The European Red Ant, Myrmica Rubra: a Comparison of Pestiferous And

Total Page:16

File Type:pdf, Size:1020Kb

The European Red Ant, Myrmica Rubra: a Comparison of Pestiferous And RIPM 2006 Groden Proposal PROJECT DESCRIPTION Problem, Background and Justification Ants in the Urban/Suburban Landscape: Ants as structural pests have received considerable attention in pest management programs, and are a primary target of many professional pest control operators. However, ants in the exterior urban/suburban landscape can cause considerable problems associated with: a) nuisance and health problems of stinging species, 2) exacerbation of plant pests by homopteran- tending species, and 3) contributions to interior nuisance and structural problems from outside nesting invaders. A survey of ant species and their pest context encountered by professional pest control operators in Florida (Klotz et al. 1995), revealed that three major species causing problems within structures were commonly found outside as well, and control of outside populations of indoor ants pests has now been recognized as an important component of their pest management around homes (Haack 1991, Oi et al. 1994, Hahn et al. 2001). Problems associated with pestiferous ants in the landscape are frequently encountered by homeowners, building managers, park and open space managers, school officials, and business owners. A survey conducted of insect pest problems and subsequent pesticide use in Maine Public Schools (Murray 2000) reflects the frequency of ant-related problems relative to other pests. Ant were the most commonly identified pest of concern inside school structures (identified by 59% of respondents) and the third most commonly identified concern for outdoor areas (36% of respondents compared with 54% for general stinging insects (which can include ants), and 54% for weeds). Fifty-two percent of respondents in this survey reported taking action against interior ant pest problems sometime in the previous three years and 25% had taken action against exterior ant problems. The most common action taken was the use of baited insecticides for ants. Although ants are such a commonly encountered problem in the urban/suburban landscape, there is currently little region-specific information on local pest species and their management for homeowners and other community-based users in the Northeast region. At the Community and Urban IPM Conference in Manchester, NH in March 2005, the need to “develop IPM outreach to homeowners, retailers of pest management products, and multipliers (media, libraries, teachers)” was ranked as the highest priority by attendees (http://northeastipm.org/priority/2005_urban _conf.htm), and at their June 2005 meeting, the Community IPM Working Group identified “IPM in residential settings” as the most important focus for their group (http://northeastipm.org/work_commpriority2005.cfm). Specific goals of the group include: 1. Develop a PSMP for residential IPM particularly for suburban outdoor IPM and indoor urban IPM. 2. Outreach: Develop and create an outreach campaign for residential IPM (radio, TV, and other creative forums). Develop material and distribute to end-users. Measure success of project. 3. Research: General research on residential IPM. Web-based resources are available for identification of pestiferous ant species encountered in other regions of the country (e.g. Ohio: ohioline.osu.edu/hyg- fact/2000/2064.html). However, it is important for extension agents, business owners (including PCO’S), and residents in the northeast to have access to a simpler format that is limited only to the species that are of concern in the region. Therefore, a focus of this proposal is to develop 1 RIPM 2006 Groden Proposal region-specific information on the identification, biology, damage/nuisance potential and management of pestiferous ants in the urban/suburban landscape. This will address the objectives 2 and 3 identified above by the Community IPM Working Group. In addition, our user-friendly materials for local ant identification and management will reduce the unnecessary use of insecticides by homeowners that frequently react to any ants in the landscape whether or not they are pestiferous. Our recommendations will emphasize non-insecticidal approaches where possible. European fire ants: In addition to species previously known to cause problems for homeowners in the northeast region, (the odorous house ant, Tapinoma sessile, the little black ant, Monomorium minimum, the cornfield ant, Lasius alienus, the Allegany mound ant, Formica exsectoides, and the carpenter ant, Campanotus pennsylvanicus) the past ten years have seen increasing problems with the invasive ant, Myrmica rubra, referred to locally as the European fire ant. This aggressive, stinging ant has become established in many communities along the coast of Maine and New Hampshire, several locations in Massachusetts, and at least one infestation has been confirmed in both New York state and Vermont (Groden et al. 2005). Although we are not certain when this invasive ant was first introduced into these areas, it is clear that the population densities of M. rubra have increased considerably over the past decade, as have the number of areas in which they infest1 (Figures 1&2). M. rubra populations have colonized disturbed and natural areas around residences, schools, parks, and commercial and municipal buildings where their nest densities in heavily infested areas have averaged 1.4 nests/m2 (maximum densities ranging from 2-5 nests/m2) with 300-10,000 foragers per nest (Groden et al. 2005). These ants aggressively defend their territory and readily sting humans, pets and livestock that have the misfortune to move slowly or rest within the large areas where they forage. Numerous homeowners have reported to us that they are unable to use their yards and gardens because of repeated stings by M. rubra. Many homeowners, businesses, public park officials and resource managers are relying on insecticide treatments for curbing this pest. The efficacy of these treatments is uncertain, and resurgence of local populations suggests that this strategy provides only short-term control. We also have evidence that the invasive populations of M. rubra are negatively impacting native species in infested areas, particularly native ants that are completely eliminated in most M. rubra infestation sites (Garnas 2005). 1 We logged over 100 contacts from home and business owners in coastal towns of Maine between 2002 and 2003 regarding problems with M. rubra infestations, and the vast majority were problems that had developed since 1993-4. In addition, in 2004 we surveyed an infestation in Wayne, ME, that resulted from the transfer of the ants (possibly a single colony) in a potted shrub. After 10 years this has spread from the single shrub to an area ca. 100 x 112 m2. 2 RIPM 2006 Groden Proposal Figure 1. Current and historic locations of M. rubra Figure 2. Current pestiferous M. rubra populations populations in North America. in Maine. M. rubra populations in Maine may be exhibiting the typical pattern characteristic of many invasive, exotic species: a prolonged period of adaptation with moderate population increase after establishment, followed by an exponential increase in density and an increase in the rate of geographic spread (Shigesada and Kawasaki. 1997). Populations have spread from 2 locations in Maine in the 1950s to 28 confirmed locations along Maine’s entire coast as of 2004 (Groden et al. 2005) and additional sites in other states and Canada. Whatever the cause of the current increase in the rate of spread of this pest, given that its native range spans from the United Kingdom in Western Europe to central Asia and from Scandinavia to the Black Sea (Collingwood 1958, Seifert 1988), it is unlikely that climatic factors alone will limit the spread of these populations in the northeastern U.S. It is critical to address this issue BEFORE it becomes a more widespread problem. The biology of M. rubra and its pattern of infestation suggests that their primary means of spread is via colony budding which results in expansion from infested areas into contiguous areas, or via human transport of nests in infested materials (soil, decaying logs, etc.; Groden et al. 2005). Although nuptial flights have been reported in M. rubra populations (Boomsma and Leusink 1981, Woyciechowski 1987), evidence suggests that new queens produced by this polygynous ant (multiple queens per colony) reenter their nest of origin and subsequent groups of queens, workers and brood move out a few meters from the main nest to establish new colonies (Seppa and Pamilo 1995, Walin et al. 2001). We have found several infestations in which spread within the same habitat appeared to be limited by a natural (river or channel) or man-made barrier (road). This would suggest that dispersal and establishment of new colonies via flight of queens does not occur or is very limited. We do, however, have evidence for spread of these fire ants by human activity, particularly with movement of potted plants. A student working in Groden’s laboratory brought in ants that were stinging employees when they encountered them in container plants being repotted at a wholesale greenhouse facility in southern Maine. They proved to be M. rubra. As described above, we have also confirmed that the first inland infestation in Maine became established from the planting of shrubs purchased from an infested nursery. In August 2005, Groden and Drummond filmed a colony in an infested nursery as it moved its nest from an adjacent stonewall into a potted rhododendron that was for sale. It is likely that infested container plants brought to the NE from Europe are responsible for some of the original infestations, and subsequent movement of plants, soil, mulch, and fill have spread M. rubra to 3 RIPM 2006 Groden Proposal new areas. For this reason, educating people about this invasive pest is the most important step to take to limit its further spread. Drs. Groden and Drummond have been conducting research on the ecology and management of M. rubra in Acadia National Park over the past three years. Our studies have included investigations of the temporal and spatial dynamics of colonies in infested areas, key habitat characteristics required by M.
Recommended publications
  • Inter-Parasitic Interactions in Myrmica Ants: Ectoparasitic Fungus Affecting the Success of Socially Parasitic Caterpillars
    Inter-Parasitic Interactions in Myrmica Ants: Ectoparasitic Fungus Affecting the Success of Socially Parasitic Caterpillars András Tartally ( [email protected] ) University of Debrecen Norbert Szabó University of Debrecen Anna Ágnes Somogyi University of Debrecen Ferenc Báthori University of Debrecen Danny Haelewaters Ghent University András Mucsi Bezerédi str. 10, Cibakháza Ágnes Fürjes-Mikó University of Sopron-Forest Research Institute David R. Nash University of Copenhagen Research Article Keywords: Complex interactions, Maculinea, Myrmica scabrinodis, Parasitology, Phengaris alcon, Rickia wasmannii Posted Date: July 20th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-712976/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Exploitation of organisms by multiple parasite species is common in nature, but interactions among parasites have rarely been studied. Myrmica ants are rich in parasites. Among others, the ectoparasitic Rickia wasmannii fungus and the socially parasitic caterpillars of myrmecophilous Phengaris butteries often infect the same Myrmica colonies. In this study, we examined the effects of R. wasmannii on the adoption, long-term development, and survival of P. alcon. In laboratory conditions, caterpillars introduced into nests of Myrmica scabrinodis uninfected with R. wasmannii survived signicantly longer compared to caterpillars introduced into infected nests. In the eld, joint infection was less common than expected if both parasites exploited M. scabrinodis colonies independently. Pre-pupal caterpillars of P. alcon were somewhat larger in nests infected with R. wasmannii than those found in uninfected nests. Based on these results it seems that R. wasmannii infection of M. scabrinodis affects the survival and development of P.
    [Show full text]
  • Tapinoma Melanocephalum (Fabricius, 1793), a New Exotic Ant in Spain (Hymenoptera, Formicidae)
    Orsis17 07 Espadaler.qxd 17/12/02 07:45 Página 101 Orsis 17, 2002 101-104 Tapinoma melanocephalum (Fabricius, 1793), a new exotic ant in Spain (Hymenoptera, Formicidae) Xavier Espadaler Unitat d’Ecologia and CREAF. Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona). Spain Federico Espejo Killgerm. Enginy, 9 08840 Viladecans (Barcelona). Spain Manuscript received in April 2002 Several tramp ant species are found in the city of Barcelona (Espadaler & Co- llingwood 2001 and references): Lasius neglectus, Pheidole teneriffana, Para- trechina flavipes, Hypoponera punctatissima and Linepithema humile. Only the last species, the argentine ant, attains pest status in the city at present. To that small group we can now add a sixth species, the ghost ant, the first time it has been recorded in the Iberian Peninsula. Within the Iberian Tapinoma species, this ant is easily distinguished by its highly distinct bicoloured habitus (Fig. 1), with the yellowish gaster, legs and antennae, contrasting with the dark head and tho- rax. See Shattuck (1994): 147-148 for a complete historical taxonomic history and supplementary references. The ghost ant (Tapinoma melanocephalum) is a well known tramp species widely dispersed by human trade mainly throughout humid tropical regions (Wi- lliams 1994), although it has also been detected in the climatically much drier Arabic Peninsula (Collingwood & Agosti 1996; Collingwood et al. 1997). Its ori- gin is unknown (Wilson & Taylor 1967). Isolates have been found outside the tropics, probably carried with plant material or products from the tropics. Out- side this region, it seems to thrive only in heated buildings (DuBois & Danoff- Burg 1994) or inside structures (Klotz et al.
    [Show full text]
  • Tapinoma Melanocephalum (A) PEST INFORMATION
    Tapinoma melanocephalum Harris, R. (A) PEST INFORMATION A1. Classification Family: Formicidae Subfamily: Dolichoderinae h Tribe: Dolichoderini c esear Genus: Tapinoma es R Species: melanocephalum t, Landcar of d T har A2. Common names Ric Ghost ant (Naumann 1993). Also known as: tramp ant, black-headed ant, tiny yellow house ant, house infesting ant (Harada 1990), Awate-konuka-ari (Japan) (www39), albaricoque (Puerto Rico) (Smith 1965), hormiga bottegaria (Cuba) (Smith 1965). A3. Original name Formica melanocephala Fabricius. A4. Synonyms or changes in combination or taxonomy Myrmica pellucida Smith, Formica nana Jerdon, Formica familiaris Smith, Tapinoma (Micromyrma) melanocephalum var. australis Santschi, Tapinoma (Micromyrma) melanocephalum var. australe Santschi. Current subspecies: nominal plus Tapinoma melanocephalum var. coronatum Forel, Tapinoma melanocephalum var. malesianum Forel. A5. General description (worker) Identification Size: monomorphic. Total length around 1.5 mm, ranging between 1.3 and 1.9 mm. Colour: distinctively bicoloured (Fig. 1): head (including antennae, except for first 2 segments), and sides of alitrunk blackish-brown; dorsal alitrunk (except propodeum) and legs pale yellow. Gaster mostly pale, sometimes with brown INVASIVE ANT RISK ASSESSMENT Tapinoma melanocephalum patches. Surface sculpture: head and body mostly with fine sculpture, appearing slightly dull. General description: antennae 12-segmented. First antennal segment (scape) long, surpassing the posterior border of head. Eyes large, with 9–10 ommatidia in the longest row. Mandibles each with 3 large teeth and about 7 small denticles, and with the surface containing the teeth and that near the clypeus rounding gradually into one another (basal angle absent). Clypeus without longitudinal carinae, anterior margin slightly concave in the alitrunk in profile almost smoothly convex, with slight metanotal depression.
    [Show full text]
  • ACE Preparation Course
    ACE Preparation Course: INSPECTION AND IDENTIFICATION ANT BIOLOGY AND IDENTIFICATION Ants as social insects All ants are social ◦ Two or more generations overlap ◦ Adults care for young ◦ Adults divided into castes Perennial nests Active all year Image from B. Hölldobler and E.O. Wilson From Hölldobler and Wilson 1990 Why identify? Not all ants are alike. Differ in: ◦ Nesting sites ◦ Food preferences ◦ Damage potential ◦ Behavior ◦ Stinging potential Identification is a challenge ◦ 8X as many structural pest species as cockroaches Basic ant anatomy 2 segmented club on a fire ant Antennae Most ants have elbowed (geniculate) antennae Enlarged end (distal) segments on an antenna called the club Usually two- or three-segmented if club is present Photo by M. Yoder, Texas A&M Univ. Petiole shape and number is important Two-segmented pedicel on a thief ant, Solenopsis molesta Single node, pointed on Formica ant (60X) Petiole shape Anal forms Round anal opening surrounded by a ring of hairs Slit-like anus Sting (not shown) Polymorphism: An easy field character Elbowed antennae (usually) Distinguishing reproductive ants Unequal wings Pinched “waist” * Worker ants usually needed for accurate Queen identification Worker Three subfamilies of ants make up the most important structural ant pests Simplifying ◦ Formicinae (formic acid sprayers) identification ◦ Dolichoderinae (stinky ants) ◦ Myrmicinae (ants with stingers) Characteristics • Single node (pedicel) Ants in the • Tip of abdomen with fringe of hairs subfamily Formicinae Common urban species
    [Show full text]
  • Akes an Ant an Ant? Are Insects, and Insects Are Arth Ropods: Invertebrates (Animals With­
    ~ . r. workers will begin to produce eggs if the queen dies. Because ~ eggs are unfertilized, they usually develop into males (see the discus­ : ~ iaplodiploidy and the evolution of eusociality later in this chapter). =- cases, however, workers can produce new queens either from un­ ze eggs (parthenogenetically) or after mating with a male ant. -;c. ant colony will continue to grow in size and add workers, but at -: :;oint it becomes mature and will begin sexual reproduction by pro· . ~ -irgin queens and males. Many specie s produce males and repro­ 0 _ " females just before the nuptial flight . Others produce males and ---: : ._ tive fem ales that stay in the nest for a long time before the nuptial :- ~. Our largest carpenter ant, Camponotus herculeanus, produces males _ . -:= 'n queens in late summer. They are groomed and fed by workers :;' 0 it the fall and winter before they emerge from the colonies for their ;;. ights in the spring. Fin ally, some species, including Monomoriurn : .:5 and Myrmica rubra, have large colonies with multiple que ens that .~ ..ew colonies asexually by fragmenting the original colony. However, _ --' e polygynous (literally, many queens) and polydomous (literally, uses, referring to their many nests) ants eventually go through a -">O=- r' sexual reproduction in which males and new queens are produced. ~ :- . ant colony thus functions as a highly social, organ ized "super­ _ _ " 1." The queens and mo st workers are safely hidden below ground : : ~ - ed within the interstices of rotting wood. But for the ant workers ~ '_i S ' go out and forage for food for the colony,'life above ground is - =- .
    [Show full text]
  • Invasive Ant Pest Risk Assessment Project: Preliminary Risk Assessment
    Invasive ant pest risk assessment project: Preliminary risk assessment Harris, R. 1) Aim To assess the threat to New Zealand of a wide range of ant species not already established in New Zealand and identify those worthy of more detailed assessment. 2) Scope 2.1. Specific exclusions Solenopsis invicta was specifically excluded from consideration as this species has already been subject to detailed consideration by Biosecurity New Zealand. 2.2 Specific inclusions Biosecurity New Zealand requested originally that the following taxa be included in the assessment: Solenopsis richteri Solenopsis geminata Wasmannia auropunctata Anoplolepis gracilipes Paratrechina longicornis Carpenter ants (Camponotus spp.) Leaf cutting ants (Atta spp.) Myrmecia pilosula Tapinoma melanocephalum Monomorium sydneyense (incursion found in New Zealand) Hypoponera punctatissima (incursion found in New Zealand) Big headed ants (Pheidole spp.) M. sydneyense and H. punctatissima have since been deemed not under official control and are now considered established in New Zealand. Profiles of these species have been prepared as part of the Ants of New Zealand section (see http://www.landcareresearch.co.nz/research/biosecurity/stowaways/Ants/antsinnewzealand.asp). INVASIVE ANT PEST RISK ASSESSMENT PROJECT: Preliminary risk assessment 3) Methodology A risk assessment scorecard was developed (Appendix 1) in consultation with a weed risk assessment expert (Dr Peter Williams) and with Simon O’Connor and Amelia Pascoe of Biosecurity New Zealand, to initially separate
    [Show full text]
  • Occasional and Established Introduced Ants in Washington and Oregon
    Occasional and established introduced ants in Washington and Oregon Invasive Species Research Conference Kamloops, British Columbia June 20-22, 2017 Laurel D. Hansen Biology Department MS 3280 Spokane Falls Community College 3410 W Fort Wright Drive Spokane, WA 99224 Ant life cycles Hawaiian Islands ALL ants species are alien 44 species: majority in the 100 years Upset ecosystem: no predators no defenses by plants and animals Pantry/ grain pests Why a survey? 1. Reports of exotic/tramp ants 2. Reports of stings 3. Reports of unidentified ants 4. Reports of damage-not carpenter ants 5. Identifications not confirmed 6. Ants in question not collected Coordinate activities with Pest Management Companies Two surveys: 1. Canada 2010-2011 2. Pacific Northwest: Washington and Oregon 2015-2016 • Samples sent; catalogued, identified Pest Management Companies selected Geographical representation Ant collections VIALS ENVELOPES MAILERS Cascade Pest Control Whitworth Pest Solutions Survey of Ants in Canada 332 samplesCollection from 9 provinces Sites per Prov ince Quebec British Saskatchewan Manitoba Ontario 1 Newfoundland Columbia Alberta 3 1 22 88 3 207 New Brunswick 19 Nova Scotia 2 Exotic/tramp ants • Newfoundland (3) • Ontario (82) – Hypoponera – Camponotus (4) – Lasius – Myrmica – Formica – Lasius (3) – 3 species – Prenolepis – Solenopsis • Nova Scotia (2) – Tetramorium – Formica – Lasius – Formica (2) – 2 species – Monomorium – Crematogaster • New Brunswick (17) – Hypoponera – Camponotus (4) – Acanthomyops – Lasius (2) – Tapinoma – Formca (2)
    [Show full text]
  • Worldwide Spread of the Difficult White-Footed Ant, Technomyrmex Difficilis (Hymeno- Ptera: Formicidae)
    Myrmecological News 18 93-97 Vienna, March 2013 Worldwide spread of the difficult white-footed ant, Technomyrmex difficilis (Hymeno- ptera: Formicidae) James K. WETTERER Abstract Technomyrmex difficilis FOREL, 1892 is apparently native to Madagascar, but began spreading through Southeast Asia and Oceania more than 60 years ago. In 1986, T. difficilis was first found in the New World, but until 2007 it was mis- identified as Technomyrmex albipes (SMITH, 1861). Here, I examine the worldwide spread of T. difficilis. I compiled Technomyrmex difficilis specimen records from > 200 sites, documenting the earliest known T. difficilis records for 33 geographic areas (countries, island groups, major islands, and US states), including several for which I found no previously published records: the Bahamas, Honduras, Jamaica, the Mascarene Islands, Missouri, Oklahoma, South Africa, and Washington DC. Almost all outdoor records of Technomyrmex difficilis are from tropical areas, extending into the subtropics only in Madagascar, South Africa, the southeastern US, and the Bahamas. In addition, there are several indoor records of T. dif- ficilis from greenhouses at zoos and botanical gardens in temperate parts of the US. Over the past few years, T. difficilis has become a dominant arboreal ant at numerous sites in Florida and the West Indies. Unfortunately, T. difficilis ap- pears to be able to invade intact forest habitats, where it can more readily impact native species. It is likely that in the coming years, T. difficilis will become increasingly more important as a pest in Florida and the West Indies. Key words: Biogeography, biological invasion, exotic species, invasive species. Myrmecol. News 18: 93-97 (online 19 February 2013) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 28 November 2012; revision received 7 January 2013; accepted 9 January 2013 Subject Editor: Florian M.
    [Show full text]
  • Description of the Larvae of Tapinoma Melanocephalum (Hymenoptera: Formicidae)
    Jesus et al.: The larvae of Tapinoma melanocephalum 243 DESCRIPTION OF THE LARVAE OF TAPINOMA MELANOCEPHALUM (HYMENOPTERA: FORMICIDAE) CARLOS MASSURETTI DE JESUS1, EDUARDO GONÇALVES PATERSON FOX1, DANIEL RUSS SOLIS1, ANTONIO TERUYOSHI YABUKI1, MONICA LANZONI ROSSI2 AND ODAIR CORREA BUENO1 1Centro de Estudos de Insetos Sociais, Instituto de Biociências, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil 2Laboratório de Histopatologia e Biologia Estrutural de Plantas, Centro de Energia Nuclear na Agricultura, University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil ABSTRACT Morphological descriptions of the 4 instars of the ghost-ant Tapinoma melanocephalum Fab- ricius are presented along with illustrations and comparisons with other species of the same genus. Instars were similar, differing only in body length. The analyzed larvae presented many characteristics in common with other Tapinoma Förster larvae, such as: dolichoderoid body and mandibles, 9 pairs of spiracles, the presence of a terminal boss, and scarce body and head setae, all simple and short. We observed the following differences from other pre- vious descriptions: the presence of a subapical mandibular tooth, setaceous sensilla on the medial anterior surface of the labrum, and fewer sensilla on maxillary and labial palps. Key Words: ghost-ant, tramp species, Dolichoderinae, larval description RESUMO O presente estudo teve como objetivo descrever os quatro instares larvais da formiga-fan- tasma Tapinoma melanocephalum Fabricius. As larvas dos diferentes ínstares são pareci- das, diferindo apenas nas dimensões do corpo. As larvas desta espécie apresentam algumas características em comum com outras espécies do gênero Tapinoma Förster como: forma do corpo e mandíbulas dolicoderóide; nove pares de espiráculos; presença de uma protuberância na região posterior do corpo e setas do corpo e da cabeça escassos, curtos e simples.
    [Show full text]
  • Acceptance of Alien Queens by the Ruby Ant Myrmica Rubra (Hymenoptera: Formicidae): Gene fl Ow by Queen fl Ow
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 230–234, 2017 http://www.eje.cz doi: 10.14411/eje.2017.028 ORIGINAL ARTICLE Acceptance of alien queens by the ruby ant Myrmica rubra (Hymenoptera: Formicidae): Gene fl ow by queen fl ow JOUNI SORVARI 1, 2 1 Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; e-mail: jouni.sorvari@uef.fi 2 Department of Biology, Section of Ecology, FI-20014 University of Turku, Finland Key words. Hymenoptera, Formicidae, ants, Myrmica rubra, isolation by distance, polygyny, relatedness, social insects Abstract. Social insect colonies, especially of ants, often include several egg-laying queens that are not always closely related to each other. At least in some cases, the ants seem to accept non-related queens into their colonies. Here I test whether the colony queen status (with or without a queen), genetic and geographic differences between source and recipient nests and the average relatedness of the workers in the recipient colony affect the acceptance of alien queens. I used fi eld collected ruby ant Myrmica rubra colonies as a model system. Only the queen status signifi cantly affected the acceptance process. Colonies without queens accepted alien queens more frequently than colonies with a queen. The nests without queens and nest fragments may act as vectors for gene fl ow by the movement of queens between nests, i.e., queen fl ow. INTRODUCTION (e.g., Bourke & Franks, 1995). Polygyny is problematic Breeding groups can be divided into colonial and social from the point of view of kin selection theory (individuals forms.
    [Show full text]
  • Adoption of Parasitic Maculinea Alcon Caterpillars (Lepidoptera: Lycaenidae) by Three Myrmica Ant Species
    ANIMAL BEHAVIOUR, 2001, 62, 99–106 doi:10.1006/anbe.2001.1716, available online at http://www.idealibrary.com on Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species THOMAS DAMM ALS*, DAVID R. NASH*† & JACOBUS J. BOOMSMA*† *Department of Ecology and Genetics, University of Aarhus †Zoological Institute, Department of Population Ecology, University of Copenhagen, Denmark (Received 10 July 2000; initial acceptance 14 October 2000; final acceptance 31 January 2001; MS. number: 6631R) Maculinea butterflies are parasites of Myrmica ant nests. The Alcon blue, Maculinea alcon, is unusual in that it parasitizes the nests of several Myrmica species, using M. rubra, M. ruginodis and M. scabrinodis as hosts in different parts of Europe. In Denmark it uses M. rubra and M. ruginodis, but never M. scabrinodis. Some populations use one of these species exclusively, despite the presence of the alternative host, while others use both hosts simultaneously. To examine the basis of this specificity, and local coadaptation between host and parasite, we offered freshly emerged caterpillars of M. alcon from three populations differing in their host use to laboratory nests of all three recorded host ant species collected from each of the M. alcon populations. We measured the attractiveness of the caterpillars to their host ants as the time taken for them to be adopted by each ant colony. Caterpillars from all populations took longer to be adopted to M. scabrinodis nests than to nests of the other two ant species. Adoption times to M. rubra and M. ruginodis colonies differed: caterpillars from each of the two populations that used a single host species were adopted most quickly by that species when local ant colonies were used.
    [Show full text]
  • Ectoparasitic Fungi Rickia Wasmannii Infection Is Associated with Smaller
    www.nature.com/scientificreports OPEN Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants Sándor Csősz1,2, Zoltán Rádai3, András Tartally4, Lilla Erika Ballai4 & Ferenc Báthori1,4* Parasitism-generated negative efects on ant societies are multifaceted, implying individual and colony-level responses. Though laboratory based evidence shows that the sublethal fungus Rickia wasmannii is responsible for physiological and behavioral responses that may negatively afect individual workers’ resilience and life expectancy in Myrmica ant workers, colony-level stress response to this parasite is largely unknown. Here, we focus on understanding of a long-term, colony-level efect of Rickia infection on Myrmica scabrinodis ant populations by tracking trait size-based changes. We collected worker specimens from infected and uninfected colonies from the same population in order to: (1) compare body size in response to parasitism, (2) assess the extent to which possible changes in size are associated with the severity of infection, and (3) investigate shifts in body size in response to infection over time by testing correlation of workers’ ages and sizes. We found that workers from infected colonies were signifcantly smaller than their healthy congeners, but neither infection level nor the age of the workers showed signifcant correlation with the size in infected colonies. Decreasing body sizes in infected colonies can be ascribed to workers’ mediated efect toward developing larvae, which are unable to attain the average body size before they pupate. Ants (Hymenoptera: Formicidae), the most widespread social organisms on Earth, attract an amazing diver- sity of parasitic organisms, such as viruses1, bacteria2, fungi3,4, and an array of uni- and multicellular animal organisms5,6.
    [Show full text]