Research Project Summmary Main Research

Total Page:16

File Type:pdf, Size:1020Kb

Research Project Summmary Main Research Research project summmary Main research fields: zoology and reproductive physiology specialization fields: Animal reproduction, Behavioural ecology, Behavioural physiology, sociobiology. My research interests focus mainly on the sociobiology of African rodent moles (Bathyergidae) and in particular the extrinsic and intrinsic factors that have led to the evolution of sociality in this remarkable endemic African family. My research group is fundamentally interested in elucidating the modes and mechanisms that are responsible for reproductive suppression in the non-reproductive females of the various species. Research is currently being directed at the neuroendocrine and molecular levels to elucidate the extent, nature and location of GnRH suppression. We are also interested in the photic and thermic input in the control of reproduction in seasonally reproducing mole-rats and the potential lack of a role in aseasonally breeding bathyergids. Long term population studies on social mole-rats from mesic and xeric environments are underway. These studies are providing empirical data on the spatial distribution of colonies, longevities, factors restricting and promoting dispersal, vagility, foraging methods and lifetime reproductive success. We are interested in the genetic relatedness of colonies and also the type of paternal skew operational in the social genera. This work is being carried out in collaboration with Dr Chris Faulkes at Queen Mary and Westfield College, London. Students currently under supervision MSc (research) 1. Ms. Kemba Butler Neuroendocrinology of induced ovulation in the highveld mole-rat (Cryptomys hottentotus pretoriae) 2. Mr. Andre Prins What makes a good helper? A behavioural study of cooperation in Damaraland mole-rats (Fukomys damarensis). 3. Mr. Josh Sarli Seasonal Reproductive Cycle and Parasite Burden of Two Small Mammals from Saudi Arabia. Post-Doctoral 1. Dr. Sarita Maree 1. The conservation of golden moles (Afrosoricida; Chrysochloridae) in South Africa 2. Dr. Katarina Medger The reproductive biology of two small southern African mammals, the spiny mouse, Acomys spinosissimus (Rodentia: Muridae) and the Eastern rock elephant-shrew, Elephantulus myurus (Macroscelidea: Macroscelididae) 3. Dr. M Oosthuizen Factors influencing neurogenesis and memory in three mole-rat species exhibiting a wide spectrum of social organisation. Students currently under co-supervision MSc (research) 1. Ms. Liz Archer The effects of the environment and sociality on parasite transmission and MHC selection in common mole-rats (Cryptomys hottentotus hottentotus) 2. Mr. Josh Sarli Seasonal Reproductive Cycle and Parasite Burden of Two Small Mammals from Saudi Arabia. PhD 1. Mr. Low de Vries Ecology of the aardwolf, Proteles cristatus with special reference to diet, home range and prey abundance 2. Mrs. Jestina Katandukila A multidisplinary analysis on the status of the north-east African mole-rat, Tachyoryctes splendens (Rodentia: Spalacidae) from Tanzania: systematics, ecology, physiology and epidemiology 3. Mr. James van Sandwyk Molecular epidemiology and evolution of Cardioviruses (Picornaviridae) in endemic South African murid rodents Recent Publications 2013 1. Lutermann, H., Young, A.J., Bennett, N.C. (2013) Reproductive status and testosterone among females in cooperative mole-rat societies. General and Comparative Endocrinology. 187:60-65 2. Lutermann, H., Bennett, N.C., Speakman, J.R., Scantlebury, M. (2013) Energetic benefits of sociality offset the costs of parasitism in a cooperative mammal. PLoS One. 8:57969-57969 3. van Sandwyk, J., Bennett, N.C., Swanepoel, R., Bastos, A.D.S. (2013) Retrospective genetic characterisation of encephalomyocarditis viruses from African elephant and swine recovers two distinct lineages in South Africa. Veterinary Microbiology. 162(1):23-31 2012 1. Lutermann, H., Bodenstein, C., Bennett, N.C. (2012) Natural parasite infection affects the tolerance but not the response to a simulated secondary parasite infection. PLoS One. 7:52077-52077 2. Kotze, R., Bennett, N., Cameron, E.Z., de Vries, J.L., Marneweck, D.G., Pirk, C.W.W., Dalerum, F. (2012) Temporal patterns of den use suggest polygamous mating patterns in an obligate monogamous mammal. Animal Behaviour. 84:1573-1578 3. Medger, K., Chimimba, C.T., Bennett, N.C. (2012) Seasonal reproduction in the eastern rock elephant-shrew: Influenced by rainfall and ambient temperature? Journal of Zoology. 288:283-293 4. Ganswindt, A., Muilwijk, C., Engelkes, M., Muenscher, S., Bertschinger, H., Paris, M., Palme, R., Cameron, E., Bennett, N., Dalerum, F. (2012) Validation of Noninvasive Monitoring of Adrenocortical Endocrine Activity in Ground-Feeding Aardwolves (Proteles cristata): Exemplifying the Influence of Consumption of Inorganic Material for Fecal Steroid Analysis. Physiological and Biochemical Zoology. 85(2):194-199 5. Lutermann, H., Bennett, N.C. (2012) Determinants of Helminth Infection in a Subterranean Rodent, the Cape Dune Mole-Rat (Bathyergus suillus). Journal of Parasitology. 98:686-689 6. Brettschneider, H., Bennett, N.C., Chimimba, C.T., Bastos, A.D.S. (2012) Bartonellae of the Namaqua rock mouse, Micaelamys namaquensis (Rodentia: Muridae), from South Africa. Veterinary Microbiology. 157:132-136 7. Medger, K., Chimimba, C.T., Bennett, N.C. (2012) Seasonal changes in reproductive development in male spiny mice (Acomys spinosissimus) from South Africa. Mammalian Biology. 77:153-159 8. Medger, K., Chimimba, C.T., Bennett, N.C. (2012) Reproductive photoresponsiveness in male spiny mice from South Africa. Journal of Zoology. 286:243-249 2011 1. Viljoen, H., Bennett, N.C., Ueckermann, E.A., Lutermann, H. (2011) The role of host traits, season and group size on parasite burdens in a cooperative mammal. PLoS One. 6:- 2. Viljoen, H., Bennett, N.C., Lutermann, H. (2011) Life-history traits, but not season, affect the febrile response to a lipopolysaccharide challenge in highveld mole-rats. Journal of Zoology. 285:222-229 2010 1. Faulkes, C.G., Sichilima, A.M., van Sandwyk, J., Lutermann, H., Bennett, N.C. (2010) Control of ovulation in female giant mole-rats Fukomys mechowii(Rodentia: Bathyergidae), and phylogenetic trends within the family. Journal of Zoology. 282:64-74 2. Bennett, N.C., van Sandwyk, J., Lutermann, H. (2010) The pattern of ovulation in Ansell�s mole-rat, Fukomys anselli: phylogenetic or ecological constraints? Journal of Zoology. 281:66-73 3. Young, A.J., Oosthuizen, M.K., Lutermann, H., Bennett, N.C. (2010) Physiological suppression eases in Damaraland mole-rat societies when ecological constraints on dispersal are relaxed. Hormones and Behavior. 57:177-183 2009 1. Lutermann, H., Bennett, N.C. (2009) Parasites - a cost of sociality? Journal of the South African Veterinary Association. 80:131-131 2. Costanzo, M.S., Bennett, N.C., Lutermann, H. (2009) Spatial learning and memory in African mole-rats: the role of sociality and sex. Physiology and Behaviour. 96:128-134 3. Taylor, P.J., Maree, S., van Sandwyk, J., Kerbis Peterhans, J.C., Stanley, W.T., Verheyen, E., Kaliba, P., Verheyen, W., Kaleme, P., Bennett, N.C. (2009) Speciation mirrors geomorphology and palaecclimatic history in African laminate-toothed rats (Muridae; Otomyini) of the Otomys denti and O. lacustris species-complexes in the. Biological Journal of the Linnean Society. 96:913-941 4. Bennett, N.C., Faulkes, C.G., Hart, L., Jarvis, J.U.M. (2009) The Cape mole-rat, Bathyergus suillus. Mammalian Species. 828:1-7 2008 1. de Vries, L., Oosthuizen, M.K., Sichilima, A.M., Bennett, N.C. (2008) Circadian rhythms of locomotor activity in Ansell's mole-rat: are mole-rat's clocks ticking? Journal of Zoology. 276:343-349 2. Kotze, J., Bennett, N.C., Scantlebury, M. (2008) The energetics of huddling in two species of mole-rat (Rodentia: Bathyergidae). Physiology and Behaviour. 93:215-221 3. Bennett, N.C. (2008) The Mammal Research Institute 1966-2006. Transactions of the Royal Society of South Africa . 63(1):53-60 4. Manjerovic, M.B., Kinahan, A.A., Waterman, J.M., Bennett, N.C., Bateman, P.W. (2008) Structure and allometry of genitalia in males and females of a social African ground squirrel with high polygynandry. Journal of Zoology. 275:375-380 5. Oosthuizen, M.K., Bennett, N.C., Lutermann, H., Coen, C.W. (2008) Reproductive suppression and the seasonality of reproduction in the social Natal mole-rat (Cryptomys hottentotus natalensis). General and Comparative Endocrinology. 159:236-240 6. Sichilima, A.M., Bennett, N.C., Faulkes, C.G., Le Comber, S.C. (2008) Evolution of African mole-rats sociality: burrow architecture, rainfall and foraging in colonies of the cooperatively breeding Fukomys mechowii. Journal of Zoology. 275:276-282 7. Scantlebury, M., Waterman, J.M., Bennett, N. (2008) Alternative reproductive tactics in male Cape ground squirrels Xerus inauris. Physiology and Behaviour. 94:359-367 8. Scantlebury, M., Lovegrove, B.G., Jackson, C.R., Bennett, N.C., Lutermann, H. (2008) Hibernation and non-shivering thermogenesis in the Hottentot golden mole (Amblysomus hottentottus. J Comp Physiol B. 178:887-897 9. Cameron, E.Z., Lemons, P.R., Bateman, P.W., Bennett, N.C. (2008) Experimental alteration of litter sex ratios in a mammal. Proceedings of the Royal Society London, B. 275:323-327 10. Lutermann, H., Bennett, N.C. (2008) Strong immune function: a benefit promoting the evolution of sociality?. Journal of Zoology. 275(1):26-32 2007 1. Jackson, T.P., Waterman, J.M., Bennett, N.C. (2007) LH responses to single doses of exogenous GnRH in female social ground squirrels
Recommended publications
  • K'2 108\3-2 Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.2800 Mitlibraries Email: [email protected] Document Services
    LABYRINTHOS by GREGORY PATRICK GARVEY B.S. University of Wisconsin, Madison (1975) M.F.A. University of Wisconsin, Madison (1980) Submitted to the Department of Architecture in Partial Fulfillment of the Requirements of the Degree of Master of Science in Visual Studies at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 1982 Gregory Patrick Garvey 1982 The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Author: 6ppftr hpt of Arcitec,4*e Certified by: Thesis Suiperysor, Otto Piene Accepted by: D partment of Architecture Nlicholas Negroponte, Chairman, Ro"artmental Committee on Graduate Students K'2 108\3-2 Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.2800 MITLibraries Email: [email protected] Document Services http://libraries.mit.eduldocs DISCLAIMER OF QUALITY Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible. Thank you. The images contained in this document are of the best quality available. -2- LABYRINTHOS by GREGORY PATRICK GARVEY Submitted to the Department of Architecture on August 6, 1982 in partial fulfillment of the requirements for the Degree of Master of Science in Visual Studies. Otto Piene, Thesis Supervisor ABSTRACT Composition, in time and space is discussed as a general problem in graphics, music, film/video, landscape architecture and archi- tecture.
    [Show full text]
  • Proceedings of the United States National Museum
    FIELD NOTES ON VERTEBRATES COLLECTED BY THE SMITHSONIAN - CHRYSLER EAST AFRICAN EXPEDI- TION OF 1926 By Arthur Loveridge, Of the Museum of Comparative Zoology, Cambridge, Mass. In 1926 an expedition to secure live animals for the United States National Zoological Park at Washington was made possible through the generosity of Mr. Walter Chrysler. Dr. W. M. Mann, the director of the Zoological Park, has already published a report on the trip; ^ the following observations were made by the present writer, who was in charge of the base camp at Dodoma during three and a half of the four months that the expedition was in the field. The personnel of the party consisted of Dr. W. M. Mann, leader of the expedition; F. G. Carnochan, zoologist; Stephen Haweis, artist; Charles Charlton, photographer; and the writer. Several local hunters assisted the party in the field for longer or shorter periods, and Mr. Le Mesurier operated the Chrysler car. The expedition landed at Dar es Salaam, capital and chief port of entry for Tanganyika Territory (late German East Africa), on Thursday, May 6, and left on the following Monday by train for Dodoma, which had been selected as headquarters. The expedition sailed from Dar es Salaam on September 9. Dodoma is situated on the Central Railway almost exactly one- third of the distance between the coast and Lake Tanganyika. It was primarily selected as being a tsetse-free area and therefore a cattle country where milk in abundance could be obtained for the young animals; it is also the center of a region unusually free from stock diseases.
    [Show full text]
  • Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats
    Article Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats Graphical Abstract Authors Sonja J. Pyott, Marcel van Tuinen, Laurel A. Screven, ..., Joseph Santos-Sacchi, Amanda M. Lauer, Thomas J. Park Correspondence [email protected] In Brief Pyott et al. attribute comparatively poor hearing in African naked and Damaraland mole-rats to lack of cochlear amplification, disrupted hair bundles, and hair bundle proteins bearing deafness- associated amino acid substitutions. Positive selection in some bundle proteins suggests altered hearing is adaptive to subterranean and eusocial lifestyles. Highlights d Hearing is comparatively poor in African naked and Damaraland mole-rats d These mole-rats lack cochlear amplification and have disrupted hair bundles d Hair bundle proteins bear deafness-associated amino acid substitutions d Positive selection in some bundle proteins suggests altered hearing is adaptive Pyott et al., 2020, Current Biology 30, 1–13 November 16, 2020 ª 2020 Elsevier Inc. https://doi.org/10.1016/j.cub.2020.08.035 ll Please cite this article in press as: Pyott et al., Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial Af- rican Mole-Rats, Current Biology (2020), https://doi.org/10.1016/j.cub.2020.08.035 ll Article Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats Sonja J. Pyott,1,9,* Marcel van Tuinen,1 Laurel A. Screven,2 Katrina M. Schrode,2 Jun-Ping Bai,3 Catherine M. Barone,4 Steven D. Price,5 Anna Lysakowski,5 Maxwell Sanderford,6 Sudhir Kumar,6,7 Joseph Santos-Sacchi,8 Amanda M.
    [Show full text]
  • Ectoparasitic Community of the Mahali Mole-Rat, Cryptomys Hottentotus
    Fagir et al. Parasites Vectors (2021) 14:24 https://doi.org/10.1186/s13071-020-04537-w Parasites & Vectors SHORT REPORT Open Access Ectoparasitic community of the Mahali mole-rat, Cryptomys hottentotus mahali: potential host for vectors of medical importance in South Africa Dina M. Fagir1* , Nigel C. Bennett1†, Eddie A. Ueckermann2, Alexandra Howard1 and Daniel W. Hart1† Abstract Background: The endemic rodent family of Bathyergidae in Africa, particularly South Africa, are understudied as reservoirs of diseases of signifcant medical importance. Considering the diversity and wide distribution of African mole-rats in South Africa, many of these bathyergids could act as carriers of zoonoses. Methods: The present study assessed the ectoparasite community of the Mahali mole-rat (Cryptomys hottentotus mahali). We aimed to identify possible parasitic arthropods that may infest this mole-rat species and explore host preference, contributions of seasonality, host sex and body mass as well as social class and colony size on ectoparasite assemblage prevalence and abundance. Results: A limited number of ectoparasite species were found on C. h. mahali belonging to two signifcant taxa: mites (Acari) and feas, with mites being the most prevalent and abundant. We recorded the presence of X. philoxera, a fea well known as the principal reservoir of plague in the southern African region on the Mahali mole-rats. Only three mite species were collected: Androlaelaps scapularis, Androlaelaps capensis and Laelaps liberiensis. Seasonal peaks in prevalence and abundance of X. philoxera and A. scapularis were observed during summer. Xenopsylla philoxera abundance and A. scapularis loads signifcantly increased on reproductive mole-rat individuals in comparison to non- reproductive individuals.
    [Show full text]
  • Micromammal Paleoecology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CU Scholar Institutional Repository University of Colorado, Boulder CU Scholar Anthropology Graduate Theses & Dissertations Anthropology Spring 1-1-2011 Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The rC adle of Humankind World Heritage Site, South Africa Jennifer Nicole Leichliter University of Colorado at Boulder, [email protected] Follow this and additional works at: http://scholar.colorado.edu/anth_gradetds Part of the Biological and Physical Anthropology Commons Recommended Citation Leichliter, Jennifer Nicole, "Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The Cradle of Humankind World Heritage Site, South Africa" (2011). Anthropology Graduate Theses & Dissertations. Paper 7. This Thesis is brought to you for free and open access by Anthropology at CU Scholar. It has been accepted for inclusion in Anthropology Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact [email protected]. Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The Cradle of Humankind World Heritage Site, South Africa by Jennifer Leichliter B.A., Colorado College, 2008 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Master’s of Anthropology Department of Anthropology 2011 This thesis entitled: Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The Cradle of Humankind World Heritage Site, South Africa written by Jennifer Nicole Leichliter has been approved for the Department Anthropology ________________________________________________ Dr.
    [Show full text]
  • Increased Longevity Due to Sexual Activity in Mole-Rats Is Associated
    RESEARCH ARTICLE Increased longevity due to sexual activity in mole-rats is associated with transcriptional changes in the HPA stress axis Arne Sahm1*, Matthias Platzer1, Philipp Koch2, Yoshiyuki Henning3, Martin Bens4, Marco Groth4, Hynek Burda5,6, Sabine Begall5, Saskia Ting7, Moritz Goetz7, Paul Van Daele8, Magdalena Staniszewska9, Jasmin Mona Klose9, Pedro Fragoso Costa9, Steve Hoffmann1†, Karol Szafranski2†, Philip Dammann5,10† 1Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany; 2Core Facility Life Science Computing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany; 3Institute of Physiology, University Hospital, University of Duisburg-Essen, Essen, Germany; 4Core Facility Sequencing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany; 5Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; 6Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic; 7Institute of Pathology and Neuropathology, University Hospital, University of Duisburg-Essen, Essen, Germany; 8Department of Zoology, University of South Bohemia, Cˇ eske´ Budeˇjovice, Czech Republic; 9Department of Nuclear Medicine, University Hospital, University of Duisburg-Essen, Essen, Germany; 10Central Animal Laboratory, University Hospital, University of Duisburg-Essen, Essen, Germany *For correspondence: [email protected] † Sexual activity and/or reproduction are associated with a doubling of life expectancy in These authors contributed Abstract equally to this work the long-lived rodent genus Fukomys. To investigate the molecular mechanisms underlying this phenomenon, we analyzed 636 RNA-seq samples across 15 tissues. This analysis suggests that Competing interests: The changes in the regulation of the hypothalamic–pituitary–adrenal stress axis play a key role authors declare that no regarding the extended life expectancy of reproductive vs.
    [Show full text]
  • Extended Longevity of Reproductives Appears to Be Common in Fukomys Mole-Rats (Rodentia, Bathyergidae)
    Extended Longevity of Reproductives Appears to be Common in Fukomys Mole-Rats (Rodentia, Bathyergidae) Philip Dammann1,3*, Radim Sˇ umbera2, Christina Maßmann1, Andre´ Scherag4, Hynek Burda1 1 Department of General Zoology, Institute of Biology, University of Duisburg-Essen, Essen, Germany, 2 Department of Zoology, Faculty of Science, University of South Bohemia, Cˇ eske´ Budeˇjovice, Czech Republic, 3 Central Animal Laboratory, University of Duisburg-Essen Medical School, Essen, Germany, 4 Institute for Medical Informatics, Biometry and Epidemology, University of Duisburg-Essen Medical School, Essen, Germany Abstract African mole-rats (Bathyergidae, Rodentia) contain several social, cooperatively breeding species with low extrinsic mortality and unusually high longevity. All social bathyergids live in multigenerational families where reproduction is skewed towards a few breeding individuals. Most of their offspring remain as reproductively inactive ‘‘helpers’’ in their natal families, often for several years. This ‘‘reproductive subdivision’’ of mole-rat societies might be of interest for ageing research, as in at least one social bathyergid (Ansell’s mole-rats Fukomys anselli), breeders have been shown to age significantly slower than non- breeders. These animals thus provide excellent conditions for studying the epigenetics of senescence by comparing divergent longevities within the same genotypes without the inescapable short-comings of inter-species comparisons. It has been claimed that many if not all social mole-rat species may have evolved similar ageing patterns, too. However, this remains unclear on account of the scarcity of reliable datasets on the subject. We therefore analyzed a 20-year breeding record of Giant mole-rats Fukomys mechowii, another social bathyergid species. We found that breeders indeed lived significantly longer than helpers (ca.
    [Show full text]
  • RESEARCH ARTICLE Magnetic Compass Orientation in Two Strictly Subterranean Rodents: Learned Or Species-Specific Innate Directional Preference?
    3649 The Journal of Experimental Biology 215, 3649-3654 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.069625 RESEARCH ARTICLE Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference? Ludmila Oliveriusová1, Pavel Nemec2,*, Zuzana Králová2 and Frantisek Sedlácek1 1Department of Zoology, Faculty of Science, University of South Bohemia, CZ-370 05 Ceske Budejovice, Czech Republic and 2Department of Zoology, Faculty of Science, Charles University in Prague, CZ-128 44 Praha 2, Czech Republic *Author for correspondence ([email protected]) SUMMARY Evidence for magnetoreception in mammals remains limited. Magnetic compass orientation or magnetic alignment has been conclusively demonstrated in only a handful of mammalian species. The functional properties and underlying mechanisms have been most thoroughly characterized in Ansellʼs mole-rat, Fukomys anselli, which is the species of choice due to its spontaneous drive to construct nests in the southeastern sector of a circular arena using the magnetic field azimuth as the primary orientation cue. Because of the remarkable consistency between experiments, it is generally believed that this directional preference is innate. To test the hypothesis that spontaneous southeastern directional preference is a shared, ancestral feature of all African mole-rats (Bathyergidae, Rodentia), we employed the same arena assay to study magnetic orientation in two other mole-rat species, the social giant mole-rat, Fukomys mechowii, and the solitary silvery mole-rat, Heliophobius argenteocinereus. Both species exhibited spontaneous western directional preference and deflected their directional preference according to shifts in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field.
    [Show full text]
  • Longevity Survey
    LONGEVITY SURVEY LENGTH OF LIFE OF MAMMALS IN CAPTIVITY AT THE LONDON ZOO AND WHIPSNADE PARK The figures given in the following tables are based on the records of the Zoological Society of London for the years 1930 to 1960. The number of specimens in each sample is given in the first column. The percentage of the sample that died in less than a year at the zoo is iven in second column. In this way ‘delicate’ zoo species can be noted at a glance. An average fife span of all those individuals living for more than a year at the zoo is given (in months) in the third column. In the fourth column the maximum individual life-span is noted for each species. It must be emphasized that the age of specimens arriving at the zoo is seldom known accur- ately and no allowance has been made for this. All figures refer to the period of time between arrival at the zoo and death at the zoo. Actual life-spans will, therefore, usually be longer than those given. Number o % dead in Average age Ma.life individual less than (in nronths) span in sample 12 month of those (in months) livi 12 man% or longer ORDER MONOTREMATA Tachyglossus aculeatirs Echidna 7 I00 10 Zuglossus bruijni Druijns Echidna 2 - 368 ORDER MARSUPIALIA Caluromys philander Philander Opossum 3 - 50 Philander opossum Quica Opossum I - 1s Lutreolina crussicaudufa Thick-tailed Opossum 6 50 1s Metachirus nudicuudatirs Rat-tailed Opossum 14 71 27 Didelphis marsupialis Virginian Opossum 34 82 26 Didelphis azarae Azara’s Opossuni IS 53 48 Dmyurus uiuerrinus Little Native Cat 2 I00 I1 Dasyurus maculatus
    [Show full text]
  • Fossil Rodents from Bone Cave at the Koanaka Hills Locality
    FOSSIL RODENTS FROM BONE CAVE AT THE KOANAKA HILLS LOCALITY, BOTSWANA _____________ A Thesis Presented to The Faculty of the Department of Biological Sciences Sam Houston State University _____________ In Partial Fulfillment of the Requirements for the Degree of Master of Science _____________ by Zachary W. Pierce May, 2020 FOSSIL RODENTS FROM BONE CAVE AT THE KOANAKA HILLS LOCALITY, BOTSWANA by Zachary W. Pierce ______________ APPROVED: Patrick J. Lewis, PhD Thesis Director Monte L. Thies, PhD Committee Member Jeffrey R. Wozniak, PhD Committee Member John B. Pascarella, PhD Dean, College of Science and Engineering Technology DEDICATION This work is dedicated to my mom and dad, Drs. Maria and Robert Pierce. None of this is possible without the hard work and perseverance exhibited throughout their lives, and I am eternally grateful for this sacrifice. This work is also dedicated to my wife Lillian Pierce who provided constant love and support during this process which gave me the perseverance and motivation to finish. iii ABSTRACT Pierce, Zachary W, Fossil rodents from Bone Cave at the Koanaka Hills locality, Botswana. Master of Science (Biology), May, 2020, Sam Houston State University, Huntsville, Texas. In this study I analyze a Middle Pleistocene rodent fauna from Bone Cave locality, Koanaka Hills, northwestern Botswana and attempt to reconstruct the paleoenvironment of the surrounding area. Only a few Pliocene and Pleistocene fossil localities exist between eastern and southern Africa, and the fossil rodents collected from within the Koanaka Hills partially fills this significant geographic and temporal gap in the paleontological record of Africa. Rodent remains from owl accumulations are frequently found in the fossil record and used to reconstruct the paleoenvironment Similarly, prey remains from owl accumulations are used to reconstruct modern community composition.
    [Show full text]
  • Implications for Small Mammal Taphonomy
    Acta zoologica cracoviensia, 45(special issue): 341-355, Kraków, 29 Nov., 2002 Owls, multirejection and completeness of prey remains: implications for small mammal taphonomy Frédéric LAUDET, Christiane DENYS and Frank SENEGAS Received: 11 Sep., 2001 Accepted for publication: 21 Dec., 2001 LAUDET F., DENYS Ch., SENEGAS F. 2002. Owls, multirejection and completeness of prey remains: implications for small mammal taphonomy. In: Proceedings of the 4th Meeting of the ICAZ Bird Working Group Kraków, Poland, 11-15 September, 2001. Acta zoologica cracoviensia, 45(special issue): 341-355. Abstract. For more than twenty years, taphonomic studies have focused on bone and teeth modifications from owl prey remains due to digestion (fragmentation, dissolution by gas- tric juices) in order to recognize which predator(s) has (have) originated fossil bone as- semblages and which bias could have occurred in terms of paleoenvironmental and archaeological interpretations. Such studies have neglected the fact that meals, particu- larly when large prey individuals are eaten, are sometimes spread within several pellets. This study aims to estimate the occurrence and the taphonomic consequences of prey mul- tirejection within modern Barn Owl pellet samples recovered in the wild from France and South Africa, and establish their different diets. The taphonomic observation of the con- tents of each pellet has displayed patterns of completeness of prey skeleton proportionate to the size of prey per pellets. In the African owl pellets 60% of the largest rodents are rep- resented by the postcranial parts without the skull and/or some complete limbs, or are rep- resented by the skull only. The pattern for small prey species is less than 20%.
    [Show full text]
  • A Checklist of the Land Mammals Tanganyika Territory Zanzibar
    274 G. H. SWYNNERTON,F.Z.S., Checklist oj Land Mammals VOL. XX A Checklist of the Land Mammals OF mE Tanganyika Territory AND mE Zanzibar Protectorate By G. H. SWYNNERTON, F.Z.S., Game Warde:z, Game Preservation Department, Tanganyika Territory, and R. W. HAYMAN, F.Z.S., Senior Experimental Officer, Department of Zoology, British Museum (Natural History) 277278·.25111917122896 .· · 4 . (1)(3)(-)(2)(5)(9)(3)(4)280290281283286289295288291 280. .. CONTENTS· · · No. OF FORMS* 1. FOREWORDINSECTIVORA ErinaceidaM:,gadermatidaEmballonuridaSoricidt:eMacroscelididaMarossidaNycteridaHipposideridaRhinolophidaVespertilionida(Shrews)(Free-tailed(Hollow-faced(Hedgehogs)(Horseshoe(Leaf-nosed(Sheath-tailed(Elephant(Simple-nosed(Big-earedBats)Bats)Shrews)BatsBats)Bats) Pteropodida (Fruit-eating Bats) 2.3. INTRODUCTIONSYSTEMATICLIST OF SPECIESAND SUBSPECIES: PAGE CHIROPTERA Chrysochlorida (Golden" Moles to) ···302306191210.3521. ·2387 . · 6 · IAN. (1)(2)1951(-)(4)(21)(1)(6)(14)(6)(5),(7)(8)333310302304306332298305309303297337324325336337339211327 . SWYNNERTON,. P.Z.S.,·· ·Checklist··· of·Land 3293Mammals52 275 PItIMATES G. It. RhinocerotidaPelidaEchimyidaHyanidaPongidaCercopithecidaHystricidaMuridaHominidaAnomaluridaPedetidaCaviidaMustelidaGliridaSciuridaViverrida(Cats,(Mice,(Dormice)(Guinea-pigs)(Apes)(Squirrels)(Spring(Hyaenas,(Genets,(Man)(Polecats,(Cane(porcupines)(Flying(Rhinoceroses)Leopards,(Monkeys,Rats,Haas)Rats)Civets,Arad-wolf).Weasels,Squirrels)Gerbils,Lions,Baboons)Mongooses)Ratels,etc.)•Cheetahs)..Otters) ProcaviidaCanidaLeporidaElephantidaLorisidaOrycteropodidaEquidaBathyergidaManida
    [Show full text]