rs 3. Close the tube and incubate for 10 minutes at room Source : Mouse temperature. cDNA Size: 1746bp 4. Briefly vortex the tube and then do a quick spin to RefSeq : NM_010221.2 concentrate the liquid at the bottom. Speed is less than Description 5000×g. Lot : Please refer to the label on the tube 5. Store the plasmid at -20 ℃. Vector : pCMV3-SP-N-His Shipping carrier : Each tube contains approximately 10 μg of lyophilized plasmid. The plasmid is ready for: Storage : • Restriction enzyme digestion The lyophilized plasmid can be stored at ambient temperature • PCR amplification for three months. • E. coli transformation Quality control : • DNA sequencing The plasmid is confirmed by full-length sequencing with primers in the sequencing primer list. E.coli strains for transformation (recommended Sequencing primer list : but not limited) pCMV3-F: 5’ CAGGTGTCCACTCCCAGGTCCAAG 3’ Most commercially available competent cells are appropriate for pcDNA3-R : 5’ GGCAACTAGAAGGCACAGTCGAGG 3’ the plasmid, e.g. TOP10, DH5α and TOP10F´. Or Forward T7 : 5’ TAATACGACTCACTATAGGG 3’ ReverseBGH : 5’ TAGAAGGCACAGTCGAGG 3’ pCMV3-F and pcDNA3-R are designed by Sino Biological Inc. Customers can order the primer pair from any oligonucleotide supplier. Manufactured By Sino Biological Inc., FOR RESEARCH USE ONLY.
    [Show full text]
  • Supplementary Table 3
    Supplemental Table 1 M e13 ∆∆Ct e13 M e15 ∆∆Ct e15 chromogranin A -3,26 (9,6 ↓ ) -6,29 (78 ↓ ) -2,56 (5,9 ↓ ) -6,57 (95 ↓ ) crystallin, beta A2 -0,95 (1,9 ↓ ) -4,57 (24 ↓ ) -1,82 (3,5 ↓ ) -4 (16 ↓ ) cyclin-dependent kinase inhibitor 1A (P21) -1,15 (2,2 ↓ ) -1,41 (2,7 ↓ ) -0,36 (1,3 ↓ ) 0,29 (1,2 ↑ ) cytochrome P450, family 4, subfamily b, polypeptide 1 -0,68 (1,6 ↓ ) 0,16 (1,1 ↑ ) -0,56 (1,5 ↓ ) -0,08 (1,1 ↓ ) myelin transcription factor 1 -1,28 (2,4 ↓ ) -2,62 (6,1 ↓ ) -1,46 (2,8 ↓ ) -3,59 (12 ↓ ) neurogenic differentiation 2 -0,06 (1,0 → ) NA -1,34 (2,5 ↓ ) NA neuronatin 0,14 (1,1 ↑ ) 0,12 (1,1 ↑ ) -0,79 (1,7 ↓ ) -2,02 (4,1 ↓ ) protocadherin 21 -1,62 (3,1 ↓ ) -5,71 (52 ↓ ) -1,77 (3,4 ↓ ) -6,41 (85 ↓ ) regulated endocrine-specific protein 18 -2,1 (4,3 ↓ ) -4,73 (27 ↓ ) -1,55 (2,9 ↓ ) -5,09 (34 ↓ ) retinol binding protein 4, plasma -1,68 (3,2 ↓ ) -1,52 (2,9 ↓ ) -1,53 (2,9 ↓ ) -2,15 (4,4 ↓ ) rhomboid, veinlet-like 4 (Drosophila) -1,14 (2,2 ↓ ) -0,29 (1,2 ↓ ) -1,09 (2,1 ↓ ) -0,58 (1,5 ↓ ) sestrin 2 -0,78 (1,7 ↓ ) -0,84 (1,8 ↓ ) -0,67 (1,6 ↓ ) -0,61 (1,5 ↓ ) synaptotagmin 13 -1,63 (3,1 ↓ ) -2,59 (6,0 ↓ ) -1,77 (3,4 ↓ ) -2,71 (6,5 ↓ ) t-complex protein 11 -0,48 (1,4 ↓ ) -1,35 (2,5 ↓ ) -0,68 (1,6 ↓ ) -2,83 (7,1 ↓ ) -0,62 (1,5 ↓ ) -0,76 (1,7 ↓ ) transmembrane 4 superfamily member 2 -0,29 (1,2 ↓ ) -0,55 (1,5 ↓ ) -0,67 (1,6 ↓ ) -0,38 (1,3 ↓ ) 2510004L01Rik -0,7 (1,6 ↓ ) -1,58 (3,0 ↓ ) -0,07 (1,0 → ) 0,16 (1,1 ↑ ) C81234 -3,12 (8,7 ↓ ) -7,75 (215 ↓ ) -2,29 (4,9 ↓ ) -4,86 (29 ↓ ) Insulin 2 NM -9,89 (948 ↓ ) NM -14,2 (18820 ↓ ) Neurogenin 3 NM NA
    [Show full text]
  • Joint Gene Network Construction by Single-Cell RNA Sequencing Data
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452387; this version posted July 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Biometrics xx, 1–24 DOI: pending...... xxxx 2021 Joint Gene Network Construction by Single-Cell RNA Sequencing Data Meichen Dong1, Yiping He2, Yuchao Jiang 1,3, Fei Zou1,3,∗ 1Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A. 2Department of Pathology, Duke University, Durham, North Carolina, U.S.A. 3Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A. email: [email protected] Summary: In contrast to differential gene expression analysis at single gene level, gene regulatory networks (GRN) analysis depicts complex transcriptomic interactions among genes for better understandings of underlying genetic architectures of human diseases and traits. Recently, single-cell RNA sequencing (scRNA-seq) data has started to be used for constructing GRNs at a much finer resolution than bulk RNA-seq data and microarray data. However, scRNA- seq data are inherently sparse which hinders direct application of the popular Gaussian graphical models (GGMs). Furthermore, most existing approaches for constructing GRNs with scRNA-seq data only consider gene networks under one condition. To better understand GRNs under different but related conditions with single-cell resolution, we propose to construct Joint Gene Networks with scRNA-seq data (JGNsc) using the GGMs framework.
    [Show full text]
  • Ryanodine Binding to Ryr1. Final Report Edward M
    Evaluation of GSK2487213A on [3H]Ryanodine Binding to RyR1. Final Report Edward M. Balog, PhD School of Applied Physiology Georgia Institute of Technology December 17, 2010 1 Summary The effects of GSK2487213A (213A) on RyR1 function was assessed via skeletal muscle heavy sarcoplasmic reticulum (HSR) [3H]ryanodine binding. 213A did not affect HSR ryanodine binding when Ca2+ was the sole RyR1 regulator. Stripping HSR of FKBP12.0, via treatment with FK506, increased Ca2+-activated ryanodine binding. Exogenous FKBP12.0 alone or in combination with 213A and or reducing agents failed to reverse the effects prior exposure to FK506. Including FK506 in the HSR [3H]ryanodine binding buffer dose-dependently increased ryanodine binding. 213A did not alter the FK506 dose response. Treating HSR with the nitric oxide donor, NOR-3, did not substantially reduce the FKBP12.0 content of the HSR. Prior exposure to NOR-3 enhanced Ca2+ stimulated HSR ryanodine binding. 213A reversed the NOR-3 activation of RyR1. These results suggest that 213A reverses nitrosylation-induced activation of RyR1 and the inhibition does not occur via stabilizing the interaction between RyR1 and FKBP12.0. Introduction Ryanodine receptors (RyR) are endo/sarcoplamic reticulum (SR) resident Ca2+ selective channels that form the efflux pathway for the release of Ca2+ from the SR to initiate muscle contraction. Isoform 1 (RyR1) is the predominate form in skeletal muscle, RyR2 is the predominate form in the heart while RyR3 has a widespread distribution. The channels are regulated by numerous endogenous effectors including ions primarily Ca2+ and Mg2+, metabolites such as the adenine nucleotides and accessory proteins including calmodulin and the FK506-binding proteins (FKBP).
    [Show full text]
  • Human FKBP2 Natural ORF Mammalian Expression Plasmid
    Human FKBP2 natural ORF mammalian expression plasmid Catalog Number: HG12433-UT General Information Plasmid Resuspension protocol Gene : FK506 binding protein 2, 13kDa 1.Centrifuge at 5,000×g for 5 min. Official Symbol : FKBP2 2.Carefully open the tube and add 100 l of sterile water to Synonym : PPIase, FKBP-13 dissolve the DNA. Source : Human 3.Close the tube and incubate for 10 minutes at room temperature. cDNA Size: 429bp 4.Briefly vortex the tube and then do a quick spin to concentrate RefSeq : BC003384 the liquid at the bottom. Speed is less than 5000×g. Plasmid pCMV3-FKBP2 5.Store the plasmid at -20 ℃. Description Lot : Please refer to the label on the tube The plasmid is ready for: Sequence Description : • Restriction enzyme digestion Identical with the Gene Bank Ref. ID sequence. • PCR amplification Restriction site: HindIII + XbaI (6.1kb + 0.43kb) • E. coli transformation Vector : pCMV3-untagged • DNA sequencing Shipping carrier : Each tube contains approximately 10 μg of lyophilized plasmid. E.coli strains for transformation (recommended but not limited) Storage : Most commercially available competent cells are appropriate for The lyophilized plasmid can be stored at ambient temperature for three months. the plasmid, e.g. TOP10, DH5α and TOP10F´. Quality control : The plasmid is confirmed by full-length sequencing with primers in the sequencing primer list. Sequencing primer list : pCMV3-F: 5’ CAGGTGTCCACTCCCAGGTCCAAG 3’ pcDNA3-R : 5’ GGCAACTAGAAGGCACAGTCGAGG 3’ Or Forward T7 : 5’ TAATACGACTCACTATAGGG 3’ ReverseBGH : 5’ TAGAAGGCACAGTCGAGG 3’ pCMV3-F and pcDNA3-R are designed by Sino Biological Inc. Customers can order the primer pair from any oligonucleotide supplier.
    [Show full text]