Why Schools Are Vulnerable to Earthquakes Abstract Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lessons from the 2015 Nepal Earthquake Housing
LESSONS FROM THE 2015 NEPAL EARTHQUAKE 4 HOUSING RECOVERY Maggie Stephenson April 2020 We build strength, stability, self-reliance through shelter. PAGE 1 Front cover photograph Volunteer Upinder Maharsin (red shirt) helps to safely remove rubble in Harisiddhi village in the Lalitpur district. Usable bricks and wood were salvaged for reconstruction later, May 2015. © Habitat for Humanity International/Ezra Millstein. Back cover photograph Sankhu senior resident in front of his house, formerly three stories, reduced by the earthquake to one-story, with temporary CGI roof. November 2019. © Maggie Stephenson. All photos in this report © Maggie Stephenson except where noted otherwise. PAGE 2 FOREWORD Working in a disaster-prone region brings challenges emerging lessons that offer insights and guidance for and opportunities. Five years after Nepal was hit by future disaster responses for governments and various devastating earthquakes in April 2015, tens of thou- stakeholders. Key questions are also raised to help sands of families are still struggling to rebuild their frame further discussions. homes. Buildings of historical and cultural significance Around the world, 1.6 billion people are living without that bore the brunt of the disaster could not be re- adequate shelter and many of them are right here in stored. Nepal. The housing crisis is getting worse due to the While challenges abound, opportunities have also global pandemic’s health and economic fallouts. Be- opened up, enabling organizations such as Habitat cause of Habitat’s vision, we must increase our efforts for Humanity to help affected families to build back to build a more secure future through housing. -
The 2008 Wenchuan Earthquake: Risk Management Lessons and Implications Ic Acknowledgements
The 2008 Wenchuan Earthquake: Risk Management Lessons and Implications Ic ACKNOWLEDGEMENTS Authors Emily Paterson Domenico del Re Zifa Wang Editor Shelly Ericksen Graphic Designer Yaping Xie Contributors Joseph Sun, Pacific Gas and Electric Company Navin Peiris Robert Muir-Wood Image Sources Earthquake Engineering Field Investigation Team (EEFIT) Institute of Engineering Mechanics (IEM) Massachusetts Institute of Technology (MIT) National Aeronautics and Space Administration (NASA) National Space Organization (NSO) References Burchfiel, B.C., Chen, Z., Liu, Y. Royden, L.H., “Tectonics of the Longmen Shan and Adjacent Regoins, Central China,” International Geological Review, 37(8), edited by W.G. Ernst, B.J. Skinner, L.A. Taylor (1995). BusinessWeek,”China Quake Batters Energy Industry,” http://www.businessweek.com/globalbiz/content/may2008/ gb20080519_901796.htm, accessed September 2008. Densmore A.L., Ellis, M.A., Li, Y., Zhou, R., Hancock, G.S., and Richardson, N., “Active Tectonics of the Beichuan and Pengguan Faults at the Eastern Margin of the Tibetan Plateau,” Tectonics, 26, TC4005, doi:10.1029/2006TC001987 (2007). Embassy of the People’s Republic of China in the United States of America, “Quake Lakes Under Control, Situation Grim,” http://www.china-embassy.org/eng/gyzg/t458627.htm, accessed September 2008. Energy Bulletin, “China’s Renewable Energy Plans: Shaken, Not Stirred,” http://www.energybulletin.net/node/45778, accessed September 2008. Global Terrorism Analysis, “Energy Implications of the 2008 Sichuan Earthquake,” http://www.jamestown.org/terrorism/news/ article.php?articleid=2374284, accessed September 2008. World Energy Outlook: http://www.worldenergyoutlook.org/, accessed September 2008. World Health Organization, “China, Sichuan Earthquake.” http://www.wpro.who.int/sites/eha/disasters/emergency_reports/ chn_earthquake_latest.htm, accessed September 2008. -
Download File
For non-commercial distribution only All photos used in this compendium were provided by the Knowledge Management Initiative (KMI) participants. The compendium is available in English and Russian. The electronic version of the compendium can be found at: www.preventionweb.net Hard copies are available at: UNISDR CA, 37/1 Bokhtar str, 6th floor, 734000, Dushanbe, Tajikistan. UNICEF RO CEE/CIS, Avenue de la Paix 5, 1202 Genève, Switzerland. Any comments and suggestions regarding the Compendium can be addressed to: Mr. Parviz Mahmudov, Education coordinator, UNISDR CA [email protected] Mr. Asim Rehman, Regional Emergency Preparedness and DRR Specialist, UNICEF CEE/CIS [email protected] Design: Zafar Mahmoudov, Advocacy and Communications Consultant, UNISDR CA Editor: Stephen Boyle The views expressed in this Compendium are those of the respective authors and do not necessarily reflect the position of ECHO, UNISDR and UNICEF. Acknowledgements The Compendium of Good Practices and Tools on Disaster Risk Reduction in Education in Central Asia has been developed as a result of the Knowledge Management Initiative, implemented by the United Nations International Strategy for Disaster Reduction in Central Asia (UNISDR) and the United Nations Children’s Fund (UNICEF) within the framework of the Disaster Preparedness Programme of the European Commission’s Humanitarian Aid Department (DIPECHO) and financed by ECHO. UNISDR and UNICEF express their gratitude to all participants who submitted examples of their experiences on disaster risk reduction in education: Mr. Timur Idrisov, NGO “Little Earth”, Tajikistan; Ms. Lyudmila Bakhareva, NGO “Man and elements”, Kazakhstan; Mr. Alexandr Kravchuk, UNDP Kazakhstan, Kazakhstan; Mr. Khusan Tursunov, NGO “HAYOT”, Uzbekistan; Ms. -
Housing Reconstruction and Retrofitting After the 2001 Kachchh, Gujarat Earthquake
13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1723 HOUSING RECONSTRUCTION AND RETROFITTING AFTER THE 2001 KACHCHH, GUJARAT EARTHQUAKE Elizabeth A. HAUSLER, Ph.D.1 SUMMARY The January 26, 2001 Bhuj earthquake in the Kachchh district of Gujarat, India caused over 13,000 deaths and resulted in widespread destruction of housing stock throughout the epicentral region and the state. Over 1 million houses were either destroyed or required significant repair. Comprehensive, unprecedented and well-funded reconstruction and retrofitting programs soon followed. Earthquake-resistant features were required in the superstructure of new, permanent housing by the government and funding agencies. This paper describes those features and their implementation in both traditional (e.g., stone in mud or cement mortar) and appropriate (e.g., cement stabilized rammed earth) building technologies. Component-specific and overall costs are given. Relatively less attention has been paid to foundation design, however, typical foundation types will be described. Retrofitting recommendations and approaches are documented. Construction could be driven by homeowners themselves, by nongovernmental or donor organizations, or by the government or industry on a contractor basis. The approaches are contrasted in terms of inclusion and quality of requisite earthquake-resistant design elements, quality of construction and materials, and satisfaction of the homeowner. The rebuilding and retrofitting efforts required a massive mobilization of engineers, architects and masons from local areas as well as other parts of India. Cement companies, academics, engineering consulting firms, and nongovernmental organizations developed and held training programs reaching over 27,000 masons and nearly 8,000 engineers and architects. -
DIFFUSING SEISMIC SAFETY J. E. Rodgers1, V. Cedillos1, L. T
Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering Compte Rendu de la 9ième Conférence Nationale Américaine et 10ième Conférence Canadienne de Génie Parasismique July 25-29, 2010, Toronto, Ontario, Canada • Paper No 1604 DIFFUSING SEISMIC SAFETY J. E. Rodgers1, V. Cedillos1, L. T. Tobin2, B. E. Tucker3, and H. Kumar4 ABSTRACT Despite the efforts of the earthquake engineering and earth science communities, global earthquake risk continues to grow at a rapid rate. The increase in risk occurs primarily in the rapidly growing cities of the developing world, where engineering issues are often the most easily solved part of the problem. Earthquake resistant methods for building new structures and retrofitting existing ones are available. The challenges are for local people to understand that they are at risk from earthquakes and that risk should and can be managed, and to build the political support for the idea that all elements of society should pay for risk management activities. The theory of the diffusion of innovations, which is widely applied in other professions, provides the techniques to address these challenges. GeoHazards International (GHI) has developed a diffusion-based approach to introduce earthquake safety ideas and practices. The approach applies to both technical ideas and practices, such as performance-based earthquake engineering or specific retrofit methods, and to basic risk reduction measures that empower schoolchildren, their families, teachers, government officials, hospital personnel, and others to make themselves safer now. This paper presents examples from GHI’s projects in India, Pakistan, Indonesia and Nepal, and provides suggestions for enhancing the diffusion process in future earthquake safety projects. -
Practical Science for Uncertain Futures Using Scenarios to Improve Resilience to Earthquakes John Young, Susan Njambi-Szlapka and Janise Rodgers November 2019
Working paper 563 Practical science for uncertain futures Using scenarios to improve resilience to earthquakes John Young, Susan Njambi-Szlapka and Janise Rodgers November 2019 Earthquake disaster risk resilience is an example of a complex problem that requires decision- making and action from different stakeholders. These multiple stakeholders each have different and sometimes competing agendas, as well as different understandings of the nature of the problem. Abstract We outline here the use of transdisciplinary research and futures studies as methods for tackling this type of complex problem. These offer practical steps to bring together stakeholders and actors from different disciplines and different lay perspectives to (1) agree a common understanding of the problem, (2) think systematically about how these problems may play out in the future, and (3) come up with actionable, strategic plans that bring the results to fruition on the ground. Drawing on the theoretical literature about futures studies and transdisciplinary approaches, as well as lessons from various practical applications, we find that scenarios are among the most widely used transdisciplinary futures approaches. There are several approaches to scenario building, depending on the aims of the exercise and the availability of resources. In particular, we explore the Geohazards International approach, which has been used with great success in resource-constrained contexts. Readers are encouraged to reproduce material for their own publications, as long as they are not being sold commercially. ODI requests due acknowledgement and a copy of the publication. For online use, we ask readers to link to the original resource on the ODI website. The views presented in this paper are those of the author(s) and do not necessarily represent the views of ODI or our partners. -
Tsunami and Other Coastal Hazards Information Kit for the Caribbean Media
Tsunami and Other Coastal Hazards Information Kit for the Caribbean Media Tsunami & Other Coastal Hazards Warning System Project ACKNOWLEDGEMENTS The Tsunami and Other Coastal Hazards Information Kit for the Caribbean Media was developed through the Tsunami and Other Coastal Hazards Warning System Project, which was implemented by the Caribbean Disaster Emergency Management Agency (CDEMA) [formerly CDERA] over the period 2007 - 2010. The document was produced by The Seismic Research Centre, University of the West Indies (SRC, UWI). Special appreciation is extended to the Tsunami and Other Coastal Hazards Warning System Project Public Awareness and Education Technical Sub-Committee and the UNESCO IOC International Tsunami Information Centre (ITIC). The development and publication of this Tsunami and Other Coastal Hazards Information Kit for the Caribbean Media have been made possible through the financial support of the United States Agency for International Development/ Office of U.S. Foreign Disaster Assistance (USAID/OFDA) and the in-kind contributions from CDEMA Participating States. This activity is co-funded by the United States Agency for International Development (USAID). The views expressed herein are those of the author(s) and do not necessarily reflect the views of the donor agencies supporting the activity or of CDEMA (formerly CDERA). © 2010 This document and any updates to it are available at www.cdema.org, www.weready.org and www.uwiseismic.com. Caribbean Disaster Emergency Management Agency (CDEMA) Building #1, Manor Lodge Complex Lodge Hill, St. Michael, Barbados, West Indies University of the West Indies Seismic Research Centre St. Augustine, Trinidad and Tobago United States Agency for International Development US Embassy Complex, Wildey Business Park Wildey, St. -
Scaling-Up Comprehensive School Safety Assessment in Laos And
Scaling-up Comprehensive School Safety Assessment in Laos and Indonesia Marla Petal1, Ana Miscolta2, Rebekah Paci-Green2, Suha Ulgen2, Jair Torres3, Stefano Grimaz4, Christelle Marguerite5, Ardito Kodijat6, and Yuniarti Wahyuningtyas6 1. Save the Children Australia 2. Risk RED 3. UNESCO Paris Office 4. Polytechnic Department of Engineering and Architecture University of Udine, Italy 5.Save the Children Laos 6. UNESCO Jakarta Office awareness of and interest sent for remote automated China in school safety. CSS First processing. The app returns Myanmar Step asks users to answer individual school and Laos basic survey questions about collective summary reports, the school site, relevant including budget estimations South China hazards, and local disaster for safety upgrading. Sea management strategies. Thailand Based on the responses, the The SSSAS tool was piloted at app automatically generates nearly 150 schools in Laos in 2015. Vietnam an e-mail back to the user Provincial reports generated by Combodia Cambodia Vietnam Philippines Thailand with recommended next steps the SSSAS tool helped authorities Pacific South China Ocean Sea Malaysia for action to improve school understand school safety better. Malaysia safety. Teachers and representatives from Gulf of Thailand the Ministry of Education and Sports Papua New Ginea Indonesia • CSS Safe Schools Self- indicated that the use of the visuals Assessment Survey within the SSSAS tool makes the Indian (SSSAS) uses a smart tool particularly useful for school Ocean phone or tablet to guide management committees, as well as Australia All Pillars of school assessors, such as education and disaster management government officials or school authorities. VISUS was piloted Comprehensive School management committees, in Indonesia in a similar number Safety in collecting in-depth, non- of schools. -
Final Report
No. JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) GOVERNMENT OF GUJARAT THE RECONSTRUCTION SUPPORT FOR THE GUJARAT-EARTHQUAKE DISASTER IN THE DEVASTATED AREAS IN INDIA FINAL REPORT OCTOBER, 2002 YAMASHITA SEKKEI INC. NIHON SEKKEI, INC. S S F J R 02-161 Currency Equivalents Exchange rate effective as of June, 2001 Currency Unit = Rupee(Rs.) $ 1.00 = Rs.46.0 1Rs.=2.66 Japanese Yen,1 Crore = 10.000.000,1 Lakh = 100.000 Preface In response to a request from the Government of India, the Government of Japan decided to implement a project on the Reconstruction Support for the Gujarat-Earthquake Disaster in the Devastated Areas in India and entrusted the project to the Japan International Cooperation Agency (JICA). JICA selected and dispatched a project team headed by Mr. Toshio Ito of Yamashita Sekkei Inc., the representing company of a consortium consists of Yamashita Sekkei Inc. and Nihon Sekkei, Inc., from June 6th, 2001 to May 29th, 2002 and from August 4th to August 18th, 2002. In addition, JICA selected an advisor, Mr. Osamu Yamada of the Institute of International Cooperation who examined the project from specialist and technical points of view. The team held discussions with the officials concerned of the Government of India and the Government of Gujarat and conducted a field survey and implemented quick reconstruction support project for the primary educational and healthcare sectors. After the commencement of the quick reconstruction support project the team conducted further studies and prepared this final report. I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relationships between our two countries. -
Post-Event Reconstruction in Asia Since 1999 Syeda Abidi, Siddiq Akbar, Frédéric Bioret
Post-Event Reconstruction in Asia since 1999 Syeda Abidi, Siddiq Akbar, Frédéric Bioret To cite this version: Syeda Abidi, Siddiq Akbar, Frédéric Bioret. Post-Event Reconstruction in Asia since 1999: An Overview Focusing on the Social and Cultural Characteristics of Asian Countries. International Con- ference on Earthquake Engineering and Seismology, Apr 2011, Islamabad, Pakistan. pp.418-427. hal-00740365 HAL Id: hal-00740365 https://hal.univ-brest.fr/hal-00740365 Submitted on 11 Oct 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Conference on Earthquake Engineering and Seismology (ICEES 2011), NUST, Islamabad, Pakistan April 25-26, 2011 Post-Event Reconstruction in Asia since 1999: An Overview Focusing on the Social and Cultural Characteristics of Asian Countries S. Raaeha-tuz-Zahra Abidi1, Dr. Siddiq Akbar2, Dr. Frédéric Bioret1 1 Institut de Géoarchitecture, Université de Bretagne Occidentale, Brest, France ([email protected], [email protected] ) 2 Department of Architecture, University of Engineering & Technology, Lahore, Pakistan ([email protected] ) Abstract The concentration of human population in Asia continues to turn its seismic events into what appears to be more than its fare share of disasters. -
Schools Are Highly Vulnerable If Not Properly Constructed and Prepared for Earthquakes
Safer Society NSET Report 2014 National Society for Earthquake Technology-Nepal (NSET) Cover Photo (Front) Students' Summit on Earthqauke Safety 2013, Sauraha, Chitwan Cover Photo (Back) Retrofitting of Adarsha L.S. School, Chiyabari, Ilam June 2014 Book Publication Series: NSET-097-2014 ©NSET ii | Safer Society NSET Report 2014 Message We are here again with the NSET Report 2014. This report presents an account of NSET's endeavors and activities towards the enhancement of disaster resilience of from the communities in Nepal during the past year. This year has been momentous in the sense that it marks 20 years of collaboration, commitment and partnering in disaster risk President management. NSET strongly believes that the earthquake resilience of communities can be achieved through enhancing awareness and building capacity by helping them to understand seismic risk and providing them with simple and practical methods in mitigating the risks. NSET is grateful that its work has been recognized with the wider acceptance of concepts, methodologies and safety measures NSET has been developing and propagating in Nepal and the region. On behalf of the NSET Executive Committee, I would like to thank all Government agencies, civil society organizations, international agencies and individuals for their Shiva Bahadur initiatives and partnerships with NSET in their Disaster Risk Management Programs. Pradhanang In conclusion, I would personally like to commend all the staff at NSET for their hard and dedicated work. With your continued and sustained efforts, I'm sure that NSET Vision of 'Earthquake Safe Communities in Nepal by 2020' will materialize. Thank you! Safer Society | iii NSET Report 2014 Message Our National Society for Earthquake Technology -Nepal (NSET) has completed its 20 years of service to the nation and the region. -
Disaster Risk Management in South Asia: a Regional Overview
DISASTER RISK & CLIMATE CHANGE UNIT DSouth CAsia Region - World Bank The World Bank Group • South Asia Region Disaster Risk Management and Climate Change Unit • Sustainable Development Network December 2012 DISASTER RISK & CLIMATE CHANGE UNIT DSouth CAsia Region - World Bank Disaster Risk Management in South Asia: A Regional Overview The World Bank, 1818 H Street, N.W. Washington, DC 20433, U.S.A. Internet: www.worldbank.org All Rights Reserved Printed in Washington, DC First Printing: December, 2012 The findings, interpretations, and conclusions expressed in this book are entirely those of the authors and should not be attributed in any manner to the World Bank, to its affiliated organizations, or to members of its Board of Executive Directors or the countries they represent. The World Bank does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. The boundaries, colors, denomina- tions, and other information shown on any map in this volume do not imply on the part of The World Bank Group any judgment on the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. The World Bank encourages dissemination of its work and will promptly grant permission to reproduce portions of the work under normal circumstances. For permission to photocopy or reprint any part of this work, as well as all other queries on rights and licenses, including subsidiary rights, please send a request with complete details to the Office of the Publisher, The World Bank, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2422; e-mail: [email protected].