Insectts Intestinal Organ for Symbiont Sorting

Total Page:16

File Type:pdf, Size:1020Kb

Insectts Intestinal Organ for Symbiont Sorting Insect’s intestinal organ for symbiont sorting PNAS PLUS Tsubasa Ohbayashia, Kazutaka Takeshitaa,b, Wataru Kitagawaa,b, Naruo Nikohc, Ryuichi Kogad, Xian-Ying Mengd, Kanako Tagoe, Tomoyuki Horif, Masahito Hayatsue, Kozo Asanoa, Yoichi Kamagataa,b, Bok Luel Leeg, Takema Fukatsud, and Yoshitomo Kikuchia,b,1 aGraduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; bBioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan; cDepartment of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan; dBioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan; eEnvironmental Biofunction Division, National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan; fEnvironmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan; and gGlobal Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, Korea Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved August 11, 2015 (received for review June 11, 2015) Symbiosis has significantly contributed to organismal adaptation Those controlling mechanisms are of general importance for and diversification. For establishment and maintenance of such host– understanding symbiosis (6, 10). symbiont associations, host organisms must have evolved mecha- Stinkbugs, belonging to the insect order Hemiptera, consist of nisms for selective incorporation, accommodation, and maintenance over 40,000 described species in the world (15). The majority of of their specific microbial partners. Here we report the discovery of a the stinkbugs suck plant sap or tissues, and some of them are previously unrecognized type of animal organ for symbiont sorting. notorious as devastating agricultural pests (16). These plant- In the bean bug Riptortus pedestris, the posterior midgut is morpho- sucking stinkbugs possess a specialized symbiotic organ in their logically differentiated for harboring specific symbiotic bacteria of a alimentary tract: A posterior region of the midgut is morpho- beneficial nature. The sorting organ lies in the middle of the intestine logically differentiated with a number of sacs or tubular out- as a constricted region, which partitions the midgut into an anterior growths, called crypts or ceca, whose inner cavity hosts symbiotic nonsymbiotic region and a posterior symbiotic region. Oral adminis- bacteria (17–21). Usually, a single bacterial species dominates in tration of GFP-labeled Burkholderia symbionts to nymphal stinkbugs the midgut crypts, and elimination of the symbiont causes re- showed that the symbionts pass through the constricted region and tarded growth and increased mortality of the host, which in- colonize the posterior midgut. However, administration of food col- dicates the specific and beneficial nature of the stinkbug gut orings revealed that food fluid enters neither the constricted region symbiosis (20–31). The initial symbiont infection is established by nor the posterior midgut, indicating selective symbiont passage at nymphal feeding, which may be either via vertical transmission the constricted region and functional isolation of the posterior mid- from symbiont-containing maternal secretion supplied upon gut for symbiosis. Coadministration of the GFP-labeled symbiont and oviposition (19–21) or via environmental acquisition from am- red fluorescent protein-labeled Escherichia coli unveiled selective pas- bient microbiota (21–23). What mechanisms underlie the selec- sage of the symbiont and blockage of E. coli at the constricted region, tive establishment of a specific bacterial symbiont in the midgut demonstrating the organ’s ability to discriminate the specific bacterial symbiotic organ despite the oral inoculum contaminated by symbiont from nonsymbiotic bacteria. Transposon mutagenesis and nonsymbiotic microbes has remained largely an enigma, al- screening revealed that symbiont mutants in flagella-related genes though recent studies have started to shed light on the sym- fail to pass through the constricted region, highlighting that both biotic mechanisms underlying the environmental acquisition host’s control and symbiont’s motility are involved in the sorting of specific Burkholderia symbionts in the bean bug Riptortus process. The blocking of food flow at the constricted region is con- pedestris (Hemiptera: Alydidae) (22, 32). Antimicrobial substances served among diverse stinkbug groups, suggesting the evolutionary produced by the midgut epithelia (33, 34) and some symbiont origin of the intestinal organ in their common ancestor. Significance stinkbug | gut symbiosis | partner choice | Burkholderia | flagellar motility In general, animals have a mouth for feeding, an anus for defe- iverse organisms are obligatorily associated with microbial cation, and a gut connecting them for digestion and absorption. Dsymbionts, which significantly contribute to their adaptation However, we discovered that the stinkbug’s gut is functionally and survival (1–3). In such symbiotic associations, the host or- disconnected in the middle by a previously unrecognized organ ganisms often develop specialized cells, tissues, or organs for for symbiont sorting, which blocks food fluid and nonsymbiotic harboring their specific microbial partners [for example, root bacteria but selectively allows passing of a specific bacterial nodules in the legume–Rhizobium symbiosis (4, 5), symbiotic symbiont. Though very tiny and inconspicuous, the organ light organs in the squid–Vibrio symbiosis (6, 7), and bacter- governs the configuration and specificity of stinkbug gut iocytes in the aphid–Buchnera symbiosis (8, 9)]. symbiosis, wherein the posterior gut region is devoid of food These microbial symbionts are either acquired by newborn flow, populated by a specific bacterial symbiont, and trans- hosts from the environment every generation as in the legume– formed into an isolated organ for symbiosis. Mutant analyses Rhizobium and the squid–Vibrio symbioses or transmitted verti- showed that the symbiont’s flagellar motility is needed for cally through host generations as in the aphid–Buchnera symbi- passing the host organ, highlighting intricate host–symbiont osis (10). In the environmentally acquired symbiotic associations, interactions underpinning the symbiont sorting process. it is essential for the host organisms to recognize and incorporate specific symbiotic bacteria while excluding a myriad of nonsym- Author contributions: T.O., T.F., and Y. Kikuchi designed research; T.O., K. Takeshita, W.K., N.N., R.K., X.-Y.M., K. Tago, T.H., M.H., K.A., Y. Kamagata, B.L.L., and Y. Kikuchi biotic environmental microbes (6, 11). In the vertically trans- performed research; T.O. and Y. Kikuchi analyzed data; and T.O., T.F., and Y. Kikuchi mitted symbiotic associations, it is important for the host wrote the paper. organisms to selectively transmit their own symbiotic bacteria The authors declare no conflict of interest. while excluding parasitic/cheating microbial contaminants (12– This article is a PNAS Direct Submission. 14). Hence, it is expected that the host organisms must have 1To whom correspondence should be addressed. Email: [email protected]. EVOLUTION evolved some mechanisms for selective incorporation, accom- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. modation, and maintenance of their specific microbial partners. 1073/pnas.1511454112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1511454112 PNAS | Published online August 31, 2015 | E5179–E5188 Downloaded by guest on September 24, 2021 factors, such as stress-responsive polyester accumulation, cell A wall synthesis, and purine biosynthesis (35–37) might be in- volved in the selective infection of the Burkholderia symbiont to the midgut crypts. Here we address this important symbiotic issue by the dis- covery of a previously unrecognized intestinal organ in the stinkbugs. Though very tiny and inconspicuous, the organ gov- erns the configuration and specificity of the stinkbug gut sym- biosis. Lying in the middle of the midgut, the organ blocks food flow and nonsymbiotic bacteria but selectively allows passing of specific symbiotic bacteria, whereby the stinkbug’s intestine is functionally partitioned into the anterior region specialized for digestion and absorption and the posterior region dedicated to symbiosis. The blocking of food flow by the organ is conserved B across diverse stinkbug families, suggesting the possibility that the organ evolved in their common ancestor and has played substantial roles in their symbiont-mediated adaptation and diversification. Results and Discussion Identification of Constricted Region in Stinkbug Midgut. As in di- verse other stinkbugs (17–21), the midgut of the bean bug C D R. pedestris consists of the following morphologically distinct regions: the voluminous midgut first section (M1), the tubular midgut second section (M2), the ovoid midgut third section (M3), and the midgut fourth section (M4) with numerous crypts densely populated by a specific betaproteobacterial symbiont of the genus Burkholderia, which is orally acquired by nymphal in- sects from the environment every generation (22, 23, 32) (Fig. 1A). A swollen region adorally connected to the M4 is without crypts and called M4 bulb (M4B) (18, 34, 38) (Fig. 1A). Although biological roles
Recommended publications
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • Brief Report Acta Palaeontologica Polonica 61 (4): 863–868, 2016
    Brief report Acta Palaeontologica Polonica 61 (4): 863–868, 2016 A new pentatomoid bug from the Ypresian of Patagonia, Argentina JULIÁN F. PETRULEVIČIUS A new pentatomoid heteropteran, Chinchekoala qunita gen. (Wilf et al. 2003). It consists of a single specimen, holotype et sp. nov. is described from the lower Eocene of Laguna MPEF-PI 944a–b, with dorsal and ventral sides, collected from del Hunco, Patagonia, Argentina. The new genus is mainly pyroclastic debris of the plant locality LH-25, latitude 42°30’S, characterised by cephalic characters such as the mandibular longitude 70°W (Wilf 2012; Wilf et al. 2003, 2005). The locality plates surpassing the clypeus and touching each other in dor- was dated using 40Ar/39Ar by Wilf et al. (2005) and recalculated sal view; head wider than long; and remarkable characters by Wilf (2012), giving an age of 52.22 ± 0.22 (analytical 2 σ), related to the eyes, which are surrounded antero-laterally ± 0.29 (full 2 σ) Ma. The specimen was originally partly covered and posteriorly by the anteocular processes and the prono- by sediment and was prepared with a pneumatic hammer. It was tum, as well as they extend medially more than usual in the drawn with a camera lucida attached to a Wild M8 stereomicro- Pentatomoidea. This is the first pentatomoid from the Ypre- scope and photographed with a Nikon SMZ800 with a DS-Vi1 sian of Patagonia and the second from the Eocene in the re- camera. For female genitalia nomenclature I use valvifers VIII gion, being the unique two fossil pentatomoids in Argentina.
    [Show full text]
  • Biodiversité Et Maladies Infectieuses: Impact Des Activités Humaines Sur Le Cycle De Transmission Des Leishmanioses En Guyane Arthur Kocher
    Biodiversité et maladies infectieuses: Impact des activités humaines sur le cycle de transmission des leishmanioses en Guyane Arthur Kocher To cite this version: Arthur Kocher. Biodiversité et maladies infectieuses: Impact des activités humaines sur le cycle de transmission des leishmanioses en Guyane. Santé publique et épidémiologie. Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier), 2017. Français. tel-01764244 HAL Id: tel-01764244 https://hal.archives-ouvertes.fr/tel-01764244 Submitted on 11 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Arthur Kocher le vendredi 23 juin 2017 Biodiversité et maladies infectieuses: Impact des activités humaines sur le cycle de transmission des leishmanioses en Guyane et discipline ou spécialité ED SEVAB : Écologie, biodiversité et évolution Laboratoire EDB (UMR 5174 CNRS/UPS/ENFA) Jérôme Murienne Anne-Laure Bañuls Jury: Rapporteurs: Serge Morand et Brice Rotureau Autres membres: Jérôme Chave, Jean-François Guégan et Renaud Piarroux REMERCIEMENTS Ce travail de thèse a été rendu possible par l’implication, le conseil et le soutien d’un grand nombre de personnes et d’institutions. Je tiens à remercier chaleureusement mes directeurs de thèse, Jérôme Murienne et Anne-Laure Bañuls.
    [Show full text]
  • Redescription and Generic Placement of Neopamera
    Zootaxa 3430: 61–68 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) Redescription and generic placement of Neopamera mumfordi (Van Duzee, 1935) and Remaudiereana castanea (Van Duzee, 1935) (Hemiptera: Heteroptera: Lygaeoidea: Rhyparochromidae) PABLO M. DELLAPÉ (1)(2) & M. B. MALIPATIL (3)(4) (1) División Entomología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina. E-mail: [email protected] (2) Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET) (3) Department of Primary Industries, Knoxfield Centre, Private Bag 15, Ferntree Gully Delivery Centre, Vic. 3156, Australia. E-mail: [email protected] (4) La Trobe University, Bundoora, Vic. 3086, Australia. Abstract A new genus, Neocnemodus gen. nov., is erected to accommodate Neopamera mumfordi (Van Duzee) from the Marquesas Islands; the species is redescribed and illustrated, and its relationships with the genera Cnemodus Herrich-Schaeffer and Andercnemodus Brailovsky & Cervantes-Peredo are analysed. Another Marquesas Island myodochine species, Remaudiereana castanea (Van Duzee), is redescribed, illustrated, and its generic placement discussed. Key words: Myodochini, Marquesas, new genus, generic placement Introduction The worldwide distributed Myodochini is among the most diverse of the 14 tribes of Rhyparochromidae (Dellapé & Henry 2010). The tribe is more diverse in
    [Show full text]
  • Laboratory of Animal Physiology, Graduate School of Science, Osaka
    Laboratory of Animal Physiology, Graduate School of Science, Osaka City University 2004 • Goto, S.G. & Kimura, M.T. Heat‐shock‐responsive genes are not involved in the adult diapause of Drosophila triauraria. Gene 326: 117‐122. DOI: 10.1016/j.gene.2003.10.017 • Tachibana, S.‐I. & Numata, H. Effects of temperature and photoperiod on the termination of larval diapause in Lucilia sericata (Diptera: Calliphoridae). Zool. Sci. 21: 197‐202. DOI: 10.2108/zsj.21.197 • Tachibana, S.‐I. & Numata, H. (2004) Parental and direct effects of photoperiod and temperature on the induction of larval diapause in the blow fly Lucilia sericata. Physiol. Entomol. 29 (1): 39‐44. DOI:10.1111/j.0307‐6962.2004.0360.x • Musolin, D. L. & Numata, H. Late‐season induction of diapause in Nezara viridula and its effect on post‐diapause reproductive performance. Entomol. Exp. Appl. 111: 1‐6. DOI: 10.1111/j.0013‐8703.2004.00137.x • Teraoka, T. & Numata, H. Winter survival and oviposition before and after overwintering in a parasitoid wasp, Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae). Entomol. Sci. 7: 103‐109. DOI: 10.1111/j.1479‐ 8298.2004.00055.x • Tachibana, S.‐I. & Numata, H. Maternal induction of larval diapause and its sensitive stage in the blow fly Lucilia sericata. Entomol. Sci. 7: 231‐235. DOI: 10.1111/j.1479‐8298.2004.00068.x • Hamanaka, Y., Numata, H. & Shiga, S. Morphology and electrophysiological properties of neurons projecting to the retrocerebral complex in the blow fly, Protophormia terraenovae. Cell Tissue Res. 318: 403‐418. DOI: 10.1007/s00441‐004‐0935‐1 • Numata, H.
    [Show full text]
  • Hemiptera: Heteroptera: Pentatomoidea
    VIVIANA CAUDURO MATESCO SISTEMÁTICA DE THYREOCORIDAE AMYOT & SERVILLE (HEMIPTERA: HETEROPTERA: PENTATOMOIDEA): REVISÃO DE ALKINDUS DISTANT, MORFOLOGIA DO OVO DE DUAS ESPÉCIES DE GALGUPHA AMYOT & SERVILLE E ANÁLISE CLADÍSTICA DE CORIMELAENA WHITE, COM CONSIDERAÇÕES SOBRE A FILOGENIA DE THYREOCORIDAE, E MORFOLOGIA DO OVO DE 16 ESPÉCIES DE PENTATOMIDAE COMO EXEMPLO DO USO DE CARACTERES DE IMATUROS EM FILOGENIAS Tese apresentada ao Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do Título de Doutor em Biologia Animal. Área de concentração: Biologia Comparada Orientadora: Profa. Dra. Jocelia Grazia Co-Orientador: Prof. Dr. Cristiano F. Schwertner UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PORTO ALEGRE 2014 “Sistemática de Thyreocoridae Amyot & Serville (Hemiptera: Heteroptera: Pentatomoidea): revisão de Alkindus Distant, morfologia do ovo de duas espécies de Galgupha Amyot & Serville e análise cladística de Corimelaena White, com considerações sobre a filogenia de Thyreocoridae, e morfologia do ovo de 16 espécies de Pentatomidae como exemplo de uso de caracteres de imaturos em filogenias” VIVIANA CAUDURO MATESCO Tese apresentada como parte dos requisitos para obtenção de grau de Doutor em Biologia Animal, área de concentração Biologia Comparada. ________________________________________ Prof. Dr. Augusto Ferrari (UFRGS) ________________________________________ Dra. Caroline Greve (CNPq ex-bolsista PDJ) ________________________________________ Prof. Dr. Cláudio José Barros de Carvalho (UFPR) ________________________________________ Profa. Dra. Jocelia Grazia (Orientadora) Porto Alegre, 05 de fevereiro de 2014. AGRADECIMENTOS À minha orientadora, Profa. Dra. Jocelia Grazia, pelos ensinamentos e por todas as oportunidades que me deu durante os treze anos em que estive no Laboratório de Entomologia Sistemática. Ao meu co-orientador, Prof.
    [Show full text]
  • The Yearbook of Agriculture • 1961 ^
    87TH CONGRESS, IST SESSION, HOUSE DOCUMENT NO. 29 THE YEARBOOK OF AGRICULTURE • 1961 ^ THE UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D.G. SEEDS The Yearbook of Agriculture 1961 ¿^ f i Í THE UNITED STATES GOVERNMENT PRINTING OFFICE FOR SALE BY THE SUPERINTENDENT OF DOCUMENTS, WASHINGTON 25, D.G., PRICE $2 FOREWORD ORVILLE L. FREEMAN Secretary of Agriculture GOOD SEEDS ARE both a symbol and a foundation of the good Ufe our people have gained. A baisic factor in our realization of mankind's most sought goal, agricultural abundance, good seeds can be a means of our bringing about an Age of Plenty and an Age of Peace and Free- dom. We can use our good seeds to help end hunger and fear for the less fortunate half of the human family. So used, our seeds can be more meaningful to a hungry world than can the rocket that first carries man to the moon. This Yearbook of Agriculture seeks to provide a new and improved basis for understanding the complex order of Nature's forces so that man can better shape them in a positive and creative fashion. Seeds are ever a positive and creative force. Seeds are the germ of life, a beginning and an end, the fruit of yesterday's harvest and the promise of tomorrow's. Without an ample store of seeds there can be no national treasure, or no future for a Nation. Finding and developing better seeds is the oldest continuous service our Federal Government has rendered to our farmers—indeed, to all our people.
    [Show full text]
  • Invasive Stink Bugs and Related Species (Pentatomoidea) Biology, Higher Systematics, Semiochemistry, and Management
    Invasive Stink Bugs and Related Species (Pentatomoidea) Biology, Higher Systematics, Semiochemistry, and Management Edited by J. E. McPherson Front Cover photographs, clockwise from the top left: Adult of Piezodorus guildinii (Westwood), Photograph by Ted C. MacRae; Adult of Murgantia histrionica (Hahn), Photograph by C. Scott Bundy; Adult of Halyomorpha halys (Stål), Photograph by George C. Hamilton; Adult of Bagrada hilaris (Burmeister), Photograph by C. Scott Bundy; Adult of Megacopta cribraria (F.), Photograph by J. E. Eger; Mating pair of Nezara viridula (L.), Photograph by Jesus F. Esquivel. Used with permission. All rights reserved. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-4987-1508-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materi- als or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, micro- filming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • Heteroptera: Cydnidae), with the Description of Two New Species
    2021 ACTA ENTOMOLOGICA 61(1): 133–161 MUSEI NATIONALIS PRAGAE doi: 10.37520/aemnp.2021.007 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu RESEARCH PAPER Revision of the genus Exosehirus (Heteroptera: Cydnidae), with the description of two new species Dmitry A. GAPON Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya Emb., St Petersburg 199034, Russia; e-mail: [email protected]; ORCID: https://orcid.org/0000-0002-4927-9845 Accepted: Abstract. The present work is a revision of the Palaearctic burrower bug genus Exosehirus th 12 March 2021 Wagner, 1963 (Heteroptera: Cydnidae: Sehirinae). New data on the morphology and distribution Published online: are given. Structures of the female internal ectodermal genitalia and the completely infl ated 21st April 2021 aedeagi are described and illustrated for the fi rst time. An extended diff erential diagnosis as a comparison of the genus with representatives of all Palaearctic genera of the tribe Sehirini is provided. Based on characters of the terminalia of both sexes, two new species are descri- bed: E. elamensis sp. nov. from Southwest Iran, and E. essedonius sp. nov. from Kazakhstan. ‘Exosehirus’ steini (Signoret, 1884) nom. dub. is excluded from the genus Exosehirus and treated as a species incertae sedis. Exosehirus marginatus (Signoret, 1881) is recorded for Azerbaijan for the fi rst time. Key words. Arthroidignatha, Heteroptera, Cydnidae, taxonomy, morphology, male and female terminalia, new species, distribution, Palaearctic Region Zoobank: http://zoobank.org/urn:lsid:zoobank.org:pub:FE96D8BE-6087-436C-8728-7BE849CA13B7 © 2021 The Authors. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Licence.
    [Show full text]
  • Inventory Research on Rhyparochromidae (Insecta: Heteroptera) in Sarawak, Malaysia, with a Checklist of the Family Known from Borneo
    国立科博専報,(46): 13–24, 2010年3月28日 Mem. Natl. Mus. Nat. Sci., Tokyo, (46): 13–24, March 28, 2010 Inventory Research on Rhyparochromidae (Insecta: Heteroptera) in Sarawak, Malaysia, with a Checklist of the Family Known from Borneo Masaaki Tomokuni Department of Zoology, National Museum of Nature and Science, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo 169–0073, Japan E-mail: [email protected] Abstract. Twenty-seven species of Rhyparochromidae in seven tribes and 20 genera are recorded from Sarawak, East Malaysia, on the basis of specimens housed in the Forest Research Centre (FRC), Kuching, Malaysia, and the National Museum of Nature and Science, Tokyo, Japan. Of these, nine species are new to Borneo, i.e., Botocudo yasumatsui, Pactye elegans, Entisberus ar- chetypus, Diniella sevosa, Pamerana scotti, Paromius piratoides, Stigmatonotum geniculatum, Tachytatus prolixicornis, and Elasmolomus pallens, and seven species are new to Sarawak, i.e. Clerada noctua, Pactye distincta, Heissodrymus magnus, Kanigara oculata, Horridipamera niet- neri, Pamerarma ventralis, and Pseudopachybrachius guttus. This result evidently shows an exces- sive insufficiency of inventory researches on this group not only in Sarawak but also in Borneo as a whole. A checklist of Rhyparochromidae for 57 species in eight tribes and 33 genera known from Borneo is also provided for further progress of the inventory. Key words : Rhyparochromidae, Heteroptera, inventory, Sarawak, Borneo, Malaysia, new record, checklist. 1867 based on specimens collected in Sarawak Introduction by “Stevens” (cf. Scudder, 1977). Before the As a state of Malaysia Sarawak occupies the middle of 20th century, two British entomologists northwestern part of Borneo, the third largest and (Walker, 1872; Distant, 1906) added five species one of the biodiversity richest island in the world.
    [Show full text]
  • Géneros De Myodochini (Hemiptera: Lygaeoidea: Rhyparochromidae) En Colombia Y Clave Con Ilustraciones
    Revista128 Colombiana de Entomología 37 (1): 128-136 (2011) Géneros de Myodochini (Hemiptera: Lygaeoidea: Rhyparochromidae) en Colombia y clave con ilustraciones The genera of Myodochini (Hemiptera: Lygaeoidea: Rhyparochromidae) from Colombia and a key with illustrations LAURA ALEXANDRA RENGIFO-CORREA1 y RANULFO GONZÁLEZ OBANDO2 Resumen: Se reportan por primera vez ocho géneros de la tribu Myodochini (Hemiptera: Rhyparochromidae: Rhypa- rochrominae) en Colombia, en adición a los diez géneros registrados previamente para el país. Estos son: Catenes, Cholula, Dushinckanus, Neomyocoris, Paracholula, Pephysena, Pseudoparomius, Stridulocoris. Se enumeran los 18 géneros de Myodochini reportados para Colombia. Para 16 de estos géneros se da una sinopsis de las localidades de colecta y rango de elevación. Se presenta una clave para la determinación de los géneros de Myodochini para Colombia, ilustraciones de los caracteres usados y fotografías de cabeza - pronoto. Palabras clave: Chinches. Fauna neotropical. Nuevos registros. Parques Naturales de Colombia. Abstract: Eight genera from the tribe Myodochini (Hemiptera: Rhyparochromidae: Rhyparochrominae) are reported for the first time in Colombia, in addition to the ten genera recorded previously for this country. Those are: Catenes, Cholula, Dushinckanus, Neomyocoris, Paracholula, Pephysena, Pseudoparomius, Stridulocoris. The 18 genera of Myodochini recorded from Colombia are listed. An overview of the collection localities and altitudinal range for 16 of those genera are provided. A key to the
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]