Bathyergid Gape Submitted

Total Page:16

File Type:pdf, Size:1020Kb

Bathyergid Gape Submitted This is a repository copy of The impact of gape on the performance of the skull in chisel- tooth digging and scratch digging mole-rats (Rodentia: Bathyergidae). White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/104173/ Article: McIntosh, Andrew and Cox, Philip Graham orcid.org/0000-0001-9782-2358 (2016) The impact of gape on the performance of the skull in chisel-tooth digging and scratch digging mole-rats (Rodentia: Bathyergidae). Royal Society Open Science. 160568. ISSN 2054- 5703 https://doi.org/10.1098/rsos.160568 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Royal Society Open Science: For review only The impact of gape on the performance of the skull in chisel-tooth digging and scratch digging mole-rats (Rodentia: Bathyergidae) Journal: Royal Society Open Science Manuscript ID RSOS-160568.R1 Article Type: Researc Date Submitted by t e Aut or: 28-Aug-2016 Complete List of Aut ors: McIntos , Andrew; ,niversity of .ull, .ull /or0 Medical Sc ool Co1, 2 ilip 3ra am; ,niversity of /or0, Department of Arc aeology; ,niversity of /or0, .ull /or0 Medical Sc ool Sub4ect: biomec anics 5 2./SICS, evolution 5 6IOLO3/ Cranial biomec anics, 8inite element analysis, C isel-toot digging, Scratc 7eywords: digging, 6at yergidae Sub4ect Category: 6iology 9w ole organism: https://mc.manuscriptcentral.com/rsos Page 1 of 29 Royal Society Open Science: For review only 1 2 3 Responses to reviewers 4 5 6 We thank the reviewers for their positive comments on the manuscript. We have addressed the 7 outstanding issues as follows: 8 9 1. The spelling of the species name of Fukomys mechowii has now been corrected throughout 10 11 the manuscript. 12 2. The Barciova et al paper on the relationship between soil type and cranial morphology has 13 now been discussed and cited in both the introduction (line 70) and conclusions (line 335). 14 3. Apologies for giving the wrong Figshare link – I’m still getting to grips with the site. The 15 16 correct link has been added to the manuscript and is 17 https://figshare.com/articles/Mole_rat_FEA/3188830 18 19 Regards, 20 21 22 Andrew McIntosh & Phil Cox 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 https://mc.manuscriptcentral.com/rsos Royal Society Open Science: For review only Page 2 of 29 1 2 3 1 Title: The impact of gape on the performance of the skull in chisel-tooth digging and 4 5 2 scratch digging mole-rats (Rodentia: Bathyergidae) 6 7 8 3 9 10 4 Running head: Bathyergid cranial performance 11 12 5 13 14 6 Authors: 15 16 7 Andrew F. McIntosh1 17 18 2,3 19 8 Philip G. Cox 20 21 9 22 23 10 Institutional addresses: 24 25 11 1Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, 26 27 28 12 Hull, UK 29 2 30 13 Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, 31 32 14 York, UK 33 34 15 3Department of Archaeology, University of York, York, UK 35 36 37 16 38 39 17 Corresponding author: 40 41 18 Philip G. Cox 42 43 19 Email address: [email protected] 44 45 20 Telephone: +44 1904 321744 46 47 48 21 49 50 22 51 52 23 53 54 24 55 56 57 25 58 59 60 1 https://mc.manuscriptcentral.com/rsos Page 3 of 29 Royal Society Open Science: For review only 1 2 3 26 AB TRACT 4 5 27 The African mole3rats 45athyergidae6 are a family of rodents highly adapted for life 6 7 8 28 ndergro nd. Previo s research has shown that chisel3tooth digging mole3rats 4which se 9 10 29 their incisors to dig b rrows6 are clearly disting ishable from scratch diggers 4which only se 11 12 30 the forelimbs to t nnel6 on the basis of morphology of the sk ll, and that the differences are 13 14 31 linked to the prod ction of high bite forces and wide gapes. 8e hypothesised that the sk ll of 15 16 32 a chisel3tooth digging mole3rat wo ld perform better at wider gapes than that of a scratch 17 18 19 33 digging mole3rat d ring incisor biting. To test this hypothesis, we created finite element 20 21 34 models of the crani m of the scratch digging Bathyergus suillus and the chisel3tooth digging 22 23 35 Fukomys mechowii, and loaded them to sim late incisor bites at different gapes. M scle loads 24 25 36 were scaled s ch that the ratio of force to s rface area was the same in both models. 8e 26 27 28 37 meas red three performance variables: overall stress across the crani m9 mechanical 29 30 38 efficiency of biting9 and degree of deformation across the sk ll. The Fukomys model had a 31 32 39 more efficient incisor bite at all gapes, despite having greater average stress across the sk ll. 33 34 40 In addition, the Fukomys model deformed less at wider gapes, whereas the Bathyergus model 35 36 deformed less at narrower gapes. These properties of the cranial morphology of Fukomys 37 41 38 39 42 and Bathyergus are congr ent with their respective chisel3tooth and scratch digging 40 41 43 behavio rs and, all other factors being e: al, wo ld enable the more efficient prod ction of 42 43 44 bite force at wider gapes in Fukomys. However, in vivo meas rements of m scle forces and 44 45 45 activation patterns are needed to f lly nderstand the complex biomechanics of tooth digging. 46 47 48 46 49 50 47 Keywords: Cranial biomechanics$ finite element analysis$ chisel-tooth digging$ scratch 51 52 48 digging$ Bathyergidae 53 54 49 55 56 57 50 58 59 60 2 https://mc.manuscriptcentral.com/rsos Royal Society Open Science: For review only Page 4 of 29 1 2 3 51 INTROD(CTION 4 5 52 The African mole3rats, or blesmols, are a family of rodents 45athyergidae6 comprising 25331 6 7 8 53 species, all of which spend a large proportion of their life ndergro nd [1]. Of the six extant 9 10 54 genera, five are chisel3tooth diggers, that is, they dig t nnels with their enlarged rodent 11 12 55 incisors. J st one gen s 4Bathyergus6 is a scratch digger, t nnelling with only its forelimbs 13 14 56 and claws [2]. Chisel3tooth digging is a specialised form of t nnel constr ction that has also 15 16 57 evolved independently in several other families of s bterranean and fossorial rodents [3]. It is 17 18 19 58 tho ght to have evolved in order to exploit harder soils as incisors are covered in hard enamel 20 21 59 and fixed within the crani m and mandible. This is in contrast to the claws, which are made 22 23 60 p of softer keratin and have more flexibility [4]. 24 25 61 26 27 28 62 A n mber of morphological characteristics in the crani m have been associated with chisel3 29 30 63 tooth digging. These incl de: more proc mbent incisors, wider crania, enlarged zygomatic 31 32 64 arches and larger temporal fossae [530]. Chisel3tooth digging mandibles are also convergent 33 34 65 across rodents and show higher coronoid processes, red ced condyle heights and deep incisor 35 36 roots [A,11,11]. S ch traits have been linked to the re: irement for chisel3tooth diggers to 37 66 38 39 67 prod ce high bite force at the incisors at wide gape [5,A,11], and have also been fo nd in 40 41 68 carnivorans with similar f nctional re: irements [12314]. 8ithin chisel3tooth digging 42 43 69 species, variation in cranial morphology has been s ggested to correlate with soil type, 44 45 70 indicating that digging has a maBor infl ence on sk ll shape [15,1A]. 46 47 48 71 49 50 72 To nderstand how morphological traits can impact biomechanical f nction in extant and 51 52 73 extinct vertebrates, many researchers have t rned to the engineering techni: e finite element 53 54 74 analysis 4FEA6 over the decade or so [1232A]. FEA allows stress, strain and deformation to be 55 56 predicted in a complex 3D obBect s bBected to a load, by dividing that obBect into a large 57 75 58 59 60 3 https://mc.manuscriptcentral.com/rsos Page 5 of 29 Royal Society Open Science: For review only 1 2 3 76 n mber of smaller, simpler elements 4 s ally c bes or tetrahedra6 connected at nodes [22]. 4 5 77 As a modelling techni: e, the res lts of FEA, and the concl sions that can be drawn from 6 7 8 78 them, are necessarily limited by the acc racy of the model inp ts.
Recommended publications
  • Research Project Summmary Main Research
    Research project summmary Main research fields: zoology and reproductive physiology specialization fields: Animal reproduction, Behavioural ecology, Behavioural physiology, sociobiology. My research interests focus mainly on the sociobiology of African rodent moles (Bathyergidae) and in particular the extrinsic and intrinsic factors that have led to the evolution of sociality in this remarkable endemic African family. My research group is fundamentally interested in elucidating the modes and mechanisms that are responsible for reproductive suppression in the non-reproductive females of the various species. Research is currently being directed at the neuroendocrine and molecular levels to elucidate the extent, nature and location of GnRH suppression. We are also interested in the photic and thermic input in the control of reproduction in seasonally reproducing mole-rats and the potential lack of a role in aseasonally breeding bathyergids. Long term population studies on social mole-rats from mesic and xeric environments are underway. These studies are providing empirical data on the spatial distribution of colonies, longevities, factors restricting and promoting dispersal, vagility, foraging methods and lifetime reproductive success. We are interested in the genetic relatedness of colonies and also the type of paternal skew operational in the social genera. This work is being carried out in collaboration with Dr Chris Faulkes at Queen Mary and Westfield College, London. Students currently under supervision MSc (research) 1. Ms. Kemba Butler Neuroendocrinology of induced ovulation in the highveld mole-rat (Cryptomys hottentotus pretoriae) 2. Mr. Andre Prins What makes a good helper? A behavioural study of cooperation in Damaraland mole-rats (Fukomys damarensis). 3. Mr. Josh Sarli Seasonal Reproductive Cycle and Parasite Burden of Two Small Mammals from Saudi Arabia.
    [Show full text]
  • Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats
    Article Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats Graphical Abstract Authors Sonja J. Pyott, Marcel van Tuinen, Laurel A. Screven, ..., Joseph Santos-Sacchi, Amanda M. Lauer, Thomas J. Park Correspondence [email protected] In Brief Pyott et al. attribute comparatively poor hearing in African naked and Damaraland mole-rats to lack of cochlear amplification, disrupted hair bundles, and hair bundle proteins bearing deafness- associated amino acid substitutions. Positive selection in some bundle proteins suggests altered hearing is adaptive to subterranean and eusocial lifestyles. Highlights d Hearing is comparatively poor in African naked and Damaraland mole-rats d These mole-rats lack cochlear amplification and have disrupted hair bundles d Hair bundle proteins bear deafness-associated amino acid substitutions d Positive selection in some bundle proteins suggests altered hearing is adaptive Pyott et al., 2020, Current Biology 30, 1–13 November 16, 2020 ª 2020 Elsevier Inc. https://doi.org/10.1016/j.cub.2020.08.035 ll Please cite this article in press as: Pyott et al., Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial Af- rican Mole-Rats, Current Biology (2020), https://doi.org/10.1016/j.cub.2020.08.035 ll Article Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats Sonja J. Pyott,1,9,* Marcel van Tuinen,1 Laurel A. Screven,2 Katrina M. Schrode,2 Jun-Ping Bai,3 Catherine M. Barone,4 Steven D. Price,5 Anna Lysakowski,5 Maxwell Sanderford,6 Sudhir Kumar,6,7 Joseph Santos-Sacchi,8 Amanda M.
    [Show full text]
  • Increased Longevity Due to Sexual Activity in Mole-Rats Is Associated
    RESEARCH ARTICLE Increased longevity due to sexual activity in mole-rats is associated with transcriptional changes in the HPA stress axis Arne Sahm1*, Matthias Platzer1, Philipp Koch2, Yoshiyuki Henning3, Martin Bens4, Marco Groth4, Hynek Burda5,6, Sabine Begall5, Saskia Ting7, Moritz Goetz7, Paul Van Daele8, Magdalena Staniszewska9, Jasmin Mona Klose9, Pedro Fragoso Costa9, Steve Hoffmann1†, Karol Szafranski2†, Philip Dammann5,10† 1Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany; 2Core Facility Life Science Computing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany; 3Institute of Physiology, University Hospital, University of Duisburg-Essen, Essen, Germany; 4Core Facility Sequencing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany; 5Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; 6Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic; 7Institute of Pathology and Neuropathology, University Hospital, University of Duisburg-Essen, Essen, Germany; 8Department of Zoology, University of South Bohemia, Cˇ eske´ Budeˇjovice, Czech Republic; 9Department of Nuclear Medicine, University Hospital, University of Duisburg-Essen, Essen, Germany; 10Central Animal Laboratory, University Hospital, University of Duisburg-Essen, Essen, Germany *For correspondence: [email protected] † Sexual activity and/or reproduction are associated with a doubling of life expectancy in These authors contributed Abstract equally to this work the long-lived rodent genus Fukomys. To investigate the molecular mechanisms underlying this phenomenon, we analyzed 636 RNA-seq samples across 15 tissues. This analysis suggests that Competing interests: The changes in the regulation of the hypothalamic–pituitary–adrenal stress axis play a key role authors declare that no regarding the extended life expectancy of reproductive vs.
    [Show full text]
  • Extended Longevity of Reproductives Appears to Be Common in Fukomys Mole-Rats (Rodentia, Bathyergidae)
    Extended Longevity of Reproductives Appears to be Common in Fukomys Mole-Rats (Rodentia, Bathyergidae) Philip Dammann1,3*, Radim Sˇ umbera2, Christina Maßmann1, Andre´ Scherag4, Hynek Burda1 1 Department of General Zoology, Institute of Biology, University of Duisburg-Essen, Essen, Germany, 2 Department of Zoology, Faculty of Science, University of South Bohemia, Cˇ eske´ Budeˇjovice, Czech Republic, 3 Central Animal Laboratory, University of Duisburg-Essen Medical School, Essen, Germany, 4 Institute for Medical Informatics, Biometry and Epidemology, University of Duisburg-Essen Medical School, Essen, Germany Abstract African mole-rats (Bathyergidae, Rodentia) contain several social, cooperatively breeding species with low extrinsic mortality and unusually high longevity. All social bathyergids live in multigenerational families where reproduction is skewed towards a few breeding individuals. Most of their offspring remain as reproductively inactive ‘‘helpers’’ in their natal families, often for several years. This ‘‘reproductive subdivision’’ of mole-rat societies might be of interest for ageing research, as in at least one social bathyergid (Ansell’s mole-rats Fukomys anselli), breeders have been shown to age significantly slower than non- breeders. These animals thus provide excellent conditions for studying the epigenetics of senescence by comparing divergent longevities within the same genotypes without the inescapable short-comings of inter-species comparisons. It has been claimed that many if not all social mole-rat species may have evolved similar ageing patterns, too. However, this remains unclear on account of the scarcity of reliable datasets on the subject. We therefore analyzed a 20-year breeding record of Giant mole-rats Fukomys mechowii, another social bathyergid species. We found that breeders indeed lived significantly longer than helpers (ca.
    [Show full text]
  • RESEARCH ARTICLE Magnetic Compass Orientation in Two Strictly Subterranean Rodents: Learned Or Species-Specific Innate Directional Preference?
    3649 The Journal of Experimental Biology 215, 3649-3654 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.069625 RESEARCH ARTICLE Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference? Ludmila Oliveriusová1, Pavel Nemec2,*, Zuzana Králová2 and Frantisek Sedlácek1 1Department of Zoology, Faculty of Science, University of South Bohemia, CZ-370 05 Ceske Budejovice, Czech Republic and 2Department of Zoology, Faculty of Science, Charles University in Prague, CZ-128 44 Praha 2, Czech Republic *Author for correspondence ([email protected]) SUMMARY Evidence for magnetoreception in mammals remains limited. Magnetic compass orientation or magnetic alignment has been conclusively demonstrated in only a handful of mammalian species. The functional properties and underlying mechanisms have been most thoroughly characterized in Ansellʼs mole-rat, Fukomys anselli, which is the species of choice due to its spontaneous drive to construct nests in the southeastern sector of a circular arena using the magnetic field azimuth as the primary orientation cue. Because of the remarkable consistency between experiments, it is generally believed that this directional preference is innate. To test the hypothesis that spontaneous southeastern directional preference is a shared, ancestral feature of all African mole-rats (Bathyergidae, Rodentia), we employed the same arena assay to study magnetic orientation in two other mole-rat species, the social giant mole-rat, Fukomys mechowii, and the solitary silvery mole-rat, Heliophobius argenteocinereus. Both species exhibited spontaneous western directional preference and deflected their directional preference according to shifts in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field.
    [Show full text]
  • Fukomys Damarensis – Damaraland Mole-Rat
    Fukomys damarensis – Damaraland Mole-rat its population is unlikely to be declining. It is locally common and is frequently found at high population densities. Regional population effects: This species is naturally fragmented, but no distinct barriers to dispersal have been identified, and thus a rescue effect is possible. Distribution Endemic to sub-Saharan Africa, this species is widespread across the central regions of southern Africa, occurring from central and northern Namibia, across Hannah Thomas western Zambia, and throughout the majority of Botswana (with the exception of the extreme east), into western Zimbabwe. The habitat of this species is contiguous, Regional Red List status (2016) Least Concern although naturally fragmented. The southern portion of its National Red List status (2004) Least Concern range extends into the Northern Cape and North West provinces of South Africa, where it occurs in the Kgalagadi Reasons for change No change Transfrontier Park, Tswalu Game Reserve, Hotazel, Blackrock and Winton (Figure 1). Its distribution is Global Red List status (2016) Least Concern associated with red Kalahari arenosols but it also occurs TOPS listing (NEMBA) None in coarse sandy soils (Bennett 2013). CITES listing None The species is said to be sympatric with the Common Mole-rat (Cryptomys hottentotus) where soil sandiness Endemic No ensures local niche differentiation (Skinner & Chimimba 2005), which may be the case in the North West Province This species is locally abundant in suitable habitat where such conditions exist (Power 2014). Power (2014) and there is little conflict with agriculture due to its surmises that the Mafikeng Bushveld vegetation type is a arid distribution (Bennett 2013).
    [Show full text]
  • Naked Mole-Rat Mortality Rates Defy Gompertzian Laws by Not Increasing
    SCIENTIFIC CORRESPONDENCE Comment on ’Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age’ Philip Dammann1,2†*, Andre´ Scherag3†, Nikolay Zak4, Karol Szafranski5, Susanne Holtze6, Sabine Begall1, Hynek Burda7, Hans A Kestler5,8, Thomas Hildebrandt6, Matthias Platzer5 1Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; 2University Hospital, University of Duisburg-Essen, Essen, Germany; 3Institute of Medical Statistics, Computer and Data Sciences (IMSID), Jena University Hospital, Jena, Germany; 4Moscow Society of Naturalists, Moscow, Russia; 5Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany; 6Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; 7Department Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic; 8Institute of Medical Systems Biology, Ulm University, Ulm, Germany Abstract Ruby et al. recently analyzed historical lifespan data on more than 3200 naked mole- rats, collected over a total observation period of about 38 years (Ruby et al., 2018). They report that mortality hazards do not seem to increase across the full range of their so-far-observed lifespan, and conclude that this defiance of Gompertz’s law ‘uniquely identifies the naked mole-rat as a non-aging mammal’. Here, we explain why we believe this conclusion is premature. *For correspondence: DOI: https://doi.org/10.7554/eLife.45415.001 [email protected] †These authors contributed equally to this work Competing interests: The Introduction authors declare that no The historical data set analyzed by Ruby et al. (2018) is strongly skewed toward animals born in competing interests exist.
    [Show full text]
  • Příbuzenská Struktura a Paternita V Přírodní Populaci Solitérního Rypoše
    Masarykova univerzita v Brně Přírodovědecká fakulta Ústav botaniky a zoologie Příbuzenská struktura a paternita v přírodní populaci solitérního rypoše Heliophobius argenteocinereus Diplomová práce 2007 Bc. Hana Patzenhauerová Vedoucí DP: Mgr. et. Mgr. Josef Bryja, PhD . Poděkování : Na prvním místě bychchtěla poděkovat svémuvedoucímuJosefuBryjovi nejenza nesmírnou pomoc při psanítétopráce,aleiza jejízajímavétéma.DěkujitakéRadimuŠumberovizasběr materiálu vMalawi a za nekonečnou ochotu odpovídat na všetečné otázky týkající se rypošíhoživota.Dále bychráda poděkovala všem lidem,kteří patří klaboratořím Oddělení populační biologie ÚBO ve Studenci,kde byla tatopráce zpracována, za vytvoření úžasného kolektivu. 2 OBSAH 1 Abstrakt....................................................................................................................4 Abstract....................................................................................................................5 2 Úvod..........................................................................................................................6 2.1 Rypošovitía jejichsociálnísystémy..........................................................6 2.2 Dosavadní poznatkyobiologii rypošestříbřitého...................................10 2.3 Genetickémarkerypoužívanékanalýzám příbuzenskéstrukturya párovacíchsystémů..................................................................................15 2.4 Genetické párovacísystémya příbuzenskástruktura populací podzemníchsavců....................................................................................17
    [Show full text]
  • 2320-5407 Int. J. Adv. Res. 5(10), 488-508
    ISSN: 2320-5407 Int. J. Adv. Res. 5(10), 488-508 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/5553 DOI URL: http://dx.doi.org/10.21474/IJAR01/5553 RESEARCH ARTICLE CRANIOMETRIC ANALYSIS OF ONTOGENETIC VARIATION AND SEXUAL DIMORPHISM IN THE EAST AFRICAN ROOT RAT, TACHYORYCTES SPLENDENS (RODENTIA: SPALACIDAE) FROM TANZANIA. Jestina Venance Katandukila. 1. Department of Zoology & Wildlife Conservation, College of Natural and Applied Sciences, University of Dar es Salaam, P.O.Box 35064, Dar es Salaam, Tanzania. 2. Department of Zoology & Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Ontogenetic variation and sexual dimorphism in the East African root rat, Tachyoryctes splendens (Rüppell 1835) from Tanzania, East Africa Received: 06 August 2017 were examined using craniometric and body mass data. Ontogenetic Final Accepted: 08 September 2017 variation was based on tooth eruption and wear in five relative age Published: October 2017 classes and revealed significant craniometric variation between them. Key words:- Sexual dimorphism was evident in all three populations examined and Tachyoryctes splendens, ageing, revealed that males are larger in body size than females. The results of craniometrics, ontogeny, sexual craniometric analysis of ontogenetic variation and sexual dimorphism dimorphism. in T. splendens are also reflected in the analysis of body mass data. These results suggest that male T. splendens invest energy into growth to facilitate male-male competition and sexual selection during the breeding season. Females however, show conservative growth with most energy being utilized for the excavation of complex burrow systems to increase foraging efficiency and allow for maternal care.
    [Show full text]
  • Garamba!National!
    ! ! Mammalwatching!in!Garamba!National!Park! Democratic!Republic!of!Congo! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Mathias!D’haen! Introduction* ! As!a!master!student!I!am!currently!based!in!Garamba!National!Park!to!collect!the!data!for!my! thesis! on! the! local! Kordofan! giraffe! population,! a! subspecies! of! the! Northern! giraffe! (G.! camelopardalis! antiquorum),! all! this! through! my! university! in! Czech! republic! (Czech! University!of!life!Sciences)!and!with!help!of!the!Giraffe!Conservation!Foundation!(GCF)!and! its!partners.! I!am!here!for!nearly!a!year!now!and!apart!for!the!research!I’ve!been!trying!to!focus!myself!on! getting!a!thorough!understanding!of!what’s!flying,!creeping!and!running!around!in!the!park!–! I!will!stick!to!mammals!in!this!report.! ! As! I’ve! been! living! here! it’s! difficult! to! give! a! dayJtoJday! itinerary! or! even! to! give! a! breakdown!of!places!to!visit!in!the!surrounding.!The!park’s!management,!a!joint!venture!of! Institut!Congolais!pour!la!Conservation!de!la!Nature!(ICCN)!and!African!Parks!(AP)!is!making! a!huge!progress!in!terms!of!securing!and!developing!the!area!but!real!hotspots!for!naturalists! haven’t!been!established!yet!–!for!now!species!are!to!be!found!in!equal!densities!everywhere! in!the!park.!! Therefore!it!makes!sense!that!I!limit!myself!to!giving!a!breakdown!of!the!species!that!I’ve! seen!so!far!and!what!more!species!could!be!expected!based!on!historical!records.! ! All!photos!and!observations!can!also!be!found!on:!https://observation.org/user/view/40842! ! Location*and*Vegetation*
    [Show full text]
  • Cytosystematics, Sex Chromosome
    CYTOSYSTEMATICS, SEX CHROMOSOME TRANSLOCATIONS AND SPECIATION IN AFRICAN MOLE-RATS (BATHYERGIDAE: RODENTIA) By Jane Lynda Deuve Dissertation presented for the Degree of Doctor of Philosophy – Zoology at Stellenbosch University Botany and Zoology Department Faculty of Science Supervisor: Prof. T.J. Robinson Co-supervisor: Dr J. Britton-Davidian Date: 12th February 2008 Declaration I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part, submitted it at any university for a degree. Jane Lynda Deuve Date: 12th February 2008 Copyright © 2008 Stellenbosch University All rights reserved ii Abstract The Bathyergidae are subterranean rodents endemic to Africa south of the Sahara. They are characterised by divergent diploid numbers that range from 2n=40 in Fukomys mechowi to 2n=78 in F. damarensis. In spite of this variation there is limited understanding of the events that shaped the extant karyotypes and in an attempt to address this, and to shed light on the mode and tempo of chromosomal evolution in the African mole-rats, a detailed analysis of both the autosomal and sex chromosome components of the genome was undertaken. In addition to G- and C- banding, Heterocephalus glaber (2n=60) flow-sorted painting probes were used to conduct cross-species chromosome painting among bathyergids. This allowed the detection of a balanced sex chromosome-autosome translocation in F. mechowi that involved a complex series of rearrangements requiring fractionation of four H. glaber autosomes and the subsequent translocation of segments to sex chromosomes and to the autosomal partners.
    [Show full text]
  • Differences in Cooperative Behavior Among Damaraland Mole Rats Are Consequences of an Age-Related Polyethism
    Differences in cooperative behavior among Damaraland mole rats are consequences of an age-related polyethism Markus Zöttla,1, Philippe Vulliouda, Rute Mendonçab,c, Miquel Torrents Ticóa,d, David Gaynorb, Adam Mitchelld, and Tim Clutton-Brocka,b aDepartment of Zoology, University of Cambridge, Cambridge CB23EJ, United Kingdom; bDepartment of Zoology and Entomology, Mammal Research Institute, University of Pretoria, 0028 Pretoria, South Africa; cInstitute of Biology, University of Neuchatel, Rue Emile-Argand 11, CH-2000 Neuchatel, Switzerland; and dKalahari Mole-Rat Project, Kuruman River Reserve, 8467 Van Zylsrus, South Africa Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved July 6, 2016 (received for review May 17, 2016) In many cooperative breeders, the contributions of helpers to variation in cooperative behavior is age-related (18, 19). An im- cooperative activities change with age, resulting in age-related portant difference is that castes are permanent, functionally dif- polyethisms. In contrast, some studies of social mole rats (includ- ferent, and discrete groups of individuals that differ in behavior, ing naked mole rats, Heterocephalus glaber, and Damaraland mole physiology, or morphology and hence castes represent highly rats, Fukomys damarensis) suggest that individual differences in specialized strategies, whereas variation caused by age-related cooperative behavior are the result of divergent developmental polyethisms remains plastic throughout development (refs. 20, 21, pathways, leading to discrete and permanent functional cate- “narrow sense caste” in the sense of ref. 22). gories of helpers that resemble the caste systems found in eusocial This study investigates whether the distribution of labor in insects. Here we show that, in Damaraland mole rats, individual Damaraland mole rats is the result of an age-related polyethism contributions to cooperative behavior increase with age and are or whether there is evidence of the formation of castes and of higher in fast-growing individuals.
    [Show full text]