In Russia Род Leskea (Leskeaceae, Bryophyta) in Russia Michael S

Total Page:16

File Type:pdf, Size:1020Kb

In Russia Род Leskea (Leskeaceae, Bryophyta) in Russia Michael S Arctoa (2017) 27: 49-53 doi: 10.15298/arctoa.27.05 ON THE GENUS LESKEA (LESKEACEAE, BRYOPHYTA) IN RUSSIA РОД LESKEA (LESKEACEAE, BRYOPHYTA) IN RUSSIA MICHAEL S. IGNATOV1,2, ANDREY G. BEZGODOV3, OXANA I. KUZNETSOVA2 & ELENA A. IGNATOVA1 МИХАИЛ С. ИГНАТОВ1,2, АНДРЕЙ Г. Б ЕЗГОДОВ3, ОКСАНА И. КУЗНЕЦОВА2, ЕЛЕНА А. ИГНАТОВА1 Abstract The genus Leskea in Russia is represented by one widespread species, L. polycarpa Hedw. Records of L. gracilescens appeared to be erroneous. Analysis of nuclear ITS sequence data demonstrated that North American samples of L. gracilescens and L. obscura clearly differ from European and Asian populations in several characteristic substitutions. Anomalous morphology of plants from Yakutia and Amur Province is described and illustrated. Their distribution likely corresponds to a high and late floodings of big rivers, crossing permafrost areas. Резюме Род Leskea представлен в России одним широко распространенным видом , L. polycarpa Hedw. Указания на находки L. gracilescens в Амурской области были ошибочными. Анализ нуклеотидных последовательностей ядерного спейсера ITS показал, что североамериканские образцы L. graci- lescens and L. obscura отличаются несколькими заменами от европейских и азиатских растений. Необычная морфология растений L. polycarpa из Амурской области и Якутии, вероятно, связана с сильными поздними паводками на больших реках, протекающих в зоне вечной мерзлоты. KEYWORDS: Leskea, Russian Far East, Yakutia, ecomorphs INTRODUCTION cially moss flora of China (Cao et al., 2002). In China The genus Leskea in Russia included just one species, this species was reported only recently from its NE part, L. polycarpa Hedw., in almost all publications (Abramov on the right bank of Amur River in a relatively close & Volkova, 1998; Abramova et al., 1961; Ignatov, proximity to the area where the mentioned Russian col- Afonina, Ignatova et al., 2006). Although Hedwig (1801) lection has been done. Chinese collections were reported described from Europe two species, L. polycarpa and L. as sterile (Cao et al., 2002), while in Russian specimens paludosa, the latter one was considered as a variety of sporophytes were immature, thus the sporophyte charac- the former already by authors of 19th century (e.g. ters were impossible to use. However, catenulate foliage, Schimper, 1860). Eleven infraspecific taxa within Leskea smaller stem leaves with the smaller length to width ra- polycarpa are listed in Torpicos database (http:// tio, straight and symmetric leaves, lacking characteristic www.tropicos.org/namesearch.aspx, accessed 1 May obligue apical part, and occasionally blunt apices in both 2018), but in recent checklists (Hill et al., 2006; Ros et stem and branch leaves fitted the description of L. graci- al., 2013) and Floras (Brugués & Ruiz, 2018; Redfearn, lescens. 2014) they are usually not mentioned at all. Leskea Later in Yakutia, to the north of Amur Province, we latifolia Lindb. ex Broth., described from the Caucasus collected Leskea with even more obtuse leaves, more simi- (Brotherus, 1892), was synonymized with Amblystegium lar to another American species, L. obscura. So we de- varium (Abramov, 1969). cided to test with DNA markers if the plant from Amur In the course of the flora inventory studies in the Na- Province and Yakutia really belong to L. gracillescens or ture Reserve «Norsky», Amur River basin in the Russian represent another taxon. Far East, we recently reported Leskea gracilescens (Bez- MATERIALS AND METHODS godov et al., 2013), as these plants were sufficiently dif- Sampling. In addition to L. gracillescens-like plants, ferent, agreeing in many characters with this species as we included the most common phenotypes of L. poly- it was circumscribed in moss floras of North America carpa from the Russian Far East and Yakutia into the set (Redfearn, 2014; Crum & Anderson, 1981) and espe- for sequencing, and specimen from European Russia. 1 – Lomonosov Moscow State University, Biological Faculty, Geobotany Dept., Leninskie Gory Str. 1-12, Moscow 119234 Russia – Россия, 119234, Москва, Ленинские Горы, д. 1 стр. 12, Московский государственный университет, биологический факультет, кафедра геоботаники. E-mails: [email protected] & [email protected] 2 – Tsitsin Main Botanical Garden, Russian Academy of Sciences, Botanicheskaya Str., 4, Moscow 127276 Russia – Россия 127276 Москва, Ботаническая 4, ГБС РАН. E-mail: [email protected] 3 – Joint Stock Company Kama Research Institute on Complex Deep and Superdeep Borehole Investigations, Krasnoflotskaya str., 15, Perm, 614016 Russia. – Россия 614016, Пермь, Краснофлотская, 15, АО «Камский научно-исследовательский институт комплексных исследований глубоких и сверхглубоких скважин». E-mail: [email protected] 50 M.S. IGNATOV, A.G. BEZGODOV, O.I. KUZNETSOVA & E.A. IGNATOVA 100 μm 5 2 3 4 2 mm 1 cm 6 7 9 8 1 10 13 1 mm 15 14 11 12 16 17 18 Fig. 1. Leskea polycarpa (from: Russia, Yakutia, Khangalassky Distr., 2.VIII.2016, Ignatov & Ignatova #16-160, MHA). 1, 4 – habit, dry; 2–3 – capsules; 5 – leaf transverse section; 6 – stem transverse section; 7–9 – paraphyllia; 10 – upper laminal cells; 11 – basal laminal cells; 12 – median laminal cells; 13–15 – stem leaves; 16–18 – branch leaves. Scale bars: 1 cm for 4; 2 mm for 1–3; 1 mm for 13–18; 100 μm for 5–12. On the genus Leskea in Russia 51 100 μm 9 10 2 3 12 1 8 4 11 1 mm 14 15 13 6 5 7 17 18 19 22 16 20 21 23 24 25 32 29 30 27 31 33 26 28 Fig. 2. 1–5 – Leskea polycarpa (1–7 from: Russia, Amursakaya Prov., 1.VII.2010, Bezgodov #34, MHA; 8–15 – from: Russia, Sakhalin, Pisarenko #0p03765, MHA); 16–21 – L. gracilescens (from: U.S.A., Ohio, Buck #50264, NY); 22–25 – L. obscura (from: U.S.A., Buck 22206, NY); 26–33 – L. cf. gracilescens (from: Russia, Amurskaya Prov., 1.VII.2010, Bezgodov #210, MHA).1, 6, 16, 22, 26, 28– upper laminal cells; 2–3, 9–10, 20–21, 32–33 – branch leaves; 5–7, 13–15, 17–19, 23–25, 29–31 – stem leaves; 4, 11–12, 27 – paraphyllia. Scale bars: 1 mm for 2–3, 5–7, 9–10, 12–15, 17–21, 23–25, 29–33; 100 μm for 1, 4, 8, 11–12, 16, 22, 26–28. 52 M.S. IGNATOV, A.G. BEZGODOV, O.I. KUZNETSOVA & E.A. IGNATOVA Fig. 3. Five fragments of the ITS alignment of Leskea, showing characteristic substitutions indicating identity of Russian plants of different morphotypes in costrast to American specimens of L. gracilescens and L. obscura. Specimens details are in Table 1 and complete aliggnment in Supplementary materials. Molecular protocols. acute’ in “Moss Flora of North America” (Redfearn Jr., DNA extraction and amplification were done accord- 2008); ‘acute to obtuse’ in “The moss flora of Britain ing to the laboratory protocols described in Gardiner et and Ireland” (Smith, 2004); ‘agudo o acuminado’ in al. (2005). Vouchers specimens and GenBank accession “Flora bryofítica Ibérica” (Brugués, 2018); “blunt to numbers are listed in Table 1. Sequences were aligned acute” in “Moss flora of the Middle European Russia” manually in BioEdit (Hall, 1999). (Ignatov & Ignatova, 2004). Illustrations in all these flo- RESULTS ras show slightly secund leaves with more or less ob- The molecular results are partly shown in Fig. 3, and lique apices, only rarely straight and symmetric. This complete alignment is given as a supplementary mate- character, along with differentiated stem and branch rial. There are only very few substitutions between Ameri- leaves (stem leaves being longer than wide), is consid- can samples of L. gracilescens and L. obtusa and Eur- ered as important for separating of L. polycarpa from L. asian plants, thus we present their distinction by a parts gracilescens by Redfearn Jr. (2008): L. gracilescens, con- of alignment with substitutions, instead of a tree or hap- trary to L. polycarpa, has straight leaves with symmetri- lotype network. The ITS region is found to be variable cal apices, as well as stem and branch leaves equally for separation of these three entities by characteristic sub- hardly longer than wide. stitutions. Among them, L. gracilescens and L. polycarpa Most Leskea specimens from Russia fully agree with lack infraspecific variation in these positions, and L. the mentioned features of L. polycarpa, except for the obtusa has one vatiable position. anomalous specimen from Amurskaya Province referred Specimens from the Amur Province, as well as from previously to L. gracilescens. In Fig. 2: 1–15, two speci- Yakutia revealed no differences in sequences from speci- mens of L. polycarpa from Asian Russia are shown, with mens of the common phenotypes of L. polycarpa, both clearly asymmetrical stem leaves, oblique leaf apices and from the Far Eastern and European populations (Fig. 3). less oblong branch leaves with obtuse apices. However, specimen from Amurskaya Province (Fig. 2: 26–33) re- DISCUSSION sembles L. gracilescens from North America (Fig. 2: 16– Although the present study results in no taxonomic 21) rather than L. polycarpa in shape of stem and branch novelties, the fact of such extreme variation is worthy leaves, which are straight and have symmetrical apices. describing and illustrating (Figs. 1–2). Obviously, the Nevertheless, evidence from molecular markers suggests record of L. gracilescens from Russia and probably also that this deceiving resemblance is likely caused by the from China are based on the ecomorphs of L. polycarpa. influence of ecological conditions. Leaf apices in L. polycarpa are described as ‘blunt or Another peculiar specimen with all leaves obtuse, even Table 1. Specimens of the genus Leskea used in molecular study, with GenBank accession numbers. Species Specimen Isolate Genbank number L. gracilescens USA: Connecticut, coll. Tan #91502 (MHA) OK555 MH558262 L. gracilescens USA: Chicago, 6.X.2013 Ignatov (MHA) OK556 MH558263 L. gracilescens USA: New York, Buck 57814 (NY barcode 1221900) OK541 MH558264 L. obtusa USA: New Jersey, Buck 22206 (NY barcode 489277) OK545 MH558265 L.
Recommended publications
  • Floristic Study of Bryophytes in a Subtropical Forest of Nabeup-Ri at Aewol Gotjawal, Jejudo Island
    − pISSN 1225-8318 Korean J. Pl. Taxon. 48(1): 100 108 (2018) eISSN 2466-1546 https://doi.org/10.11110/kjpt.2018.48.1.100 Korean Journal of ORIGINAL ARTICLE Plant Taxonomy Floristic study of bryophytes in a subtropical forest of Nabeup-ri at Aewol Gotjawal, Jejudo Island Eun-Young YIM* and Hwa-Ja HYUN Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science, Seogwipo 63582, Korea (Received 24 February 2018; Revised 26 March 2018; Accepted 29 March 2018) ABSTRACT: This study presents a survey of bryophytes in a subtropical forest of Nabeup-ri, known as Geumsan Park, located at Aewol Gotjawal in the northwestern part of Jejudo Island, Korea. A total of 63 taxa belonging to Bryophyta (22 families 37 genera 44 species), Marchantiophyta (7 families 11 genera 18 species), and Antho- cerotophyta (1 family 1 genus 1 species) were determined, and the liverwort index was 30.2%. The predominant life form was the mat form. The rates of bryophytes dominating in mesic to hygric sites were higher than the bryophytes mainly observed in xeric habitats. These values indicate that such forests are widespread in this study area. Moreover, the rock was the substrate type, which plays a major role in providing micro-habitats for bryophytes. We suggest that more detailed studies of the bryophyte flora should be conducted on a regional scale to provide basic data for selecting indicator species of Gotjawal and evergreen broad-leaved forests on Jejudo Island. Keywords: bryophyte, Aewol Gotjawal, liverwort index, life-form Jejudo Island was formed by volcanic activities and has geological, ecological, and cultural aspects (Jeong et al., 2013; unique topological and geological features.
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Molecular Phylogeny of Chinese Thuidiaceae with Emphasis on Thuidium and Pelekium
    Molecular Phylogeny of Chinese Thuidiaceae with emphasis on Thuidium and Pelekium QI-YING, CAI1, 2, BI-CAI, GUAN2, GANG, GE2, YAN-MING, FANG 1 1 College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China. 2 College of Life Science, Nanchang University, 330031 Nanchang, China. E-mail: [email protected] Abstract We present molecular phylogenetic investigation of Thuidiaceae, especially on Thudium and Pelekium. Three chloroplast sequences (trnL-F, rps4, and atpB-rbcL) and one nuclear sequence (ITS) were analyzed. Data partitions were analyzed separately and in combination by employing MP (maximum parsimony) and Bayesian methods. The influence of data conflict in combined analyses was further explored by two methods: the incongruence length difference (ILD) test and the partition addition bootstrap alteration approach (PABA). Based on the results, ITS 1& 2 had crucial effect in phylogenetic reconstruction in this study, and more chloroplast sequences should be combinated into the analyses since their stability for reconstructing within genus of pleurocarpous mosses. We supported that Helodiaceae including Actinothuidium, Bryochenea, and Helodium still attributed to Thuidiaceae, and the monophyletic Thuidiaceae s. lat. should also include several genera (or species) from Leskeaceae such as Haplocladium and Leskea. In the Thuidiaceae, Thuidium and Pelekium were resolved as two monophyletic groups separately. The results from molecular phylogeny were supported by the crucial morphological characters in Thuidiaceae s. lat., Thuidium and Pelekium. Key words: Thuidiaceae, Thuidium, Pelekium, molecular phylogeny, cpDNA, ITS, PABA approach Introduction Pleurocarpous mosses consist of around 5000 species that are defined by the presence of lateral perichaetia along the gametophyte stems. Monophyletic pleurocarpous mosses were resolved as three orders: Ptychomniales, Hypnales, and Hookeriales (Shaw et al.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Banisteria21 Piedmontmosses
    28 BANISTERIA No. 21, 2003 PLATE 7 BREIL: PIEDMONT MOSSES 29 2a. Leaves not keeled (V-shaped in cross-section), Hygroamblystegium tenax (Hedw.) Jenn. lying flat on a slide; midrib flat, not prominent (Amblystegium tenax of some authors) - On wet rocks at back; leaf tip usually acute; capsules exserted in and beside brooks. Amelia, Buckingham, Campbell, ........................................................ G. laevigata Mecklenburg, Prince Edward, Spotsylvania counties. 2b. Leaves keeled, some lying folded at least at Plate 7. apex; capsules immersed............. G. apocarpa 41. Hygrohypnum Lindb. 1. Grimmia alpicola Hedw. On dry granite rock. Prince Edward County. Creeping, irregularly branched, moderate-sized mosses, in shiny, yellowish to golden-brown soft mats. 2. Grimmia apocarpa Hedw. Leaves concave, crowded, with midrib short, single On rocks in dry exposed places. Lunenburg, Nottoway or forked, strong. Setae long, reddish, capsules counties. Plate 7. cylindric, almost erect, curved when dry. 3. Grimmia laevigata (Brid.) Brid. Hygrohypnum eugyrium (BSG) Loeske On exposed rock or soil over rock. This species is On wet rocks in or along streams. Buckingham, important in primary succession on vast expanses of Spotsylvania counties. Plate 7. flat granitic rocks along the Fall Line and throughout the Piedmont. Albemarle, Amelia, Lunenburg, 42. Hypnum Hedw. Nottoway, Prince Edward, Spotsylvania counties. Creeping slender to robust mosses, irregularly to 38. Haplohymenium Dozy & Molk pinnately branched, in green, yellowish, or golden green mats or tufts. Stems and branches usually hooked Small creeping plants, freely and irregularly branched, at tips. Leaves crowded, strongly curved and turned in dull, dark green or yellow-green to brown rigid mats. to one side. Setae long; capsules erect to inclined, cylindric, curved and asymmetric.
    [Show full text]
  • Systematics and Ecology of the Moss Genus Scleropodium (Brachytheciaceae)
    Systematics and ecology of the moss genus Scleropodium (Brachytheciaceae) By Benjamin Elias Carter A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Brent D. Mishler, Chair Professor Bruce G. Baldwin Professor Chelsea D. Specht Spring 2012 Abstract Systematics and ecology of the moss genus Scleropodium (Brachytheciaceae) By Benjamin Elias Carter Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Brent D. Mishler, Chair Scleropodium is a genus of six species in the Brachytheciaceae. Although they are common in north temperate zones, they have not received monographic treatment in over a century. The aims of this study were to test species circumscriptions within the genus with molecular data, complete a thorough global taxonomic treatment of the genus, and to quantitatively investigate the ecological preferences of the species. A molecular phylogenetic study was conducted using 104 individuals spanning the range of morphological variation and the geographic extent of the genus. Maximum Parsimony and Bayesian phylogenetic analyses and a statistical parsimony network analysis of ITS and the chloroplast rps4, bsbA2 and trnG regions were performed. Although slight differences were found among analyses, there were six clear molecular groups. Five of these corresponded directly to the species Scleropodium californicum, S. cespitans, S. julaceum, S. obtusifolium and S. touretii. The sixth species, S. occidentale, is new to science and is described here. It is similar in ecology and morphology to S. obtusifolium, but has several diagnostic features in both molecular markers and morphological characters.
    [Show full text]
  • A Molecular Phylogeny of Hypnales (Bryophyta) Inferred from ITS2 Sequence-Structure Data Benjamin Merget, Matthias Wolf*
    Merget and Wolf BMC Research Notes 2010, 3:320 http://www.biomedcentral.com/1756-0500/3/320 SHORT REPORT Open Access A molecular phylogeny of Hypnales (Bryophyta) inferred from ITS2 sequence-structure data Benjamin Merget, Matthias Wolf* Abstract Background: Hypnales comprise over 50% of all pleurocarpous mosses. They provide a young radiation complicating phylogenetic analyses. To resolve the hypnalean phylogeny, it is necessary to use a phylogenetic marker providing highly variable features to resolve species on the one hand and conserved features enabling a backbone analysis on the other. Therefore we used highly variable internal transcribed spacer 2 (ITS2) sequences and conserved secondary structures, as deposited with the ITS2 Database, simultaneously. Findings: We built an accurate and in parts robustly resolved large scale phylogeny for 1,634 currently available hypnalean ITS2 sequence-structure pairs. Conclusions: Profile Neighbor-Joining revealed a possible hypnalean backbone, indicating that most of the hypnalean taxa classified as different moss families are polyphyletic assemblages awaiting taxonomic changes. Background encompassing a total of 1,634 species in order to test Pleurocarpous mosses, which are mainly found in tropi- the hypothesis that the ITS2 sequence-structure can be cal forests, account for more than 50% of all moss spe- used to determine the phylogeny of Hypnales and to cies [1,2]. Brotherus in 1925 used morphological resolve especially its phylogenetic backbone. A rapid characters to partition the pleurocarpous into three radiation in the early history of pleurocarpous mosses orders. These were Leucodontales (= Isobryales), Hoo- has resulted in low molecular diversity generally, but keriales and Hypnobryales (= Hypnales) [3]. Later mole- particularly in the order Hypnales [5,7].
    [Show full text]
  • Liverworts, Mosses and Hornworts of Afghanistan - Our Present Knowledge
    ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019 DOI: 10.2478/cszma-2019-0002 Published: online 1 July 2019, print July 2019 Liverworts, mosses and hornworts of Afghanistan - our present knowledge Harald Kürschner & Wolfgang Frey Liverworts, mosses and hornworts of Afghanistan ‒ our present knowledge. – Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019. Abstract: A new bryophyte checklist for Afghanistan is presented, including all published records since the beginning of collection activities in 1839 ‒1840 by W. Griffith till present. Considering several unidentified collections in various herbaria, 23 new records for Afghanistan together with the collection data can be added to the flora. Beside a new genus, Asterella , the new records include Amblystegium serpens var. serpens, Brachythecium erythrorrhizon, Bryum dichotomum, B. elwendicum, B. pallens, B. weigelii, Dichodontium palustre, Didymodon luridus, D. tectorum, Distichium inclinatum, Entosthodon muhlenbergii, Hygroamblystegium fluviatile subsp. fluviatile, Oncophorus virens, Orthotrichum rupestre var. sturmii, Pogonatum urnigerum, Pseudocrossidium revolutum, Pterygoneurum ovatum, Schistidium rivulare, Syntrichia handelii, Tortella inflexa, T. tortuosa, and Tortula muralis subsp. obtusifolia . Therewith the number of species increase to 24 liverworts, 246 mosses and one hornwort. In addition, a historical overview of the country's exploration and a full biogeography of Afghan bryophytes is given. Key words: Bryophytes, checklist, flora, phytodiversity. Introduction Recording, documentation, identification and classification of organisms is a primary tool and essential step in plant sciences and ecology to obtain detailed knowledge on the flora of a country. In many countries, such as Afghanistan, however, our knowledge on plant diversity, function, interactions of species and number of species in ecosystems is very limited and far from being complete.
    [Show full text]
  • Lord Hill Regional Park Plant Checklist Revised: 2012, 2017 Plants Will Often Be at Other Locations Besides Those Listed
    Lord Hill Regional Park Plant Checklist Revised: 2012, 2017 Plants will often be at other locations besides those listed Key to locations: BLP = Beaver Lodge Pond PL = Parking Lot BP = Beaver Pond Trail QT = Quarry Trail BPE = Beaver Pond East Shore RB = Red Barn Trail Cut BPW = Beaver Pond West Shore RL = Red Line Trail BSA = Bike Skills Area RT = River Trail CRP = Cross Roads Pond RTCO = River Tr cut-off EW = E-W trail South of Meetcutter RVT = Riverview TR LTP = Lower Temple Pond Trail SHL = South Shore Hidden Lake M = Many sites including… STPL = South Temple Pond Loop MCT = Meet Cutter Tr TPCT = Temple Pond closed Trail MFP = Midway footpath TPES = Temple Pond East Shore ML = Marsh Lake TPVT = Temple Pond View Trail MT = Main Trail TPST = Trails south of Temple Pond MTC = Main Trail Cutoff TS = Tr. Head Spur NET = NE Trails Area VP =ViewPoint 630 ft NTP = North Temple Pond Loop VPT = View Pt Trail Spur PiT = Pipeline Trail WLT = West Loop Trails PiTTO = Pipeline Turn Out WPS = West Pond Shore Genus: Species: Some Locations: Common Name: Pojar pg: Abies amabilis MT Silver fir 33 Abies grandis MFP?WLT? PiT Grand fir 34 Acer circinatum M, BSA,MCT, BPW,STPL,WLT Vine maple 93 Acer macrophyllum M, VPT,MCT, RT,MFP,STPL Big leaf maple 45 Achillea millefolium PiT Yarrow 279 Achlys triphylla TPCT, BLP Vanilla-leaf 312 Adiantum pedatum NTP, QT Maidenhair fern 425 Agrostis sp. PiT Agrostis grass 367 Agrostis tenuis WLT Colonial bent grass 367 Alisma plantago-aquatica BPW, BPE, CRP Water plantain 337 Alnus rubra M, SHL,MCT,MFP,STPL, WLT Red Alder 44 Amalenchier alnifolia VP, VPT Serviceberry, Saskatoon 72 Anaphalis margaritacea QT Pearly everlasting 304 Anthelia sp.
    [Show full text]
  • Hygrohypnum (Amblystegiaceae, Bryopsida) in the Iberian Peninsula
    Cryptogamie, Bryologie, 2007, 28 (2): 109-143 © 2007 Adac. Tous droits réservés Hygrohypnum (Amblystegiaceae, Bryopsida) in the Iberian Peninsula Gisela OLIVÁN a*, Esther FUERTES b and Margarita ACÓN c a Departamento de Biología Vegetal I, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain ([email protected]) b Departamento de Biología Vegetal I, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain ([email protected]) c Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain ([email protected]) Abstract – The genus Hygrohypnum Lindb. is studied for the Iberian Peninsula, based mainly on herbarium specimens kept in BM, PC, S and the main Iberian herbaria. Eight species of Hygrohypnum occur in the Iberian Peninsula: Hygrohypnum cochlearifolium , H. duriusculum , H. eugyrium , H. luridum , H. molle, H. ochraceum , H. smithii and H. styria- cum . Of these, H. eugyrium and H. cochlearifolium are considered to be extinct in the Iberian Peninsula. Hygrohypnum alpestre and H. polare are definitively excluded from the Iberian bryophyte flora, since its occurrence at present or in the past could not be confirmed. Only the occurrence of Hygrohypnum ochraceum has been confirmed for Portugal. Keys, descriptions, illustrations, SEM photographs and distribution maps of the species of Hygrohypnum in the Iberian Peninsula are provided. Hygrohypnum /Amblystegiaceae / Iberian Peninsula / flora / taxonomy / distribution INTRODUCTION Taxonomic history of Hygrohypnum The generic name Hygrohypnum was introduced by Lindberg (1872) to replace the illegitimate name Limnobium used by Schimper (1853), who was the first to treat the genus as separate from the broadly conceived Hypnum Hedw.
    [Show full text]
  • Field Guide to the Moss Genera in New Jersey by Keith Bowman
    Field Guide to the Moss Genera in New Jersey With Coefficient of Conservation and Indicator Status Keith Bowman, PhD 10/20/2017 Acknowledgements There are many individuals that have been essential to this project. Dr. Eric Karlin compiled the initial annotated list of New Jersey moss taxa. Second, I would like to recognize the contributions of the many northeastern bryologists that aided in the development of the initial coefficient of conservation values included in this guide including Dr. Richard Andrus, Dr. Barbara Andreas, Dr. Terry O’Brien, Dr. Scott Schuette, and Dr. Sean Robinson. I would also like to acknowledge the valuable photographic contributions from Kathleen S. Walz, Dr. Robert Klips, and Dr. Michael Lüth. Funding for this project was provided by the United States Environmental Protection Agency, Region 2, State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809. Recommended Citation: Bowman, Keith. 2017. Field Guide to the Moss Genera in New Jersey With Coefficient of Conservation and Indicator Status. New Jersey Department of Environmental Protection, New Jersey Forest Service, Office of Natural Lands Management, Trenton, NJ, 08625. Submitted to United States Environmental Protection Agency, Region 2, State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809. i Table of Contents Introduction .................................................................................................................................................. 1 Descriptions
    [Show full text]