bioRxiv preprint doi: https://doi.org/10.1101/2020.07.03.186783; this version posted July 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Zinc finger protein SALL4 functions through an AT-rich motif to regulate heterochromatin formation Nikki R. Kong1,2, Mahmoud A. Bassal3, Hong Kee Tan3,4, Jesse V. Kurland5, Kol Jia Yong3, John J. Young6, Yang Yang7, Fudong Li7, Jonathan Lee8, Yue Liu1,2, Chan-Shuo Wu3, Alicia Stein1, Hongbo Luo9, Leslie E. Silberstein9, Martha L. Bulyk1,5, Daniel G. Tenen2,3,*, Li Chai1,2,* 1Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, U.S.A.; 2Harvard Stem Cell Institute, Boston, MA 02115, U.S.A.; 3Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore; 4Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117599, Singapore; 5Division of Genetics, Department of Medicine, Brigham and Women’s Hospital/ Harvard Medical School, Boston, MA 02115, U.S.A.; 6Department of Biology, Simmons University, Boston, MA 02115, U.S.A.; 7Hefei National Laboratory for Physical Sciences at Microscale and School of Life; Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; 8Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02115, U.S.A.; 9Joint Program in Transfusion Medicine, Department of Laboratory Medicne, Children’s Hospital Boston; Boston, MA, 02115 U.S.A. *Co-corresponding authors:
[email protected] and
[email protected] Abstract The zinc finger transcription factor SALL4 is highly expressed in embryonic stem cells, down-regulated in most adult tissues, but reactivated in many aggressive cancers.