Minotaur V Space Launch Vehicle for Small, Cost-Effective Moon Exploration Missions

Total Page:16

File Type:pdf, Size:1020Kb

Minotaur V Space Launch Vehicle for Small, Cost-Effective Moon Exploration Missions Minotaur V Space Launch Vehicle for Small, Cost-Effective Moon Exploration Missions Scott Schoneman 14 August 2007 21st Annual AIAA/USU Conference on Small Satellites Innovation You Can Count On™ Minotaur Family of Launch Vehicles 2 Minotaur Family Flight History and Firm Manifest 3 Minotaur IV Has an Extensive, Proven Heritage 4 Minotaur V Origins z Minotaur V is Five Stage Evolution of Minotaur IV ¾ Adds Upper Stage for High Energy Missions: MTO, GTO, TLI, and Beyond ¾ Retains Reuse of Reliable, Proven Solid Rocket Motors z Detailed Trade Study Resulted in Selection of Upper Stage Motors ¾ STAR 48BV for Stage 4 ¾ STAR 37 Options for Stage 5 – 37FM for Spin-Stabilized – 37FMV for 3-Axis Stabilized 5 Minotaur V - STAR 37FMV Stage 5 Configuration (3-axis Stabilized) z Extensive Minotaur-Family Heritage Composite Clamshell Fairing and Commonality z Flight Proven 92” Taurus Design ¾ Flight Proven OSP Avionics and Stage 5 Assembly Flight Software w/ Heritage of 10 z STAR 37FMV Solid Rocket Motor or more Flights ¾ Thrust Vector Controlled z OSP-Standard Avionics z Uses STAR 48 and STAR 37 Upper ¾ Only Subset Required to Fly Stage 5 Stage Motors z Cold Gas Attitude Control System (ACS) ¾ Extensive STAR Motor Flight z Composite Structure History Guidance Control Assembly (GCA)/Stage 4 ¾ Flight Qualified Flexseal and z GCA Design Shared with Minotaur III & IV Actuator System z OSP-Standard Flight Proven Avionics ¾ Split Between S4 and S5 z Performance: z Cold Gas ACS ¾ 721kg to GPS Transfer Orbit z Stage 4 STAR 48BV SRM (55 deg, Direct Ascent from ¾ Thrust Vector Control (TVC) WFF) GFE Peacekeeper Stages ¾ 594 kg to GEO Transfer Orbit z Stage 3 - SR120 (28.5 deg, Direct Ascent from z Stage 2 - SR119 Legend: Shared w/ M IV CCAFS) z Stage 1 -SR118 New for M V ¾ 402 kg to TLI (28.5 deg, Direct Ascent from CCAFS) 6 STAR Motors Provide Low Risk Upper Stages Propulsion z STAR 48 and STAR 37 Motors Have Extensive Flight History in Space Launch Applications ¾ GEO, Lunar, and Interplanetary Trajectory Insertion Stages ¾ STAR 37 on Delta, Atlas, Titan, Thor, N-2 (Japan) Launch Vehicles; GPS, FLTSATCOM, and Other Spacecraft ¾ STAR 48 on Delta (PAM-D), Shuttle (PAM-S), z STAR 48BV and STAR 37FMV Both Used the Same Flexseal Nozzle ¾ Flexseal Nozzle Qualified on STAR 48BV in Mid-90’s ¾ STAR 37FMV Flight Test Planned in Next 12 Months z TVC System Qualified by Static Fire on Orion 38HP (May 06) ¾ Component Heritage to GMD and THAAD Systems ¾ Same TVC Proposed for Use on STAR 48BV and STAR 37FMV 7 Minotaur V Stage 5 Layout Spacecraft Adapter Cylinder (Optional) • Adapted from composite avionics structure from Minotaur I/Pegasus •Avionics and ACS for 3-Axis ACS A nk CS Stablized Configuration CS Tank 92 in. Fairing Tank Ta ACS Ta nk AC A S nal) Ta Optio nk ank ( op S T t. AC Base Ring B a tt Batt MA C MACH H Thruster Thruster STAR 37FM or FMV B Solid Rocket Motor a t t AD A & S SIGI SIGI 38.8 in. Dia. Spacecraft Interface 48 in. to 37 in. Adapter Cone • Minotaur I/Pegasus standard • Bolted I/F to separation system Existing 48 in. Sep Standard STAR System (SAAB) 37 bolted 8 interface Minotaur V Payload Dynamic Envelope (STAR 37 FMV Configuration) z Flight Proven Taurus 92” Fairing ¾ Spacecraft Encapsulated with Stage 5 Assembly z Volume for Small Secondary Payloads or Experiment ¾ On Stage 5 Structure ¾ Negotiable z Standard 38.8” Spacecraft Interface Bolt Pattern Spacecraft Dynamic Motion Must Stay Within The Fairing ¾ Common With Pegasus, Taurus, and Minotaur I Dynamic Envelope ¾ Multiple Options for Separation Systems and/or Smaller Diameter PAFS 9 Minotaur V Benchmark Orbits & Performance Arg. 3-Axis Spin Peri- Inclin of C3 Launch Apogee Stabilized Stabilized Orbit Type gee -ation Peri- (km2/ Site (km) (km) (deg) gee s2) Kg Lbm Kg lbm (deg) LEO KSC 200 200 28.55 NA -60.59 2165 4774 2213 4879 MTO WFF 185 20367 37.83 NA -23.93 721 1590 766 1690 GTO KSC 185 37800 28.55 180 -15.71 594 1311 640 1411 Molniya VAFB 500 39965 63.40 90 -14.98 450 993 496 1094 WFF 200 408,556 37.83 180 -1.89 386 852 432 952 TLI KSC 200 408,556 28.55 180 -1.89 402 886 447 986 10 Minotaur V C3 Performance from Wallops Island 3-Axis Stabilized Stage 5 Configuration Mission Design Trade Space GTO: C3=-15.71 Between Curves TLI: C3 =-1.89 11 Minotaur V TLI Trajectory (Typical) Elliptical Parking Orbit 12 Summary z Minotaur Vehicles Build on Highly Successful Legacies ¾ Minotaur I & II: 13 Successful Launches ¾ Three Successful Taurus Launches Using PK Stage 1 ¾ Long Term Demonstrated Reliability of Minuteman and PK Boosters ¾ Extensive Flight Heritage of Avionics, FTS, RF, and ACS Components z First Several Minotaur IV Missions Are Under Contract and Progressing Toward Launch ¾ Avionics and Flight Software are Common Across All Minotaur Vehicles ¾ Identified Risks Methodically Retired During Early Development Effort ¾ Minotaur IV CDR Completed Fall 06 – On Track for 4Q08 Initial Launch z Minotaur V is a Natural Extension of Minotaur IV Using Mature Technologies ¾ STAR 48 and STAR 37 Motors Have Extensive Flight History ¾ Flexseal Nozzle and TVC Actuators Qualified via Static Fire and Planned Flight Test Well Before First Minotaur V Launch Minotaur Family Launch Vehicles Provide Existing, Reliable, and Cost Effective Launch Capability to Facilitate Low Cost High Energy Misisons 13.
Recommended publications
  • Launch and Deployment Analysis for a Small, MEO, Technology Demonstration Satellite
    46th AIAA Aerospace Sciences Meeting and Exhibit AIAA 2008-1131 7 – 10 January 20006, Reno, Nevada Launch and Deployment Analysis for a Small, MEO, Technology Demonstration Satellite Stephen A. Whitmore* and Tyson K. Smith† Utah State University, Logan, UT, 84322-4130 A trade study investigating the economics, mass budget, and concept of operations for delivery of a small technology-demonstration satellite to a medium-altitude earth orbit is presented. The mission requires payload deployment at a 19,000 km orbit altitude and an inclination of 55o. Because the payload is a technology demonstrator and not part of an operational mission, launch and deployment costs are a paramount consideration. The payload includes classified technologies; consequently a USA licensed launch system is mandated. A preliminary trade analysis is performed where all available options for FAA-licensed US launch systems are considered. The preliminary trade study selects the Orbital Sciences Minotaur V launch vehicle, derived from the decommissioned Peacekeeper missile system, as the most favorable option for payload delivery. To meet mission objectives the Minotaur V configuration is modified, replacing the baseline 5th stage ATK-37FM motor with the significantly smaller ATK Star 27. The proposed design change enables payload delivery to the required orbit without using a 6th stage kick motor. End-to-end mass budgets are calculated, and a concept of operations is presented. Monte-Carlo simulations are used to characterize the expected accuracy of the final orbit.
    [Show full text]
  • Cape Canaveral Air Force Station Support to Commercial Space Launch
    The Space Congress® Proceedings 2019 (46th) Light the Fire Jun 4th, 3:30 PM Cape Canaveral Air Force Station Support to Commercial Space Launch Thomas Ste. Marie Vice Commander, 45th Space Wing Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Ste. Marie, Thomas, "Cape Canaveral Air Force Station Support to Commercial Space Launch" (2019). The Space Congress® Proceedings. 31. https://commons.erau.edu/space-congress-proceedings/proceedings-2019-46th/presentations/31 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Cape Canaveral Air Force Station Support to Commercial Space Launch Colonel Thomas Ste. Marie Vice Commander, 45th Space Wing CCAFS Launch Customers: 2013 Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs; Blue text – in work; * – sub-orbital CCAFS Launch Customers: 2013 Complex 39B: NASA SLS Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy NASA Space Launch System Launch Complex 39B February 4, 2013 Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs;
    [Show full text]
  • Small Space Launch: Origins & Challenges Lt Col Thomas H
    Small Space Launch: Origins & Challenges Lt Col Thomas H. Freeman, USAF, [email protected], (505)853-4750 Maj Jose Delarosa, USAF, [email protected], (505)846-4097 Launch Test Squadron, SMC/SDTW Small Space Launch: Origins The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. The United States’ position is founded upon continued government investment in research and development in space technology [1], which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers [1] in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The EELV systems require an average of six to eight months from positioning on the launch table until liftoff [3]. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. The downturn of commercial space launch service use has undermined, for the time being, the ability of industry to recoup its significant investment in current launch systems.
    [Show full text]
  • Review of Nasa's Acquisition of Commercial Launch Services
    FEBRUARY 17, 2011 AUDIT REPORT OFFICE OF AUDITS REVIEW OF NASA’S ACQUISITION OF COMMERCIAL LAUNCH SERVICES OFFICE OF INSPECTOR GENERAL National Aeronautics and Space Administration REPORT NO. IG-11-012 (ASSIGNMENT NO. A-09-011-00) Final report released by: Paul K. Martin Inspector General Acronyms COTS Commercial Orbital Transportation Services CRS Commercial Resupply Services DOD Department of Defense EELV Evolved Expendable Launch Vehicle ELV Expendable Launch Vehicle ESMD Exploration Systems Mission Directorate GAO Government Accountability Office GLAST Gamma-ray Large Area Space Telescope IBEX Interstellar Boundary Explorer ICBM Intercontinental Ballistic Missile ICESat-II Ice, Cloud, and Land Elevation Satellite IDIQ Indefinite-Delivery, Indefinite-Quantity ISS International Space Station LADEE Lunar Atmosphere and Dust Environment Explorer LCROSS Lunar Crater Observation and Sensing Satellite LRO Lunar Reconnaissance Orbiter LSP Launch Services Program NLS NASA Launch Services OCO Orbiting Carbon Observatory OIG Office of Inspector General PPBE Planning, Programming, Budgeting, and Execution SMAP Soil Moisture Active Passive SMD Science Mission Directorate SOMD Space Operations Mission Directorate ULA United Launch Alliance REPORT NO. IG-11-012 FEBRUARY 17, 2011 OVERVIEW REVIEW OF NASA’S ACQUISITION OF COMMERCIAL LAUNCH SERVICES The Issue Commercial U.S. launch services providers compete domestically and internationally for contracts to carry satellites and other payloads into orbit using unmanned, single-use vehicles known as expendable launch vehicles (ELVs). However, since the late 1990s the global commercial launch market has generally declined following the downturn in the telecommunications services industry, which was the primary customer of the commercial space industry. Given this trend, U.S. launch services providers struggling to remain economically viable have been bolstered by the Commercial Space Act of 1998 (Public Law 105-303), which requires NASA and other Federal agencies to plan missions and procure space transportation services from U.S.
    [Show full text]
  • Minotaur I User's Guide
    This page left intentionally blank. Minotaur I User’s Guide Revision Summary TM-14025, Rev. D REVISION SUMMARY VERSION DOCUMENT DATE CHANGE PAGE 1.0 TM-14025 Mar 2002 Initial Release All 2.0 TM-14025A Oct 2004 Changes throughout. Major updates include All · Performance plots · Environments · Payload accommodations · Added 61 inch fairing option 3.0 TM-14025B Mar 2014 Extensively Revised All 3.1 TM-14025C Sep 2015 Updated to current Orbital ATK naming. All 3.2 TM-14025D Sep 2018 Branding update to Northrop Grumman. All 3.3 TM-14025D Sep 2020 Branding update. All Updated contact information. Release 3.3 September 2020 i Minotaur I User’s Guide Revision Summary TM-14025, Rev. D This page left intentionally blank. Release 3.3 September 2020 ii Minotaur I User’s Guide Preface TM-14025, Rev. D PREFACE This Minotaur I User's Guide is intended to familiarize potential space launch vehicle users with the Mino- taur I launch system, its capabilities and its associated services. All data provided herein is for reference purposes only and should not be used for mission specific analyses. Detailed analyses will be performed based on the requirements and characteristics of each specific mission. The launch services described herein are available for US Government sponsored missions via the United States Air Force (USAF) Space and Missile Systems Center (SMC), Advanced Systems and Development Directorate (SMC/AD), Rocket Systems Launch Program (SMC/ADSL). For technical information and additional copies of this User’s Guide, contact: Northrop Grumman
    [Show full text]
  • Aas 14-281 Suborbital Intercept And
    AAS 14-281 SUBORBITAL INTERCEPT AND FRAGMENTATION OF ASTEROIDS WITH VERY SHORT WARNING TIMES Ryan Hupp,∗ Spencer Dewald,∗ and Bong Wiey The threat of an asteroid impact with very short warning times (e.g., 1 to 24 hrs) is a very probable, real danger to civilization, yet no viable countermeasures cur- rently exist. The utilization of an upgraded ICBM to deliver a hypervelocity as- teroid intercept vehicle (HAIV) carrying a nuclear explosive device (NED) on a suborbital interception trajectory is studied in this paper. Specifically, this paper focuses on determining the trajectory for maximizing the altitude of intercept. A hypothetical asteroid impact scenario is used as an example for determining sim- plified trajectory models. Other issues are also examined, including launch vehicle options, launch site placement, late intercept, and some undesirable side effects. It is shown that silo-based ICBMs with modest burnout velocities can be utilized for a suborbital asteroid intercept mission with an NED explosion at reasonably higher altitudes (> 2,500 km). However, further studies will be required in the following key areas: i) NED sizing for properly fragmenting small (50 to 150 m) asteroids, ii) the side effects caused by an NED explosion at an altitude of 2,500 km or higher, iii) the rapid launch readiness of existing or upgraded ICBMs for a suborbital asteroid intercept with short warning times (e.g., 1 to 24 hrs), and iv) precision ascent guidance and terminal intercept guidance. It is emphasized that if an earlier alert (e.g., > 1 week) can be assured, then an interplanetary inter- cept/fragmentation may become feasible, which requires an interplanetary launch vehicle.
    [Show full text]
  • The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions
    Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions Presented at the 2007 ISPA/SCEA Joint International Conference & Workshop June 12-15, New Orleans, LA Bob Bitten, Debra Emmons, Claude Freaner 1 Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Abstract • The upcoming retirement of the Delta II family of launch vehicles leaves a performance gap between small expendable launch vehicles, such as the Pegasus and Taurus, and large vehicles, such as the Delta IV and Atlas V families • This performance gap may lead to a variety of progressions including – large satellites that utilize the full capability of the larger launch vehicles, – medium size satellites that would require dual manifesting on the larger vehicles or – smaller satellites missions that would require a large number of smaller launch vehicles • This paper offers some comparative costs of co-manifesting single- instrument missions on a Delta IV/Atlas V, versus placing several instruments on a larger bus and using a Delta IV/Atlas V, as well as considering smaller, single instrument missions launched on a Minotaur or Taurus • This paper presents the results of a parametric study investigating the cost- effectiveness of different alternatives and their effect on future NASA missions that fall into the Small Explorer (SMEX), Medium Explorer (MIDEX), Earth System Science Pathfinder (ESSP), Discovery,
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Minotaur I Users Guide
    ORBITAL SCIENCES CORPORATION January 2006 Minotaur I User’s Guide Release 2.1 Approved for Public Release Distribution Unlimited Copyright 2006 by Orbital Sciences Corporation. All Rights Reserved. Minotaur I User’s Guide Revision Summary REVISION SUMMARY VERSION DOCUMENT DATE CHANGE PAGE 1.0 TM-14025 Mar 2002 Initial Release All 2.0 TM-14025A Oct 2004 Changes thoughout. Major updates include All • Performance plots • Environments • Payload accommodations • Added 61 inch fairing option 2.1 TM-14025B Jan 2006 General nomenclature, history, and administrative updates All (no technical updates) • Changed “Minotaur” to “Minotaur I” • Updated launch history • Corrected contact information Release 1.1 January 2006 ii Minotaur I User’s Guide Preface This Minotaur I User's Guide is intended to familiarize potential space launch vehicle users with the Minotaur I launch system, its capabilities and its associated services. All data provided herein is for reference purposes only and should not be used for mission specific analyses. Detailed analyses will be performed based on the requirements and characteristics of each specific mission. The launch services described herein are available for US Government sponsored missions via the United States Air Force (USAF) Space and Missile Systems Center, Detachment 12, Rocket Systems Launch Program (RSLP). Readers desiring further information on Minotaur I should contact the USAF Program Office: USAF SMC Det 12/RP 3548 Aberdeen Ave SE Kirtland AFB, NM 87117-5778 Telephone: (505) 846-8957 Fax: (505) 846-5152 Additional copies of this User's Guide and Technical information may also be requested from Orbital at: Orbital Suborbital Program - Mission Development Orbital Sciences Corporation Launch Systems Group 3380 S.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • The Lunar Atmosphere and Dust Environment Explorer Mission
    The Lunar Atmosphere and Dust Environment Explorer Mission Butler Hine, Stevan Spremo, Mark Turner NASA Ames Research Center Mail Stop 240-5 Moffett Field, CA 94035 650-604-4449 [email protected] Robert Caffrey NASA Goddard Space Flight Center Mail Stop 401.0 Greenbelt, MD 20771 301-286-0846 [email protected] Abstract— The Lunar Atmosphere and Dust Environment TABLE OF CONTENTS Explorer (LADEE) is a Lunar science orbiter mission 1. INTRODUCTION ................................................................ 1 currently under development to address the goals of the 2. MISSION REQUIREMENTS................................................ 2 National Research Council decadal surveys and the recent 3. MISSION DESIGN.............................................................. 2 “Scientific Context for Exploration of the Moon” (SCEM) 4. SPACECRAFT DESIGN ...................................................... 5 [1] report to study the pristine state of the lunar atmosphere 12 5. MISSION SYSTEM ARCHITECTURE.................................. 8 and dust environment prior to significant human activities. 6. LAUNCH VEHICLE ........................................................... 9 LADEE will determine the composition of the lunar 7. SUMMARY ........................................................................ 9 atmosphere and investigate the processes that control its REFERENCES........................................................................ 9 distribution and variability, including sources, sinks, and surface interactions.
    [Show full text]
  • Minotuar-User-Guide-3.Pdf
    This page left intentionally blank. Minotaur IV • V • VI User’s Guide Revision Summary TM-17589, Rev. E REVISION SUMMARY VERSION DOCUMENT DATE CHANGE PAGE 1.0 TM-17589 Jan 2005 Initial Release All 1.1 TM-17589A Jan 2006 General nomenclature, history, and administrative up- All dates (no technical updates) 1. Updated launch history 2. Corrected contact information 2.0 TM-17589B Jun 2013 Extensively Revised All 2.1 TM-17589C Aug 2015 Updated to current Orbital ATK naming. All 2.2 TM-17589D Aug 2015 Minor updates to correct Orbital ATK naming. All 2.3 TM-17589E Apr 2019 Branding update to Northrop Grumman. All Corrected Figures 4.2.2-1 and 4.2.2-2. Corrected Section 6.2.1, paragraph 3. 2.4 TM-17589E Sep 2020 Branding update. All Updated contact information. Updated footer. Release 2.4 September 2020 i Minotaur IV • V • VI User’s Guide Revision Summary TM-17589, Rev. E This page left intentionally blank. Release 2.4 September 2020 ii Minotaur IV • V • VI User’s Guide User’s Guide Preface TM-17589, Rev. E The information provided in this user’s guide is for initial planning purposes only. Information for develop- ment/design is determined through mission specific engineering analyses. The results of these analyses are documented in a mission-specific Interface Control Document (ICD) for the payloader organization to use in their development/design process. This document provides an overview of the Minotaur system design and a description of the services provided to our customers. For technical information and additional copies of this User’s
    [Show full text]