PARP Inhibition Suppresses GR–MYCN–CDK5– RB1–E2F1

Total Page:16

File Type:pdf, Size:1020Kb

PARP Inhibition Suppresses GR–MYCN–CDK5– RB1–E2F1 Published OnlineFirst August 22, 2019; DOI: 10.1158/1078-0432.CCR-19-0317 Translational Cancer Mechanisms and Therapy Clinical Cancer Research PARP Inhibition Suppresses GR–MYCN–CDK5– RB1–E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer Bo Liu1, Likun Li1, Guang Yang1, Chuandong Geng1, Yong Luo1, Wenhui Wu2, Ganiraju C. Manyam2, Dimitrios Korentzelos1, Sanghee Park1, Zhe Tang1, Cheng Wu1, Zhenyang Dong1, Michael Sigouros3, Andrea Sboner4,5,6, Himisha Beltran7, Yu Chen3,8,9, Paul G. Corn1, Michael T. Tetzlaff10, Patricia Troncoso10, Bradley Broom2, and Timothy C. Thompson1 Abstract Purpose: In this study, we addressed the underlying ing pathway that drives NED in prostatic adenocarcinoma mechanisms for the association between enzalutamide (ENZ) PDX and cell line models. Mechanistically, long-term treatment and neuroendocrine prostate cancer (NEPC), and ENZ treatment transcriptionally upregulates signaling of the critical involvement of MYCN, and loss of RB1 function in the GR–MYCN axis, leading to CDK5R1 and CDK5R2 upre- neuroendocrine differentiation (NED) of prostatic epithelial gulation, Rb1 phosphorylation, and N-Myc–mediated cells, and the development of NEPC. We further sought to and E2F1-mediated NED gene expression. Importantly, determine whether PARP inhibition could suppress NEPC, olaparib (OLA) or talazoparib (TALA) suppressed these and to identify molecular determinants of this therapeutic activities, and the combination of OLA and dinaciclib activity. (DINA), an inhibitor of CDK2 and CDK5, which also Experimental Design: We used a novel prostate cancer inhibits Rb1 phosphorylation, suppressed NED and signif- patient–derived xenograft (PDX) treatment model, prostatic icantly improved therapeutic efficiency in NEPC cells in vitro adenocarcinoma and NEPC cell lines, an NEPC organoid line, and in NEPC tumors in vivo. and NEPC xenograft models to address the mechanistic basis Conclusions: The results of our study indicate an impor- of ENZ-induced NED, and to analyze suppression of NED and tant role of GR–MYCN–CDK5R1/2–RB1–NED signaling in NEPC growth by PARP inhibition. ENZ-induced and PARP inhibitor–suppressed NEPC. We Results: We identified an ENZ treatment–associated glu- also demonstrated efficacy for OLAþDINA combination cocorticoid receptor (GR)–MYCN–CDK5–RB1–E2F1 signal- therapy in NEPC xenograft models. Introduction abiraterone (ABI) and enzalutamide (ENZ), which maximally Hormonal therapy remains the principal treatment for meta- suppress androgen signaling, increase survival by 4 and static prostate cancer, including disease that continues to 4.8 months for patients with metastatic CRPC, respectively (1, 2). progress following initial androgen deprivation to a lethal phe- Despite the moderate benefit of these agents, their success in notype known as castration-resistant prostate cancer (CRPC). treating CRPC has been hampered by emergence of drug resis- Novel second-generation androgen signaling inhibitors, such as tance. Notably, glucocorticoid receptor (GR), a steroid receptor 1Department of Genitourinary Medical Oncology, The University of Texas MD B. Liu and L. Li contributed equally to this article. Anderson Cancer Center, Houston, Texas. 2Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Current address for Bo Liu: Department of Oncology, Tongji Hospital, Tongji Houston, Texas. 3Department of Medicine, Weill Cornell Medical College, New Medical College, Huazhong University of Science and Technology, Wuhan, York, New York. 4Englander Institute for Precision Medicine, Weill Cornell Hubei, China. Medical College and New York Presbyterian Hospital, New York, New York. 5Department of Pathology and Laboratory Medicine, Weill Cornell Medical T.C. Thompson is a lead contact. College, New York, New York. 6Institute for Computational Biomedicine, Weill Corresponding Author: Timothy C. Thompson, The University of Texas MD Cornell Medical College, New York, New York. 7Department of Medical Oncol- Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 18-3, Houston, TX ogy, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachu- 77030. Phone: 713-792-9955; Fax: 713-792-9956; E-mail: setts. 8Human Oncology and Pathogenesis Program, Memorial Sloan Kettering [email protected] Cancer Center, New York, New York. 9Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. 10Department of Pathology, The Clin Cancer Res 2019;XX:XX–XX University of Texas MD Anderson Cancer Center, Houston, Texas. doi: 10.1158/1078-0432.CCR-19-0317 Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/). Ó2019 American Association for Cancer Research. www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on October 2, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst August 22, 2019; DOI: 10.1158/1078-0432.CCR-19-0317 Liu et al. recombination model (15–17). Thus, inactivation of RB1 and Translational Relevance p53 appear to be critical for lineage plasticity—related Ad prostate Emerging evidence has revealed an association between cancer–NEPC transition. However, the mechanisms involved in hormonal treatment and neuroendocrine prostate cancer this process remain elusive. (NEPC), and the critical involvement of MYCN, and loss of PARP inhibitors are promising therapeutic agents that show RB1 function in the development of NEPC. However, the synthetic lethality against many types of cancer with BRCA1 mechanisms that underlie enzalutamide (ENZ) treatment– or BRCA2 deficiencies (18, 19). Targeting PARP together with associated neuroendocrine differentiation (NED) and the specific DNA damage response (DDR) pathways exposed development of NEPC remain to be addressed. The GR– previously unrecognized therapeutic vulnerabilities in CRPC MYCN–CDK5–RB1–E2F1 signaling pathway identified in our models (20–22). However, whether PARP inhibitors can study defines a transcriptional regulatory mechanism that specifically suppress or alter the course of NED is not known. underlies the transition from ENZ resistance to NED, in the Overall, emerging evidence has revealed an association development of NEPC. This mechanism links ENZ resistance between hormonal treatment and NEPC, and the critical involve- in prostatic adenocarcinoma to NED through GR-induced ment of MYCN and RB1 in NED of prostatic epithelial cells and MYCN, and reveals CDK5-driven inactivation of intact Rb1 the development of NEPC. However, their exact roles and the as a driver of E2F1-regulated NED gene expression. Our results mechanisms that underlie ENZ treatment—associated NED and further demonstrate that PARP inhibition suppresses the GR– the development of NEPC remain to be addressed. Our results MYCN–CDK5–RB1–E2F1 signaling pathway, and direct herein introduce a GR–MYCN–CDK5–RB1–E2F1–NED signaling MYCN and E2F1 induction of NED, and that the combination pathway, and reveal the underlying molecular mechanisms for of PARP inhibition and Rb-associated CDK inhibition may be suppression of ENZ-induced NED by PARP inhibition. a viable strategy toward effective clinical treatment of NEPC. Materials and Methods Cell lines, patient-derived xenografts, and reagents family member, was found to be overexpressed in AR signaling LNCaP C4-2b cells were maintained in RPMI1640 cell culture inhibitor resistant tumors (3). medium supplemented with 10% FBS. C4-2b-ENZR cells were Primary localized prostate cancer almost exclusively exhibits generated by long-term ENZ treatment with incremental increase adenocarcinoma (Ad) morphology, whereas neuroendocrine of ENZ concentrations in each passage (with 0.5 mmol/L intervals prostate cancer (NEPC) more commonly arises after hormonal up to 3 and 1 mmol/L intervals afterward up to 10 mmol/L). therapy (4), and is more prevalent in CRPC (5, 6). A recent The resulting C4-2b-ENZR cells were maintained in RPMI1640 prospective study demonstrated that prostate cancer from medium supplement with 10% FBS plus 10 mmol/L ENZ. NCI- patients treated with AR signaling inhibitors transitioned from H660 cells were purchased from ATCC, and maintained in Ad prostate cancer into NEPC at a higher rate than those who were suggested culture medium. MSKCC PCa4 organoids were main- not treated with these agents (7). Although platinum-based tained in complete human media as described previously (23). chemotherapy is active in NEPC, responses are short-lived and MDA prostate cancer patient-derived xenograft (PDX) 133-4 and novel therapeutic approaches are needed. MDA prostate cancer PDX 144-13C were developed in the "Pros- The phenotypic conversion from Ad prostate cancer to NEPC tate Cancer Patient Derived Xenografts Program" in the depart- has been associated with specific genetic lesions including over- ment of Genitourinary Medical Oncology, MD Anderson Cancer expression and genomic amplification of MYCN (encoding N- Center and the David H. Koch Center for Applied Research of Myc oncoprotein; refs. 5, 8). MYCN is overexpressed in the Genitourinary Cancers following published methods (24). majority of NEPC but also in up to 20% of CRPC without NEPC LNCaP C4-2b was validated by short tandem repeat DNA finger- morphology (5, 9). Furthermore, a recent study demonstrated print with the AmpFlSTR Identifier PCR Amplification Kit (Themo that MYCN could drive the initiation and maintenance of NEPC Fisher Scientific) in MD Anderson's Characterized
Recommended publications
  • Cytotoxic Effects and Changes in Gene Expression Profile
    Toxicology in Vitro 34 (2016) 309–320 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Fusarium mycotoxin enniatin B: Cytotoxic effects and changes in gene expression profile Martina Jonsson a,⁎,MarikaJestoib, Minna Anthoni a, Annikki Welling a, Iida Loivamaa a, Ville Hallikainen c, Matti Kankainen d, Erik Lysøe e, Pertti Koivisto a, Kimmo Peltonen a,f a Chemistry and Toxicology Research Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, Finland b Product Safety Unit, Finnish Food Safety Authority (Evira), Mustialankatu 3, FI-00790 Helsinki, c The Finnish Forest Research Institute, Rovaniemi Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland d Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, FI-00014, Finland e Plant Health and Biotechnology, Norwegian Institute of Bioeconomy, Høyskoleveien 7, NO -1430 Ås, Norway f Finnish Safety and Chemicals Agency (Tukes), Opastinsilta 12 B, FI-00521 Helsinki, Finland article info abstract Article history: The mycotoxin enniatin B, a cyclic hexadepsipeptide produced by the plant pathogen Fusarium,isprevalentin Received 3 December 2015 grains and grain-based products in different geographical areas. Although enniatins have not been associated Received in revised form 5 April 2016 with toxic outbreaks, they have caused toxicity in vitro in several cell lines. In this study, the cytotoxic effects Accepted 28 April 2016 of enniatin B were assessed in relation to cellular energy metabolism, cell proliferation, and the induction of ap- Available online 6 May 2016 optosis in Balb 3T3 and HepG2 cells. The mechanism of toxicity was examined by means of whole genome ex- fi Keywords: pression pro ling of exposed rat primary hepatocytes.
    [Show full text]
  • Breed Relationships Facilitate Fine-Mapping Studies: a 7.8-Kb Deletion Cosegregates with Collie Eye Anomaly Across Multiple Dog Breeds
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Article Breed relationships facilitate fine-mapping studies: A 7.8-kb deletion cosegregates with Collie eye anomaly across multiple dog breeds Heidi G. Parker,1 Anna V. Kukekova,2 Dayna T. Akey,3 Orly Goldstein,2 Ewen F. Kirkness,4 Kathleen C. Baysac,1 Dana S. Mosher,1 Gustavo D. Aguirre,5 Gregory M. Acland,2 and Elaine A. Ostrander1,6 1Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; 2Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA; 3Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA; 4The Institute for Genomic Research, Rockville, Maryland 20850, USA; 5Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA The features of modern dog breeds that increase the ease of mapping common diseases, such as reduced heterogeneity and extensive linkage disequilibrium, may also increase the difficulty associated with fine mapping and identifying causative mutations. One way to address this problem is by combining data from multiple breeds segregating the same trait after initial linkage has been determined. The multibreed approach increases the number of potentially informative recombination events and reduces the size of the critical haplotype by taking advantage of shortened linkage disequilibrium distances found across breeds. In order to identify breeds that likely share a trait inherited from the same ancestral source, we have used cluster analysis to divide 132 breeds of dog into five primary breed groups.
    [Show full text]
  • CDK5 Functions As a Tumor Promoter in Human Lung Cancer Jie Zeng1#, Shuanshuan Xie1#, Yang Liu1, Changxing Shen1, Xiaolian Song1, Guo-Lei Zhou2, 3, Changhui Wang1
    Journal of Cancer 2018, Vol. 9 3950 Ivyspring International Publisher Journal of Cancer 2018; 9(21): 3950-3961. doi: 10.7150/jca.25967 Research Paper CDK5 Functions as a Tumor Promoter in Human Lung Cancer Jie Zeng1#, Shuanshuan Xie1#, Yang Liu1, Changxing Shen1, Xiaolian Song1, Guo-Lei Zhou2, 3, Changhui Wang1 1. Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, PR China; 2. Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA; 3. Molecular Biosciences Program, Arkansas State University, State University, AR 72467, USA. # These authors have contributed equally to this work. Corresponding author: Changhui Wang, No.301, Mid Yanchang Rd, Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China, 200072. Email: [email protected], Fax number: 86-021-66301685, Telephone: 86-021-66301685 © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.03.09; Accepted: 2018.08.19; Published: 2018.10.10 Abstract Cyclin-dependent kinase 5 (CDK5), an atypical member of the cyclin-dependent kinase family, plays an important role in the nervous system. Recent studies have shown that CDK5 is also associated with tumors. However, few studies have been done to investigate the mechanism underlying the connection between CDK5 and cancers. To explore the role of CDK5 in cancers by using an extensive bioinformatics data mining process. We mined the transcriptional, survival, functions and structure of CDK5 gene through databases and in vitro experiments.
    [Show full text]
  • RNA Sequencing Reveals a Diverse and Dynamic Repertoire of the Xenopus Tropicalis Transcriptome Over Development
    Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Resource RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development Meng How Tan,1,6,7 Kin Fai Au,2,6 Arielle L. Yablonovitch,1,3,6 Andrea E. Wills,1 Jason Chuang,4 Julie C. Baker,1 Wing Hung Wong,2,5 and Jin Billy Li1,7 1Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA; 2Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, California 94305, USA; 3Program in Biophysics, School of Humanities and Sciences, Stanford University, Stanford, California 94305, USA; 4Department of Computer Science, School of Engineering, Stanford University, Stanford, California 94305, USA; 5Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California 94305, USA The Xenopus embryo has provided key insights into fate specification, the cell cycle, and other fundamental developmental and cellular processes, yet a comprehensive understanding of its transcriptome is lacking. Here, we used paired end RNA sequencing (RNA-seq) to explore the transcriptome of Xenopus tropicalis in 23 distinct developmental stages. We determined expression levels of all genes annotated in RefSeq and Ensembl and showed for the first time on a genome-wide scale that, despite a general state of transcriptional silence in the earliest stages of development, approximately 150 genes are tran- scribed prior to the midblastula transition. In addition, our splicing analysis uncovered more than 10,000 novel splice junctions at each stage and revealed that many known genes have additional unannotated isoforms.
    [Show full text]
  • Deciphering the Molecular Profile of Plaques, Memory Decline And
    ORIGINAL RESEARCH ARTICLE published: 16 April 2014 AGING NEUROSCIENCE doi: 10.3389/fnagi.2014.00075 Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer’s disease by deep sequencing Yvonne Bouter 1†,Tim Kacprowski 2,3†, Robert Weissmann4, Katharina Dietrich1, Henning Borgers 1, Andreas Brauß1, Christian Sperling 4, Oliver Wirths 1, Mario Albrecht 2,5, Lars R. Jensen4, Andreas W. Kuss 4* andThomas A. Bayer 1* 1 Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, Goettingen, Germany 2 Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald, Greifswald, Germany 3 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany 4 Human Molecular Genetics, Department for Human Genetics of the Institute for Genetics and Functional Genomics, Institute for Human Genetics, University Medicine Greifswald, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany 5 Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria Edited by: One of the central research questions on the etiology of Alzheimer’s disease (AD) is the Isidro Ferrer, University of Barcelona, elucidation of the molecular signatures triggered by the amyloid cascade of pathological Spain events. Next-generation sequencing allows the identification of genes involved in disease Reviewed by: Isidro Ferrer, University of Barcelona, processes in an unbiased manner. We have combined this technique with the analysis of Spain two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneu- Dietmar R. Thal, University of Ulm, ronal Ab aggregation, neuron loss, and behavioral deficits. (2)TheTg4–42 model expresses Germany N-truncated Ab4–42 and develops neuron loss and behavioral deficits albeit without plaque *Correspondence: formation.
    [Show full text]
  • UC San Francisco Previously Published Works
    UCSF UC San Francisco Previously Published Works Title FitSNPs: highly differentially expressed genes are more likely to have variants associated with disease. Permalink https://escholarship.org/uc/item/91k8p2km Journal Genome biology, 9(12) ISSN 1474-7596 Authors Chen, Rong Morgan, Alex A Dudley, Joel et al. Publication Date 2008 DOI 10.1186/gb-2008-9-12-r170 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Open Access Research2008ChenetVolume al. 9, Issue 12, Article R170 FitSNPs: highly differentially expressed genes are more likely to have variants associated with disease Rong Chen*†‡, Alex A Morgan*†‡, Joel Dudley*†‡, Tarangini Deshpande§, Li Li†, Keiichi Kodama*†‡, Annie P Chiang*†‡ and Atul J Butte*†‡ Addresses: *Stanford Center for Biomedical Informatics Research, 251 Cmpus Drive, Stanford, CA 94305, USA. †Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA. ‡Lucile Packard Children's Hospital, 725 Welch Road, Palo Alto, CA 94304, USA. §NuMedii Inc., Menlo Park, CA 94025, USA. Correspondence: Atul J Butte. Email: [email protected] Published: 5 December 2008 Received: 17 June 2008 Revised: 26 September 2008 Genome Biology 2008, 9:R170 (doi:10.1186/gb-2008-9-12-r170) Accepted: 5 December 2008 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2008/9/12/R170 © 2008 Chen et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • 1 Novel Expression Signatures Identified by Transcriptional Analysis
    ARD Online First, published on October 7, 2009 as 10.1136/ard.2009.108043 Ann Rheum Dis: first published as 10.1136/ard.2009.108043 on 7 October 2009. Downloaded from Novel expression signatures identified by transcriptional analysis of separated leukocyte subsets in SLE and vasculitis 1Paul A Lyons, 1Eoin F McKinney, 1Tim F Rayner, 1Alexander Hatton, 1Hayley B Woffendin, 1Maria Koukoulaki, 2Thomas C Freeman, 1David RW Jayne, 1Afzal N Chaudhry, and 1Kenneth GC Smith. 1Cambridge Institute for Medical Research and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK 2Roslin Institute, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK Correspondence should be addressed to Dr Paul Lyons or Prof Kenneth Smith, Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK. Telephone: +44 1223 762642, Fax: +44 1223 762640, E-mail: [email protected] or [email protected] Key words: Gene expression, autoimmune disease, SLE, vasculitis Word count: 2,906 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in their licence (http://ard.bmj.com/ifora/licence.pdf). http://ard.bmj.com/ on September 29, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009.
    [Show full text]
  • CDK5R2(P39) Antibody (N-Term) Blocking Peptide Synthetic Peptide Catalog # Bp7742a
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 CDK5R2(p39) Antibody (N-term) Blocking Peptide Synthetic peptide Catalog # BP7742a Specification CDK5R2(p39) Antibody (N-term) Blocking CDK5R2(p39) Antibody (N-term) Blocking Peptide Peptide - Background - Product Information CDK5R2(p39) is a neuron-specific activator of Primary Accession Q13319 CDK5 kinase. It associates with CDK5 to form an active kinase. This protein and neuron-specific CDK5 activator CDK5R2(p39) Antibody (N-term) Blocking Peptide - Additional Information CDK5R1/p39NCK5A both share limited similarity to cyclins, and thus may define a distinct family of cyclin-dependent kinase Gene ID 8941 activating proteins. Other Names CDK5R2(p39) Antibody (N-term) Blocking Cyclin-dependent kinase 5 activator 2, Peptide - References CDK5 activator 2, Cyclin-dependent kinase 5 regulatory subunit 2, p39, p39I, CDK5R2, Rademakers,R., Neurobiol. Aging 26 (8), NCK5AI 1145-1151 (2005)Dhavan,R., J. Neurosci. 22 Target/Specificity (18), 7879-7891 (2002)Patzke,H., J. Biol. Chem. The synthetic peptide sequence used to 277 (10), 8054-8060 (2002) generate the antibody <a href=/products/AP7742a>AP7742a</a> was selected from the p39 region of human CDK5R2(p39). A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay. Format Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed. Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. Precautions This product is for research use only.
    [Show full text]
  • Detection of Copy Number Alterations in Metastatic Melanoma by a DNA
    Human Cancer Biology Detection of Copy Number Alterations in Metastatic Melanoma by aDNAFluorescenceIn situ Hybridization Probe Panel and Array Comparative Genomic Hybridization: A Southwest Oncology Group Study (S9431) Stephen R. Moore,1Diane L. Persons,2 Jeffrey A. Sosman,3 Dolores Bobadilla,1Victoria Bedell,1 David D. Smith,1Sandra R.Wolman,4 Ralph J. Tuthill,5 Jim Moon,6 Vernon K. Sondak,7 and Marilyn L. Slovak1 Abstract Purpose: Gene copy number alteration (CNA) is common in malignant melanoma and is associated with tumor development and progression. The concordance between molecular cytogenetic techniques used to determine CNA has not been evaluated on a large set of loci in malignant melanoma. Experimental Design: A panel of 16 locus-specific fluorescence in situ hybridization (FISH) probes located on eight chromosomes was used to identify CNA in touch preparations of frozen tissue samples from19 patients with metastaticmelanoma (SWOG-9431). A subset ( n =11)was analyzed using bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH) of DNA isolated directly from touch-preparation slides. Results: By FISH, most samples showed loss near or at WISP3 /6p21, CCND3/6q22, and CDKN2A /9p21 (>75% of samples tested). More than one third of CDKN2A /9p21losses were biallelic. Gains of NEDD9/6p24, MET/7q31, and MYC/8q24 were common (57%, 47%, and 41%, respectively) and CNA events involving 9p21/7p12.3 and MET were frequently coincident, suggesting gain of the whole chromosome 7. Changes were confirmed by aCGH, which also uncovered many discreet regions of change, larger than a single BAC. Overlapping segments observed in >45% of samples included many of the loci analyzed in the FISH study, in addition to other WNT pathway members, and genes associated withTP53 pathways and DNA damage response, repair, and stability.
    [Show full text]
  • Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands That Promote Axonal Growth
    Research Article: New Research Development Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth Jeremy S. Toma,1 Konstantina Karamboulas,1,ª Matthew J. Carr,1,2,ª Adelaida Kolaj,1,3 Scott A. Yuzwa,1 Neemat Mahmud,1,3 Mekayla A. Storer,1 David R. Kaplan,1,2,4 and Freda D. Miller1,2,3,4 https://doi.org/10.1523/ENEURO.0066-20.2020 1Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada, 2Institute of Medical Sciences University of Toronto, Toronto, Ontario M5G 1A8, Canada, 3Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada, and 4Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada Abstract Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are es- sential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, in- cluding known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesen- chymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons.
    [Show full text]
  • Extracting Unrecognized Gene Relationships from the Biomedical Literature Via Matrix Factorizations
    Extracting Unrecognized Gene Relationships from the Biomedical Literature via Matrix Factorizations Hyunsoo Kim∗1, Haesun Park∗1 and Barry L. Drake1 1 College of Computing, Georgia Institute of Technology, 266 Ferst Drive, Atlanta, GA 30332, USA. Email: H. Kim∗- [email protected]; H. Park∗- [email protected]; B. L. Drake - [email protected]; ∗Corresponding author Abstract Background: The construction of literature-based networks of gene-gene interactions is one of the most important applications of text mining in bioinformatics. Extracting potential gene relationships from the biomedical literature may be helpful in building biological hypotheses that can be explored further experimentally. Recently, latent semantic indexing based on the singular value decomposition (LSI/SVD) has been applied to gene retrieval. However, the determination of the number of factors k used in the reduced rank matrix is still an open problem. Results: In this paper, we introduce a way to incorporate a priori knowledge of gene relationships into LSI/SVD to determine the number of factors. We also explore the utility of the non-negative matrix factorization (NMF) to extract unrecognized gene relationships from the biomedical literature by taking advantage of known gene relationships. A gene retrieval method based on NMF (GR/NMF) showed comparable performance with LSI/SVD. Conclusions: Using known gene relationships of a given gene, we can determine the number of factors used in the reduced rank matrix and retrieve unrecognized genes related with the given gene by LSI/SVD or GR/NMF. 1 Background Latent semantic indexing based on the singular value decomposition (LSI/SVD) [1, 2] uses the truncated singular value decomposition as a low-rank approximation of a term-by-document matrix.
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]