The Rise of the Ants: a Phylogenetic and Ecological Explanation

Total Page:16

File Type:pdf, Size:1020Kb

The Rise of the Ants: a Phylogenetic and Ecological Explanation PERSPECTIVE The rise of the ants: A phylogenetic and ecological explanation Edward O. Wilson*† and Bert Ho¨ lldobler‡§ *Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138-2902; ‡School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501; and §Theodor-Boveri-Institut fu¨r Biowissenschaften (Biozentrum) der Universita¨t, Am Hubland, D-97074 Wu¨rzburg, Germany Contributed by Edward O. Wilson, March 18, 2005 In the past two decades, studies of anatomy, behavior, and, most recently, DNA sequences have clarified the phylogeny of the ants at the subfamily and generic levels. In addition, a rich new harvest of Cretaceous and Paleogene fossils has helped to date the major evolutionary radiations. We collate this information and then add data from the natural history of the modern fauna to sketch a his- tory of major ecological adaptations at the subfamily level. The key events appear to have been, first, a mid-Cretaceous initial radia- tion in forest ground litter and soil coincident with the rise of the angiosperms (flowering plants), then a Paleogene advance to eco- logical dominance in concert with that of the angiosperms in tropical forests, and, finally, an expansion of some of the lineages, aided by changes in diet away from dependence on predation, upward into the canopy, and outward into more xeric environments. ecology ͉ evolution ͉ phylogeny ͉ sociobiology umanity lives in a world recently divided (4), comprising the myrmine and more derivative traits. The largely filled by prokaryotes, abundant and diverse Ponerinae and Burmese amber (10), containing spheco- fungi, flowering plants, nem- five other less prominent subfamilies. myrmines and a possible myrmeciine, atode worms, spiders, mites, The workers of Sphecomyrma, the may be of comparable or even some- Hand six ecological keystone insect best known sphecomyrmine genus, were what older provenance. groups: termites, hemipteran ‘‘true’’ a mosaic of ant and wasp traits (5, 6). In still other very early deposits have bugs, phytophagan beetles, cyclorraphan Specimens have been found in deposits been found additional products of the flies, glossatan moths, and hymenopter- of Late Cretaceous amber (fossilized initial ant radiation, which appear to be ans, the last comprising bees, wasps— resin) in Asia, Siberia, and North Amer- members or precursors of the bulldog and ants (1). Ants are especially notable ica, hence across much of the northern ant subfamily Myrmeciinae, including among the insects for their ecological supercontinent of Laurasia (7, 8). the living ‘‘dawn ant’’ Nothomyrmecia dominance as predators, scavengers, and Unlike the ants of later, Paleogene macrops. The subfamily is today limited indirect herbivores. Although the deposits, the sphecomyrmines are very to Australia, with one very rare species Ϸ11,000 species of the ant family (For- rare. Among the many thousands of of Myrmecia on New Caledonia. A pos- micidae) make up Ͻ2% of the known Cretaceous insect specimens examined sible but still uncertain myrmeciine or global insect fauna, they compose at from New Jersey, Canada, and Burma, myrmeciine precursor, Cariridris bipeti- least one-third of its biomass (2). In the only seven specimens have enough fea- olata, has been described from a single, Brazilian Amazon, as judged by one sur- tures preserved to be called definitively poorly preserved specimen in the San- vey (3), the biomass of ants is approxi- sphecomyrmine workers. Of the biology tana Formation of Brazil, Ϸ110 million mately four times greater than that of of these ancient ants it can be said only years old. What seem to us to be other all of the land vertebrates (mammals, that they lived in mesic forests with rich myrmeciines are 10 rock fossils from the birds, reptiles, and amphibians) floras and insect faunas. The exact tim- Upper Cretaceous Orapa deposits of combined. ing and causes of their extinction in the Botswana (Ϸ90 million years B.P.) (12). The combination of advanced colonial final 10 or 20 million years of that era Several later myrmeciines of Paleogene life and worldwide environmental influ- remain unknown (9, 10). age, Ameghinoia and Polanskiella of Ar- ence gives special significance to the Early in the history of the sphecom- gentina, Archimyrmex of the U.S. Green evolutionary history of the ants. Recent yrmines, a wider radiation beyond the River Formation, and two species of phylogenetic analyses, when combined stem genus Sphecomyrma occurred. In Prionomyrmex recorded from the Baltic with data from a rich new harvest of addition to clearly derivative spheco- amber, bear witness to the spread of the Cretaceous and Paleogene fossils and myrmine genera were a sphecomyrmine- subfamily around the world, followed by the natural history of the modern fauna, ponerine intermediate (8), an apparent its retreat to Australia. It is reasonable permit a defensible reconstruction of true poneromorph, a member of the ad- to suppose that the Myrmeciinae di- the broad-scale ecological features of vanced subfamily Formicinae (9), and a verged from the sphecomyrmine stem ant evolution. possible member of the subfamily Aneu- and spread extensively by Late Creta- retinae, considered to be precursors of the ceous or Eocene times (13, 14). The Earliest Ants modern subfamily Dolichoderinae (10). By Paleocene times, as evidenced in Ants evidently arose during the Creta- What appear to be the oldest certifi- 10 specimens of ants from the presumed ceous period at somewhat more than able ant fossils include Gerontoformica Paleocene amber of Sakhalin, doli- 100 million years ago. Their earliest cretacica, from the Early Cenomanian to choderines and aneuretines (the latter known fossils fall into two groups. The Uppermost Abian (Lower Cretaceous) with one contemporary species, Aneure- first is the very primitive Mesozoic sub- amber of France, dated to Ϸ100 million family Sphecomyrminae. The second years B.P. (11). Because of imperfect group consists of primitive members of preservation, it cannot be placed with †To whom correspondence should be addressed. E-mail: the extant subfamily Formicinae and the reference to fossil or existing subfamilies [email protected]. poneromorph group of subfamilies, as but evidently contains a mix of spheco- © 2005 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0502264102 PNAS ͉ May 24, 2005 ͉ vol. 102 ͉ no. 21 ͉ 7411–7414 Downloaded by guest on September 29, 2021 tus simoni, surviving in Sri Lanka) had made their appearance alongside of poneromorphs, myrmeciines, and for- micines (15). By the Early to Middle Eocene, as revealed by the recently described Fushun amber fauna from northeastern China that is Ϸ50 million years or some- what younger in age, the diversification of the major groups of ants was in full play (16). Among some 20 identifiable specimens of workers and queens is a variety of primitive ponerines and myr- micines as well as primitive members of the ‘‘formicoid’’ complex, comprising formicines and an assortment of what are either primitive dolichoderines, an- euretines, or both. Most also bear traits shared with their presumed spheco- myrmine or sphecomyrmine-like ances- tors, including short mandibles with small numbers of teeth, circular or ovoid head shapes, and relatively unmodified middle body segments. Several sedimen- tary compression fossils of Early Eocene provenance recently discovered in Brit- ish Columbia also represent relatively primitive poneromorphs (B. Archibald, personal communication). Emergence of the Modern Fauna The next glimpse into the history of the ants has come from a set of three speci- mens found in a middle Eocene amber Fig. 1. A schematic of the evolution of ants (Formicidae) at the subfamily level. Minor subfamilies are deposit at Malvern, Arkansas, that omitted. The four most diverse, abundant, and geographically widespread living subfamilies are bold- represents three of the dominant sub- faced. The ‘‘dorylomorphs’’ are driver and army ants (Dorylinae) and an array of other, smaller subfamilies related to them. The schematic is based on our interpretation of the consensus of recent phylogenetic families in the present-day fauna: reconstructions (8, 9, 23–26). The Armaniidae were a Cretaceous sister group of the Formicidae that were Myrmicinae, Dolichoderinae, and believed not to be social; i.e., they had no anatomically distinct worker class (7). Formicinae (17). That the modern radiation had not only begun by Eocene times but was Origin and Phylogeny of the Mesozoic. The myrmeciines re- full-blown is disclosed by the Baltic am- The phylogeny of ants has been the sub- treated to Australia and New Caledonia, ber fossils, which are Middle Eocene in ject of several steadily improving recon- and the aneuretines retreated to Sri age. In examining 10,988 specimens as structions during the past half-century, Lanka. But the myrmicines, formicines, part of their pioneering ant fossil stud- starting with morphological data of and dolichoderines, together with the ies, G. Mayr (18) and W. M. Wheeler living faunas (9, 14, 21–23), then ad- ponerines (the dominant poneromorph (19) distinguished no fewer than 92 gen- vancing with additional morphological subfamily), not only flourished, but era. Ants were among the dominant in- information supplemented by fossil evi- spread worldwide as ecologically pre- sects, and the species as a whole had a dence, as reviewed here, and, finally, by eminent insect groups. The history of distinctly modern aspect, despite its the addition
Recommended publications
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • The Poneromorph Ants (Hymenoptera, Formicidae
    732 G. M. Dlussky and S. Wedmann (1995) to Pachycondyla, belongs to Ponerinae, but no key uniformly convex. Eyes oval, situated in front of the characters of Pachycondyla are visible on the imprints midlength of head; head about 5 times longer than maxi- (unpublished data of Dlussky). The taxonomic position mum eye diameter. Gena longer than maximal eye diame- of species described by Zhang (1989) from Miocene ter. Frons width nearly 23% of head width. Scape almost deposits of Shanwang (China) as Euponera nubeculata reaching the posterior margin of the head. Head 1.3 times as and E.? minutansata (Euponera is a junior synonym of long as scape length. Funiculus gradually incrassate to the Pachycondyla) are unclear, partly because the quality apex but without distinctly differentiated club. Funicular of the drawings is not good. The narrow frons and the segments (except first and apical) less than 1.5 times longer closely approximated antennal sockets may be an indirect than thick. Mandibles subtriangular with 9–10 compara- indication that E. nubiculata belongs to Ponerinae. But tively large teeth. Mandible length is about half (51% in the comparatively large size (9 mm) precludes inclusion holotype and 53% in paratype) of head length. Mesosoma of this species in the morphogenus Ponerites Dlussky & robust. Scutum flat in side view, 3.7 times shorter than Rasnitsyn, 2003. The species described as E. minutansata mesosoma. Scutellum small, 6.5 times shorter than meso- undoubtedly does not belong in Ponerinae. The feature soma. Propodeal dorsum and declivity form rounded obtuse accepted by Zhang as a constriction between the first and angle.
    [Show full text]
  • Insecta: Hymenoptera: Formicidae)
    Utjecaj ekološkog i integriranog suzbijanja nametnika u agroekosustavima sjeverne Dalmacije na bioraznolikost mrava (Insecta: Hymenoptera: Formicidae) Primorac, Josip Master's thesis / Diplomski rad 2021 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:036012 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-10-05 Repository / Repozitorij: Repository of Faculty of Science - University of Zagreb Sveučilište u Zagrebu Prirodoslovno – matematički fakultet Biološki odsjek Josip Primorac Utjecaj ekološkog i integriranog suzbijanja nametnika u agroekosustavima sjeverne Dalmacije na bioraznolikost mrava (Insecta: Hymenoptera: Formicidae) Diplomski rad Zagreb, 2021. Ovaj rad, izrađen u Zoologijskom zavodu Biološkog odsjeka, Prirodoslovno – matematičkog fakulteta Sveučilišta u Zagrebu pod vodstvom izv. prof. dr. sc. Damjana Franjevića i neposrednim voditeljstvom dr. sc. Lucije Šerić Jelaska, predan je na ocjenu Biološkom odsjeku Prirodoslovno – matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja zvanja magistra eksperimentalne biologije. Zahvala: Veliku zahvalnost, dugujem svom mentoru izv. prof. dr. sc. Damjanu Franjeviću i neposrednoj voditeljici dr. sc. Luciji Šerić Jelaska, koji su pristali biti mentori ovog diplomskog rada, izrađenog u sklopu projekta MEDITERATRI (HRZZ UIP 05 – 2017 – 1046). Hvala Vam na izdvojenom vremenu i strpljenju tijekom izrade ovog rada. Zahvaljujem se kolegicama Lari Ivanković Tatalović i Barbari Anđelić za pomoć u laboratorijskom radu. Također, želim se zahvaliti svojim prijateljima i kolegama koji su upotpunili ovo razdoblje mog života i bez kojih ovaj tijek mog studiranja ne bi bio isti. I na kraju, najveću zaslugu pripisujem svojim roditeljima, koji su uvijek bili tu, uz mene, bez obzira na situaciju i bez kojih ovo ne bi bilo moguće.
    [Show full text]
  • Ant Type Specimens (Hymenoptera, Formicidae) Deposited in the Museu De Zoologia Da Universidade De São Paulo, Brazil
    Volume 48(11):75-88, 2008 Catalogue of “poneromorph” ant type specimens (Hymenoptera, Formicidae) deposited in the Museu de Zoologia da Universidade de São Paulo, Brazil Cristiane P. Scott-Santos Flávia A. Esteves Carlos Roberto F. Brandão AbsTracT The present catalogue lists the type specimes of 112 nominal “poneromorph” ant species housed in the Formicidae collection of the Hymenoptera laboratory, Museu de Zoologia da Universidade de São Paulo (MZSP). The catalogue includes types of Amblyoponinae, Ectatomminae, Heteroponerinae, Ponerinae, and Proceratiinae, that is, all poneromorph (sensu Bolton, 2003) but for the monotypic Paraponerinae, of which the collection bears no type specimens. We present here information on type categories (holotype, paratype, syntype, lectotype, and paralectotype), label data, nomenclatural changes since the original description and type specimens conservation status. At last we present indexes for the taxa names presented. Keywords: Hymenoptera, ants, types, MZSP, Amblyoponinae, Ectatomminae, Heteroponerinae, Ponerinae, Proceratiinae. INTRODucTION The purpose of the present catalogue is to pro- vide updated information on poneromorph type The Formicidae collection housed in the Hy- specimes of the MZSP collection, following Article menoptera laboratory of the Museu de Zoologia da 72 F.4 of the International Code for Zoological No- Universidade de São Paulo (MZSP) is under con- menclature (1999). struction since the end of the 19th century and is to- The poneromorph group of ants, as defined by day one of the largest and more representative ant col- Bolton (2003), is distributed worldwide and consists lections in and for the Neotropical region, as regard of circa 1,700 described species in 49 genera of six to the number of specimens, including types, and subfamilies: Amblyoponinae, Ectatomminae, Hetero- localities (Brandão, 2000).
    [Show full text]
  • Taxonomic Studies on Ant Genus Hypoponera (Hymenoptera: Formicidae: Ponerinae) from India
    ASIAN MYRMECOLOGY Volume 7, 37 – 51, 2015 ISSN 1985-1944 © HIMENDER BHARTI, SHAHID ALI AKBAR, AIJAZ AHMAD WACHKOO AND JOGINDER SINGH Taxonomic studies on ant genus Hypoponera (Hymenoptera: Formicidae: Ponerinae) from India HIMENDER BHARTI*, SHAHID ALI AKBAR, AIJAZ AHMAD WACHKOO AND JOGINDER SINGH Department of Zoology and Environmental Sciences, Punjabi University, Patiala – 147002, India *Corresponding author's e-mail: [email protected] ABSTRACT. The Indian species of the ant genus Hypoponera Santschi, 1938 are treated herewith. Eight species are recognized of which three are described as new and two infraspecific taxa are raised to species level. The eight Indian species are: H. aitkenii (Forel, 1900) stat. nov., H. assmuthi (Forel, 1905), H. confinis (Roger, 1860), H. kashmirensis sp. nov., H. shattucki sp. nov., H. ragusai (Emery, 1894), H. schmidti sp. nov. and H. wroughtonii (Forel, 1900) stat. nov. An identification key based on the worker caste of Indian species is provided. Keywords: New species, ants, Formicidae, Ponerinae, Hypoponera, India. INTRODUCTION genus with use of new taxonomic characters facilitating prompt identification. The taxonomy of Hypoponera has been in a From India, three species and two state of confusion and uncertainty for some infraspecific taxa ofHypoponera have been reported time. The small size of the ants, coupled with the to date (Bharti, 2011): Hypoponera assmuthi morphological monotony has led to the neglect (Forel, 1905), Hypoponera confinis (Roger, of this genus. The only noteworthy revisionary 1860), Hypoponera confinis aitkenii (Forel, 1900), work is that of Bolton and Fisher (2011) for Hypoponera confinis wroughtonii (Forel, 1900) and the Afrotropical and West Palearctic regions. Hypoponera ragusai (Emery, 1894).
    [Show full text]
  • Digging Deeper Into the Ecology of Subterranean Ants: Diversity and Niche Partitioning Across Two Continents
    diversity Article Digging Deeper into the Ecology of Subterranean Ants: Diversity and Niche Partitioning across Two Continents Mickal Houadria * and Florian Menzel Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Soil fauna is generally understudied compared to above-ground arthropods, and ants are no exception. Here, we compared a primary and a secondary forest each on two continents using four different sampling methods. Winkler sampling, pitfalls, and four types of above- and below-ground baits (dead, crushed insects; melezitose; living termites; living mealworms/grasshoppers) were applied on four plots (4 × 4 grid points) on each site. Although less diverse than Winkler samples and pitfalls, subterranean baits provided a remarkable ant community. Our baiting system provided a large dataset to systematically quantify strata and dietary specialisation in tropical rainforest ants. Compared to above-ground baits, 10–28% of the species at subterranean baits were overall more common (or unique to) below ground, indicating a fauna that was truly specialised to this stratum. Species turnover was particularly high in the primary forests, both concerning above-ground and subterranean baits and between grid points within a site. This suggests that secondary forests are more impoverished, especially concerning their subterranean fauna. Although subterranean ants rarely displayed specific preferences for a bait type, they were in general more specialised than above-ground ants; this was true for entire communities, but also for the same species if they foraged in both strata. Citation: Houadria, M.; Menzel, F.
    [Show full text]
  • Ant Venoms. Current Opinion in Allergy and Clinical
    CE: Namrta; ACI/5923; Total nos of Pages: 5; ACI 5923 Ant venoms Donald R. Hoffman Brody School of Medicine at East Carolina University, Purpose of review Greenville, North Carolina, USA The review summarizes knowledge about ants that are known to sting humans and their Correspondence to Donald R. Hoffman, PhD, venoms. Professor of Pathology and Laboratory Medicine, Brody School of Medicine at East Carolina University, Recent findings 600 Moye Blvd, Greenville, NC 27834, USA Fire ants and Chinese needle ants are showing additional spread of range. Fire ants are Tel: +1 252 744 2807; e-mail: [email protected] now important in much of Asia. Venom allergens have been characterized and Current Opinion in Allergy and Clinical studied for fire ants and jack jumper ants. The first studies of Pachycondyla venoms Immunology 2010, 10:000–000 have been reported, and a major allergen is Pac c 3, related to Sol i 3 from fire ants. There are very limited data available for other ant groups. Summary Ants share some common proteins in venoms, but each group appears to have a number of possibly unique components. Further proteomic studies should expand and clarify our knowledge of these fascinating animals. Keywords ant, fire ant, jack jumper ant, phospholipase, sting, venom Curr Opin Allergy Clin Immunol 10:000–000 ß 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins 1528-4050 east [4] and P. sennaarensis in the middle east [5]. These Introduction two species are commonly referred to as Chinese needle Ants are among the most biodiverse organisms on earth. ants and samsum ants.
    [Show full text]
  • Formicidae, Ponerinae), a Predominantly Nocturnal, Canopy-Dwelling
    Behavioural Processes 109 (2014) 48–57 Contents lists available at ScienceDirect Behavioural Processes jo urnal homepage: www.elsevier.com/locate/behavproc Visual navigation in the Neotropical ant Odontomachus hastatus (Formicidae, Ponerinae), a predominantly nocturnal, canopy-dwelling predator of the Atlantic rainforest a,1 b,∗ Pedro A.P. Rodrigues , Paulo S. Oliveira a Graduate Program in Ecology, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil b Departamento de Biologia Animal, C.P. 6109, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil a r t a b i s c l e i n f o t r a c t Article history: The arboreal ant Odontomachus hastatus nests among roots of epiphytic bromeliads in the sandy forest Available online 24 June 2014 at Cardoso Island (Brazil). Crepuscular and nocturnal foragers travel up to 8 m to search for arthropod prey in the canopy, where silhouettes of leaves and branches potentially provide directional information. Keywords: We investigated the relevance of visual cues (canopy, horizon patterns) during navigation in O. hastatus. Arboreal ants Laboratory experiments using a captive ant colony and a round foraging arena revealed that an artificial Atlantic forest canopy pattern above the ants and horizon visual marks are effective orientation cues for homing O. has- Canopy orientation tatus. On the other hand, foragers that were only given a tridimensional landmark (cylinder) or chemical Ponerinae marks were unable to home correctly. Navigation by visual cues in O. hastatus is in accordance with other Trap-jaw ants diurnal arboreal ants. Nocturnal luminosity (moon, stars) is apparently sufficient to produce contrasting Visual cues silhouettes from the canopy and surrounding vegetation, thus providing orientation cues.
    [Show full text]
  • Mcabee Fossil Site Assessment
    1 McAbee Fossil Site Assessment Final Report July 30, 2007 Revised August 5, 2007 Further revised October 24, 2008 Contract CCLAL08009 by Mark V. H. Wilson, Ph.D. Edmonton, Alberta, Canada Phone 780 435 6501; email [email protected] 2 Table of Contents Executive Summary ..............................................................................................................................................................3 McAbee Fossil Site Assessment ..........................................................................................................................................4 Introduction .......................................................................................................................................................................4 Geological Context ...........................................................................................................................................................8 Claim Use and Impact ....................................................................................................................................................10 Quality, Abundance, and Importance of the Fossils from McAbee ............................................................................11 Sale and Private Use of Fossils from McAbee..............................................................................................................12 Educational Use of Fossils from McAbee.....................................................................................................................13
    [Show full text]
  • Sistemática Y Ecología De Las Hormigas Predadoras (Formicidae: Ponerinae) De La Argentina
    UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área CIENCIAS BIOLÓGICAS PRISCILA ELENA HANISCH Directores de tesis: Dr. Andrew Suarez y Dr. Pablo L. Tubaro Consejero de estudios: Dr. Daniel Roccatagliata Lugar de trabajo: División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires, Marzo 2018 Fecha de defensa: 27 de Marzo de 2018 Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Resumen Las hormigas son uno de los grupos de insectos más abundantes en los ecosistemas terrestres, siendo sus actividades, muy importantes para el ecosistema. En esta tesis se estudiaron de forma integral la sistemática y ecología de una subfamilia de hormigas, las ponerinas. Esta subfamilia predomina en regiones tropicales y neotropicales, estando presente en Argentina desde el norte hasta la provincia de Buenos Aires. Se utilizó un enfoque integrador, combinando análisis genéticos con morfológicos para estudiar su diversidad, en combinación con estudios ecológicos y comportamentales para estudiar la dominancia, estructura de la comunidad y posición trófica de las Ponerinas. Los resultados sugieren que la diversidad es más alta de lo que se creía, tanto por que se encontraron nuevos registros durante la colecta de nuevo material, como porque nuestros análisis sugieren la presencia de especies crípticas. Adicionalmente, demostramos que en el PN Iguazú, dos ponerinas: Dinoponera australis y Pachycondyla striata son componentes dominantes en la comunidad de hormigas. Análisis de isótopos estables revelaron que la mayoría de las Ponerinas ocupan niveles tróficos altos, con excepción de algunas especies arborícolas del género Neoponera que dependerían de néctar u otros recursos vegetales.
    [Show full text]
  • Borowiec Et Al-2020 Ants – Phylogeny and Classification
    A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.
    [Show full text]
  • Poneromorfas Do Brasil Miolo.Indd
    10 - Citogenética e evolução do cariótipo em formigas poneromorfas Cléa S. F. Mariano Igor S. Santos Janisete Gomes da Silva Marco Antonio Costa Silvia das Graças Pompolo SciELO Books / SciELO Livros / SciELO Libros MARIANO, CSF., et al. Citogenética e evolução do cariótipo em formigas poneromorfas. In: DELABIE, JHC., et al., orgs. As formigas poneromorfas do Brasil [online]. Ilhéus, BA: Editus, 2015, pp. 103-125. ISBN 978-85-7455-441-9. Available from SciELO Books <http://books.scielo.org>. All the contents of this work, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 International license. Todo o conteúdo deste trabalho, exceto quando houver ressalva, é publicado sob a licença Creative Commons Atribição 4.0. Todo el contenido de esta obra, excepto donde se indique lo contrario, está bajo licencia de la licencia Creative Commons Reconocimento 4.0. 10 Citogenética e evolução do cariótipo em formigas poneromorfas Cléa S.F. Mariano, Igor S. Santos, Janisete Gomes da Silva, Marco Antonio Costa, Silvia das Graças Pompolo Resumo A expansão dos estudos citogenéticos a cromossomos de todas as subfamílias e aquela partir do século XIX permitiu que informações que apresenta mais informações a respeito de ca- acerca do número e composição dos cromosso- riótipos é também a mais diversa em número de mos fossem aplicadas em estudos evolutivos, ta- espécies: Ponerinae Lepeletier de Saint Fargeau, xonômicos e na medicina humana. Em insetos, 1835. Apenas nessa subfamília observamos carió- são conhecidos os cariótipos em diversas ordens tipos com número cromossômico variando entre onde diversos padrões cariotípicos podem ser ob- 2n=8 a 120, gêneros com cariótipos estáveis, pa- servados.
    [Show full text]