Downloaded from Brill.Com09/30/2021 01:18:19AM Via Free Access 10 Tijdschrift Voor Entomologie, Volume 155, 2012

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Brill.Com09/30/2021 01:18:19AM Via Free Access 10 Tijdschrift Voor Entomologie, Volume 155, 2012 Tijdschrift voor Entomologie 155 (2012) 9–14 brill.nl/tve Two new species of the genus Myrmica (Hymenoptera: Formicidae: Myrmicinae) from the Himalaya Himender Bharti Two new species of the genus Myrmica are described from the Himalaya. Myrmica adrijae sp. n. is reported from North-western region in India, while Myrmica pseudorugosa sp. n. is reported from North-eastern Pakistan. Myrmica adrijae sp. n. and Myrmica pseudorugosa sp. n. belong to the smythiesii and rugosa species groups respectively. Both species are considerably distinct from already described species in these groups. Himender Bharti, Department of Zoology and Environmental Sciences, Punjabi University Patiala, India, 147002. [email protected] Introduction lided with the Eurasian plate, followed by a sec- The genus Myrmica Latreille, 1804 is represented ond phase of mountain development about 65 mil- in the old world by 146 valid species, which are lion years ago. Rising of the Himalaya as an isola- well distributed in the Palearctic zone and in south- tion barrier has led to a high degree of endemism east Asian tropical and subtropical regions (Rad- (Radchenko & Elmes 2001, 2010; Bharti 2008a, chenko & Elmes 2010; Bharti 2011, 2012; Bharti 2008b, 2011, 2012; Bharti & Sharma 2011a, 2011b, & Sharma 2011a, 2011b, 2011c). The central Asian 2011c). Only during the last ten years, the author has mountains, which comprise Hindu Kush, Karako- started exploring the Himalayan fauna. The region rum and the south-western slopes of the Himalaya appears to have quite a number of undescribed or (Afghanistan, Pakistan, India, Nepal and Bhutan), unnoticed species which would contribute in under- harbour 37 species representing seven species groups. standing the systematics of Myrmica of the old world. Of these, 35 species (94%) are endemic to this re- The species groups in Myrmica as created by Rad- gion. The diversity of this region is quite interest- chenko & Elmes (2001, 2010) are arbitrary divi- ing because the species from this region show a ple- sions, but the groups seem to be supported by molec- siomorphic state of features (Radchenko & Elmes ular studies (Jansen et al. 2009, 2010) and appear to 2010). However, much less is known from the In- be monophyletic. The two new species, viz., Myr- dian Himalaya. One of the significant reasons is the mica adrijae sp. n. and Myrmica pseudorugosa sp. n., lack of material from this region. Given the geologi- cal history of Himalaya, and as elucidated by Moreau which are described in the present paper, belong to et al. (2006), the diversification of major ant lin- the smythiesii and rugosa species groups, respectively. eages occurred from the beginning of the early Pa- The rugosa species group is currently represented by leocene to the late Cretaceous, 60 to 100 million nine species and is endemic to central Asian moun- years ago in the age that the angiosperms diversi- tains. The smythiesii species group is currently repre- fied. Interestingly, it is the same time span during sented by three species from central Asian mountains which the Himalaya was formed. The initial moun- and two species from the Tibetan Plateau. The two tain building processes were underway about 70 mil- new species are quite distinct from already known lion years ago when the Indo-Australian plate col- species in these species groups. Tijdschrift voor Entomologie 155: 9–14, Tables 1–2. Figs 1–6. [ISSN 0040-7496]. brill.nl/tve © Nederlandse Entomologische Vereniging. Published by Koninklijke Brill NV, Leiden. Published 1 August 2012. DOI 10.1163/004074912X631742 Downloaded from Brill.com09/30/2021 01:18:19AM via free access 10 Tijdschrift voor Entomologie, volume 155, 2012 Material, methods and terminology short suberect hairs and few long hairs combined to- Specimens were preserved in 70% alcohol. These gether. were later pinned as per standard procedure in ant Alitrunk, petiole and postpetiole. Alitrunk dorsum taxonomy, and examined with a Nikon SMZ-1500 feebly convex; promesonotum with weak suture and stereo zoom microscope. Digital images were cap- irregular reticulate sculpture with few very wide tured using Auto-Montage software (Syncroscopy, transverse reticulations; mesonotum dorsally slightly Division of Synoptics). These images were cleaned by depressed; metanotal groove broad, deep, longitudi- using Helicon Filter 5 and Adobe Photoshop CS. For nally rugose; anterior half of propodeum transver- morphological measurements, Radchenko & Elmes sally rugose dorsally, posterior part irregularly rugose, (1998, 2010) have been followed. propodeal spines long, pointed, widened at base, pro- jected backward, divergent; propodeal lobes rounded apically; sides of alitrunk with longitudinal stria- Depositories tions except anterior part of pronotum with reticula- BMNH, The Natural History Museum, London, tions; tibiae of hind and middle legs with well devel- UK; PUAC, Punjabi University Patiala, Ant Collec- oped pectinate spur; petiole longer than broad, with tion at Department of Zoology and Environmental short anterior peduncle with a tooth like subpetiolar Sciences, Punjabi University, Patiala, Punjab, India. process, node obliquely truncate, shagreenate, punc- Holotypes of both the new species are in PUAC, tated; postpetiole almost as broad as long, punctated while one paratype of each species will be deposited and shagreenate; promesonotum with long erect to in BMNH. suberect hairs; metanotal groove with long hairs; propodeum with one pair of short hairs and minute pubescence; petiole and postpetiole equipped with Myrmica adrijae sp. n. long hairs which are directed upwards and back- Figs 1–3, Table 1 wards. Type Material. Holotype: worker, India,Himachal Gaster. Gaster highly polished and shiny; tergites and Pradesh, Kothi, 2479 meters above msl, 29.vi.1999 sternites with numerous long suberect hairs and with (H. Bharti coll.,code = 193) (PUAC). Paratypes: pubescence between them. 5 workers: collected from the same nest (BMNH; Coloration. Whole body blackish brown, mandibles, PUAC). GPS coordinates 32.1890°N–77.1170°E. antennae and legs brown. Description of worker Etymology Measurements. For measurements and indices, see Species has been named after Adrija, younger daugh- Table 1. ter of author; as she was always accompanying the Head. Head much longer than broad, sides paral- author in recent times to collect ants. lel, occipital margin straight; mandibles with 8– 9 teeth (apical and preapical one largest), longitu- Remarks dinally rugulose and with punctures; clypeus con- Myrmica adrijae sp. n. belongs to the smythiesii vex, longitudinally rugulose, anterior clypeal margin species group based on the following combination of prominent, very narrowly rounded medially and ex- characters: frontal carinae merge with the rugae that tending over mandibles, space between rugae smooth surround antennal sockets. Frons wide and frontal and shiny; frontal triangle highly polished, smooth lobes not extended. Scape very smoothly curved at and shining; frontal carinae short, curve outwards to the base, not angled and with no trace of lobe or ca- merge with rugae that surround the antennal sock- rina. Anterior clypeal margin is distinctly prominent, ets; frontal lobes partially cover condylar bulb; frons without a medial notch. This species group is cur- wide and frontal lobes not extended; antennae 12 rently represented by five species, viz.: M. smythiesii segmented, apical 4 segments forming club, apical 3 Forel, 1902, M. bactriana Ruzsky, 1915, M. for- segments densely punctated and following segments tior Forel, 1904, M. ruzskyana Radchenko & Elmes, minutely punctated, scape slender, narrow, weakly 2010 and M. wittmeri Radchenko & Elmes, 1999. curved at base without any trace of lobe or carina, Three of these species (M. smythiesii, fortior and widening towards apex, just extending beyond the wittmeri) are restricted to the central Asian moun- upper margin of head, antennae with oblique short tains, while two species (M. bactriana and ruzskyana) hairs; eyes almost at midlength of head; head dorsum are native to Tibet. However, the Tibetan species are and sides with reticulate sculpture, punctated except very distinct with HW < 0.95 mm, AL < 1.55 for small area behind frontal triangle up to the level mm, PI1 1.29–1.32 and different sculpture, Myr- of eyes longitudinally rugose; head with numerous mica adrijae with HW 0.99 mm, AL 1.75 mm, PI1 Downloaded from Brill.com09/30/2021 01:18:19AM via free access Bharti: Myrmica (Hymenoptera: Formicidae: Myrmicinae) from the Himalaya 11 Figs 1–6. Myrmica adrijae (1–3) and M. pseudorugosa (4–6). – 1, 4, Heads; 2, 5, profiles; 3, 6, dorsal view. Downloaded from Brill.com09/30/2021 01:18:19AM via free access 12 Tijdschrift voor Entomologie, volume 155, 2012 Table 1. Myrmica adrijae mean, standard deviation, and Table 2. Myrmica pseudorugosa mean, standard devia- minimum and maximum values (in mm) of measure- tion, and minimum and maximum values (in mm) of ments and indices taken from workers (n = 6). measurements and indices taken from workers (n = 4). Measure- Mean ± SD Min Max Indices Mean Min Max Measure- Mean ± SD Min Max Indices Mean Min Max ments ments HL 1.29 ± 0.04 1.24 1.35 CI 1.30 1.30 1.31 HL 0.93 ± 0.02 0.91 0.94 CI 1.28 1.26 1.30 HW 0.99 ± 0.03 0.95 1.03 FI 0.44 0.44 0.44 HW 0.72 ± 0 0.72 0.72 FI 0.44 0.44 0.44 SL 0.99 ± 0.03 0.95 1.03 FLI 1.08 1.09 1.08 SL 0.75 ± 0.01 0.74 0.75 FLI 1.00 1.00 1.00 PL 0.49 ± 0.02 0.47 0.52 PI1 1.50 1.56 1.44 PL 0.38 ± 0 0.38 0.38 PI1 1.46 1.52 1.40 PH 0.33 ± 0.02 0.30 0.36
Recommended publications
  • Inter-Parasitic Interactions in Myrmica Ants: Ectoparasitic Fungus Affecting the Success of Socially Parasitic Caterpillars
    Inter-Parasitic Interactions in Myrmica Ants: Ectoparasitic Fungus Affecting the Success of Socially Parasitic Caterpillars András Tartally ( [email protected] ) University of Debrecen Norbert Szabó University of Debrecen Anna Ágnes Somogyi University of Debrecen Ferenc Báthori University of Debrecen Danny Haelewaters Ghent University András Mucsi Bezerédi str. 10, Cibakháza Ágnes Fürjes-Mikó University of Sopron-Forest Research Institute David R. Nash University of Copenhagen Research Article Keywords: Complex interactions, Maculinea, Myrmica scabrinodis, Parasitology, Phengaris alcon, Rickia wasmannii Posted Date: July 20th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-712976/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Exploitation of organisms by multiple parasite species is common in nature, but interactions among parasites have rarely been studied. Myrmica ants are rich in parasites. Among others, the ectoparasitic Rickia wasmannii fungus and the socially parasitic caterpillars of myrmecophilous Phengaris butteries often infect the same Myrmica colonies. In this study, we examined the effects of R. wasmannii on the adoption, long-term development, and survival of P. alcon. In laboratory conditions, caterpillars introduced into nests of Myrmica scabrinodis uninfected with R. wasmannii survived signicantly longer compared to caterpillars introduced into infected nests. In the eld, joint infection was less common than expected if both parasites exploited M. scabrinodis colonies independently. Pre-pupal caterpillars of P. alcon were somewhat larger in nests infected with R. wasmannii than those found in uninfected nests. Based on these results it seems that R. wasmannii infection of M. scabrinodis affects the survival and development of P.
    [Show full text]
  • Digging Deeper Into the Ecology of Subterranean Ants: Diversity and Niche Partitioning Across Two Continents
    diversity Article Digging Deeper into the Ecology of Subterranean Ants: Diversity and Niche Partitioning across Two Continents Mickal Houadria * and Florian Menzel Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Soil fauna is generally understudied compared to above-ground arthropods, and ants are no exception. Here, we compared a primary and a secondary forest each on two continents using four different sampling methods. Winkler sampling, pitfalls, and four types of above- and below-ground baits (dead, crushed insects; melezitose; living termites; living mealworms/grasshoppers) were applied on four plots (4 × 4 grid points) on each site. Although less diverse than Winkler samples and pitfalls, subterranean baits provided a remarkable ant community. Our baiting system provided a large dataset to systematically quantify strata and dietary specialisation in tropical rainforest ants. Compared to above-ground baits, 10–28% of the species at subterranean baits were overall more common (or unique to) below ground, indicating a fauna that was truly specialised to this stratum. Species turnover was particularly high in the primary forests, both concerning above-ground and subterranean baits and between grid points within a site. This suggests that secondary forests are more impoverished, especially concerning their subterranean fauna. Although subterranean ants rarely displayed specific preferences for a bait type, they were in general more specialised than above-ground ants; this was true for entire communities, but also for the same species if they foraged in both strata. Citation: Houadria, M.; Menzel, F.
    [Show full text]
  • Borowiec Et Al-2020 Ants – Phylogeny and Classification
    A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.
    [Show full text]
  • Acceptance of Alien Queens by the Ruby Ant Myrmica Rubra (Hymenoptera: Formicidae): Gene fl Ow by Queen fl Ow
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 230–234, 2017 http://www.eje.cz doi: 10.14411/eje.2017.028 ORIGINAL ARTICLE Acceptance of alien queens by the ruby ant Myrmica rubra (Hymenoptera: Formicidae): Gene fl ow by queen fl ow JOUNI SORVARI 1, 2 1 Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; e-mail: jouni.sorvari@uef.fi 2 Department of Biology, Section of Ecology, FI-20014 University of Turku, Finland Key words. Hymenoptera, Formicidae, ants, Myrmica rubra, isolation by distance, polygyny, relatedness, social insects Abstract. Social insect colonies, especially of ants, often include several egg-laying queens that are not always closely related to each other. At least in some cases, the ants seem to accept non-related queens into their colonies. Here I test whether the colony queen status (with or without a queen), genetic and geographic differences between source and recipient nests and the average relatedness of the workers in the recipient colony affect the acceptance of alien queens. I used fi eld collected ruby ant Myrmica rubra colonies as a model system. Only the queen status signifi cantly affected the acceptance process. Colonies without queens accepted alien queens more frequently than colonies with a queen. The nests without queens and nest fragments may act as vectors for gene fl ow by the movement of queens between nests, i.e., queen fl ow. INTRODUCTION (e.g., Bourke & Franks, 1995). Polygyny is problematic Breeding groups can be divided into colonial and social from the point of view of kin selection theory (individuals forms.
    [Show full text]
  • Adoption of Parasitic Maculinea Alcon Caterpillars (Lepidoptera: Lycaenidae) by Three Myrmica Ant Species
    ANIMAL BEHAVIOUR, 2001, 62, 99–106 doi:10.1006/anbe.2001.1716, available online at http://www.idealibrary.com on Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species THOMAS DAMM ALS*, DAVID R. NASH*† & JACOBUS J. BOOMSMA*† *Department of Ecology and Genetics, University of Aarhus †Zoological Institute, Department of Population Ecology, University of Copenhagen, Denmark (Received 10 July 2000; initial acceptance 14 October 2000; final acceptance 31 January 2001; MS. number: 6631R) Maculinea butterflies are parasites of Myrmica ant nests. The Alcon blue, Maculinea alcon, is unusual in that it parasitizes the nests of several Myrmica species, using M. rubra, M. ruginodis and M. scabrinodis as hosts in different parts of Europe. In Denmark it uses M. rubra and M. ruginodis, but never M. scabrinodis. Some populations use one of these species exclusively, despite the presence of the alternative host, while others use both hosts simultaneously. To examine the basis of this specificity, and local coadaptation between host and parasite, we offered freshly emerged caterpillars of M. alcon from three populations differing in their host use to laboratory nests of all three recorded host ant species collected from each of the M. alcon populations. We measured the attractiveness of the caterpillars to their host ants as the time taken for them to be adopted by each ant colony. Caterpillars from all populations took longer to be adopted to M. scabrinodis nests than to nests of the other two ant species. Adoption times to M. rubra and M. ruginodis colonies differed: caterpillars from each of the two populations that used a single host species were adopted most quickly by that species when local ant colonies were used.
    [Show full text]
  • Ectoparasitic Fungi Rickia Wasmannii Infection Is Associated with Smaller
    www.nature.com/scientificreports OPEN Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants Sándor Csősz1,2, Zoltán Rádai3, András Tartally4, Lilla Erika Ballai4 & Ferenc Báthori1,4* Parasitism-generated negative efects on ant societies are multifaceted, implying individual and colony-level responses. Though laboratory based evidence shows that the sublethal fungus Rickia wasmannii is responsible for physiological and behavioral responses that may negatively afect individual workers’ resilience and life expectancy in Myrmica ant workers, colony-level stress response to this parasite is largely unknown. Here, we focus on understanding of a long-term, colony-level efect of Rickia infection on Myrmica scabrinodis ant populations by tracking trait size-based changes. We collected worker specimens from infected and uninfected colonies from the same population in order to: (1) compare body size in response to parasitism, (2) assess the extent to which possible changes in size are associated with the severity of infection, and (3) investigate shifts in body size in response to infection over time by testing correlation of workers’ ages and sizes. We found that workers from infected colonies were signifcantly smaller than their healthy congeners, but neither infection level nor the age of the workers showed signifcant correlation with the size in infected colonies. Decreasing body sizes in infected colonies can be ascribed to workers’ mediated efect toward developing larvae, which are unable to attain the average body size before they pupate. Ants (Hymenoptera: Formicidae), the most widespread social organisms on Earth, attract an amazing diver- sity of parasitic organisms, such as viruses1, bacteria2, fungi3,4, and an array of uni- and multicellular animal organisms5,6.
    [Show full text]
  • Description of a New Genus of Primitive Ants from Canadian Amber
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-11-2017 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Borysenko, Leonid H., "Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae)" (2017). Insecta Mundi. 1067. http://digitalcommons.unl.edu/insectamundi/1067 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0570 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes AAFC, K.W. Neatby Building 960 Carling Ave., Ottawa, K1A 0C6, Canada Date of Issue: August 11, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Leonid H. Borysenko Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Insecta Mundi 0570: 1–57 ZooBank Registered: urn:lsid:zoobank.org:pub:C6CCDDD5-9D09-4E8B-B056-A8095AA1367D Published in 2017 by Center for Systematic Entomology, Inc.
    [Show full text]
  • Zootaxa 2878: 1–61 (2011) ISSN 1175-5326 (Print Edition) Monograph ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 2878: 1–61 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2878 Generic Synopsis of the Formicidae of Vietnam (Insecta: Hymenoptera), Part I — Myrmicinae and Pseudomyrmecinae KATSUYUKI EGUCHI1, BUI TUAN VIET2 & SEIKI YAMANE3 1Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan. E-mail: [email protected] 2Vietnam National Museum of Nature, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. E-mail: [email protected] 3Department of Earth and Environmental Sciences, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan. Magnolia Press Auckland, New Zealand Accepted by J. Longino: 25 Jan. 2011; published: 13 May 2011 KATSUYUKI EGUCHI, BUI TUAN VIET & SEIKI YAMANE Generic Synopsis of the Formicidae of Vietnam (Insecta: Hymenoptera), Part I — Myrmicinae and Pseudomyrmecinae (Zootaxa 2878) 61 pp.; 30 cm. 13 May 2011 ISBN 978-1-86977-667-1 (paperback) ISBN 978-1-86977-668-8 (Online edition) FIRST PUBLISHED IN 2011 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2011 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 2878 © 2011 Magnolia Press EGUCHI ET AL.
    [Show full text]
  • I. Petiole Node II. Tip of Abdomen IV. Length of Antennae Guide to Vineyard Ant Identification III. Shape of Thorax
    Guide to Vineyard Ant Identification head abdomen Monica L. Cooper, Viticulture Farm Advisor, Napa County Lucia G. Varela, North Coast IPM Advisor thorax I. Petiole node One Node Two nodes Go to II Subfamily Myrmicinae Go to V II. Tip of abdomen Circle of small hairs present Circle of small hairs absent Subfamily Formicinae Subfamily Dolichoderinae Go to III Argentine Ant (Linepithema humile) III. Shape of thorax Thorax uneven Thorax smooth and rounded Go to IV Subfamily Formicinae Carpenter ant (Camponotus spp.) IV. Length of antennae Antennae not much longer than length of head Antennae much longer than length of head Subfamily Formicinae Subfamily Formicinae Field or Gray Ant (Formica spp.) False honey ant (Prenolepis imparis) head abdomen Petiole with two nodes Subfamily Myrmicinae (V-VIII) thorax V. Dorsal side of Thorax & Antennae One pair of spines on thorax No spines on thorax 12 segmented antennae 10 segmented antennae Go to VI Solenopsis molesta and Solenopsis xyloni VI. Underside of head No brush of bristles Brush of long bristles Go to VII Harvester ants (Pogonomyrmex californicus and P. brevispinosis) VII. Head and Thorax With hairs Without hairs Go to VIII Cardiocondyla mauritanica VIII. Head and Thorax With many parallel furrows Without parallel furrows Profile of thorax rounded Profile of thorax not evenly rounded Pavement ant (Tetramorium “species E”) Pheidole californica Argentine Ant (Linepithema humile), subfamily Dolichoderinae Exotic species 3-4 mm in length Deep brown to light black Move rapidly in distinct trails Feed on honeydew Shallow nests (2 inches from soil surface) Alex Wild Does not bite or sting Carpenter Ant (Camponotus spp.), subfamily Formicinae Large ant: >6 mm in length Dark color with smooth, rounded thorax Workers most active at dusk and night One of most abundant and widespread genera worldwide Generalist scavengers and predators: feed on dead and living insects, nectar, fruit juices and Jack K.
    [Show full text]
  • The European Red Ant, Myrmica Rubra: a Comparison of Pestiferous And
    RIPM 2006 Groden Proposal PROJECT DESCRIPTION Problem, Background and Justification Ants in the Urban/Suburban Landscape: Ants as structural pests have received considerable attention in pest management programs, and are a primary target of many professional pest control operators. However, ants in the exterior urban/suburban landscape can cause considerable problems associated with: a) nuisance and health problems of stinging species, 2) exacerbation of plant pests by homopteran- tending species, and 3) contributions to interior nuisance and structural problems from outside nesting invaders. A survey of ant species and their pest context encountered by professional pest control operators in Florida (Klotz et al. 1995), revealed that three major species causing problems within structures were commonly found outside as well, and control of outside populations of indoor ants pests has now been recognized as an important component of their pest management around homes (Haack 1991, Oi et al. 1994, Hahn et al. 2001). Problems associated with pestiferous ants in the landscape are frequently encountered by homeowners, building managers, park and open space managers, school officials, and business owners. A survey conducted of insect pest problems and subsequent pesticide use in Maine Public Schools (Murray 2000) reflects the frequency of ant-related problems relative to other pests. Ant were the most commonly identified pest of concern inside school structures (identified by 59% of respondents) and the third most commonly identified concern for outdoor areas (36% of respondents compared with 54% for general stinging insects (which can include ants), and 54% for weeds). Fifty-two percent of respondents in this survey reported taking action against interior ant pest problems sometime in the previous three years and 25% had taken action against exterior ant problems.
    [Show full text]
  • The Venom Apparatus and Other Morphological Characters of the Ant Martialis Heureka (Hymenoptera, Formicidae, Martialinae)
    Volume 50(26):413‑423, 2010 The venom apparaTus and oTher morphological characTers of The anT Martialis heureka (hymenopTera, formicidae, marTialinae) carlos roberTo ferrreira brandão1,3 Jorge luis machado diniz2 rodrigo dos sanTos machado feiTosa1 AbstrAct We describe and illustrate the venom apparatus and other morphological characters of the recently described Martialis heureka ant worker, a supposedly specialized subterranean predator which could be the sole surviving representative of a highly divergent lineage that arose near the dawn of ant diversification. M. heureka was described as the single species of a genus in the subfamily, Martialinae Rabeling and Verhaagh, known from a single worker. However because the authors had available a unique specimen, dissections and scanning electron microscopy from coated specimens were not possible. We base our study on two worker individuals collected in Manaus, AM, Brazil in 1998 and maintained in 70% alcohol since then; the ants were partially destroyed because of desiccation during transport to São Paulo and subsequent efforts to rescue them from the vial. We were able to recover two left mandibles, two pronota, one dismembered fore coxa, one meso-metapropodeal complex with the median and hind coxae and trochanters still attached, one postpetiole, two gastric tergites, the pygidium and the almost complete venom apparatus (lacking the gonostylus and anal plate). We illustrate and describe the pieces, and compare M. heureka worker morphology with other basal ant subfamilies, concluding it does merit subfamilial status. Keywords: Ant phylogeny; Formicidae; Martialis; Ultrastructure; Venom Apparatus. IntroductIon dusk in a primary lowland rainforest walking on the leaf litter. The ant Martialis heureka was recently described The phylogenetic position of this ant was inferred by Rabeling and Verhaagh (in Rabeling et al.
    [Show full text]
  • Experimental Evidence That the Non-Native European Fire Ant Alters Invertebrate Communities Madeson C
    State University of New York College at Buffalo - Buffalo State College Digital Commons at Buffalo State Biology Theses Biology 5-2018 Experimental evidence that the non-native European fire ant alters invertebrate communities Madeson C. Goodman State University of New York College at Buffalo - Buffalo State College, [email protected] Advisor Robert J. Warren II, Ph.D., Associate Professor of Biology First Reader Robert J. Warren II, Ph.D., Associate Professor of Biology Second Reader Amy McMillan, Ph.D., Professor of Biology Third Reader Christopher Pennuto, Ph.D., Professor of Biology Department Chair I. Martha Skerrett, Ph.D., Chair and Associate Professor of Biology Recommended Citation Goodman, Madeson C., "Experimental evidence that the non-native European fire ant alters invertebrate communities" (2018). Biology Theses. 31. http://digitalcommons.buffalostate.edu/biology_theses/31 Follow this and additional works at: http://digitalcommons.buffalostate.edu/biology_theses Part of the Entomology Commons Experimental evidence that the non-native European fire ant alters invertebrate communities by Madeson C. Goodman An Abstract of a Thesis in Biology Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts May 2018 Buffalo State College State University of New York Department of Biology i ABSTRACT OF THESIS Successful non-native species can reduce native species richness through both direct and indirect competition. Many invasive ants, such as the European fire ant (Myrmica rubra), are particularly
    [Show full text]