UTP18 Antibody

Total Page:16

File Type:pdf, Size:1020Kb

UTP18 Antibody Product Datasheet UTP18 Antibody Catalog No: #46702 Orders: [email protected] Description Support: [email protected] Product Name UTP18 Antibody Host Species Rabbit Clonality Polyclonal Purification Antigen affinity purification Applications IHC Species Reactivity Hu Specificity The antibody detects endogenous levels of total UTP18 protein. Immunogen Type peptide Immunogen Description Synthetic peptide corresponding to residues near the C terminal of human UTP18 Target Name UTP18 Other Names WDR50; CGI-48 Accession No. Swiss-Prot:Q9Y5J1 NCBI Gene ID:51096NCBI Protein:NP_057085 Concentration 0.2mg/ml Formulation Rabbit IgG in pH7.4 PBS, 0.05% NaN3, 40% Glycerol. Storage Store at -20°C Application Details Immunohistochemistry: 1: 10-50 Images The image on the left is immunohistochemistry of paraffin-embedded Human ovarian cancer tissue using 46702(UTP18 Antibody) at dilution 1/25, on the right is treated with synthetic peptide. (Original magnification: x200) Address: 8400 Baltimore Ave., Suite 302, College Park, MD 20740, USA http://www.sabbiotech.com 1 The image on the left is immunohistochemistry of paraffin-embedded Human gastric cancer tissue using 46702(UTP18 Antibody) at dilution 1/25, on the right is treated with synthetic peptide. (Original magnification: x200) Background WD-repeats are motifs that are found in a variety of proteins and are characterized by a conserved core of 40-60 amino acids that commonly form a tertiary propeller structure. While proteins that contain WD-repeats participate in a wide range of cellular functions, they are generally involved in regulatory mechanisms concerning chromatin assembly, cell cycle control, signal transduction, RNA processing, apoptosis and vesicular trafficking. UTP18 (U3 small nucleolar RNA-associated protein 18), also known as WDR50 (WD repeat-containing protein 50), is a 556 amino acid protein that localizes to the nucleus, contains six WD repeats and is thought to be involved in the processing of pre-18S ribosomal RNA. The gene encoding UTP18 maps to human chromosome 17, which comprises over 2.5% of the human genome and encodes over 1,200 genes. Note: This product is for in vitro research use only and is not intended for use in humans or animals. Address: 8400 Baltimore Ave., Suite 302, College Park, MD 20740, USA http://www.sabbiotech.com 2.
Recommended publications
  • The DEAD-Box RNA Helicase-Like Utp25 Is an SSU Processome Component
    Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press The DEAD-box RNA helicase-like Utp25 is an SSU processome component J. MICHAEL CHARETTE1,2 and SUSAN J. BASERGA1,2,3 1Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA 2Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA 3Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA ABSTRACT The SSU processome is a large ribonucleoprotein complex consisting of the U3 snoRNA and at least 43 proteins. A database search, initiated in an effort to discover additional SSU processome components, identified the uncharacterized, conserved and essential yeast nucleolar protein YIL091C/UTP25 as one such candidate. The C-terminal DUF1253 motif, a domain of unknown function, displays limited sequence similarity to DEAD-box RNA helicases. In the absence of the conserved DEAD-box sequence, motif Ia is the only clearly identifiable helicase element. Since the yeast homolog is nucleolar and interacts with components of the SSU processome, we examined its role in pre-rRNA processing. Genetic depletion of Utp25 resulted in slowed growth. Northern analysis of pre-rRNA revealed an 18S rRNA maturation defect at sites A0,A1, and A2. Coimmunoprecipitation confirmed association with U3 snoRNA and with Mpp10, and with components of the t-Utp/UtpA, UtpB, and U3 snoRNP subcomplexes. Mutation of the conserved motif Ia residues resulted in no discernable temperature- sensitive or cold-sensitive growth defects, implying that this motif is dispensable for Utp25 function.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • Utpa and Utpb Chaperone Nascent Pre-Ribosomal RNA and U3 Snorna to Initiate Eukaryotic Ribosome Assembly
    ARTICLE Received 6 Apr 2016 | Accepted 27 May 2016 | Published 29 Jun 2016 DOI: 10.1038/ncomms12090 OPEN UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly Mirjam Hunziker1,*, Jonas Barandun1,*, Elisabeth Petfalski2, Dongyan Tan3, Cle´mentine Delan-Forino2, Kelly R. Molloy4, Kelly H. Kim5, Hywel Dunn-Davies2, Yi Shi4, Malik Chaker-Margot1,6, Brian T. Chait4, Thomas Walz5, David Tollervey2 & Sebastian Klinge1 Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes—UtpA and UtpB—interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA–protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 50 end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 50 ETS and U3 snoRNA as well as the 30 boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly. 1 Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, New York 10065, USA. 2 Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK. 3 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
    [Show full text]
  • A Chromosome Level Genome of Astyanax Mexicanus Surface Fish for Comparing Population
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 A chromosome level genome of Astyanax mexicanus surface fish for comparing population- 3 specific genetic differences contributing to trait evolution. 4 5 Authors 6 Wesley C. Warren1, Tyler E. Boggs2, Richard Borowsky3, Brian M. Carlson4, Estephany 7 Ferrufino5, Joshua B. Gross2, LaDeana Hillier6, Zhilian Hu7, Alex C. Keene8, Alexander Kenzior9, 8 Johanna E. Kowalko5, Chad Tomlinson10, Milinn Kremitzki10, Madeleine E. Lemieux11, Tina 9 Graves-Lindsay10, Suzanne E. McGaugh12, Jeff T. Miller12, Mathilda Mommersteeg7, Rachel L. 10 Moran12, Robert Peuß9, Edward Rice1, Misty R. Riddle13, Itzel Sifuentes-Romero5, Bethany A. 11 Stanhope5,8, Clifford J. Tabin13, Sunishka Thakur5, Yamamoto Yoshiyuki14, Nicolas Rohner9,15 12 13 Authors for correspondence: Wesley C. Warren ([email protected]), Nicolas Rohner 14 ([email protected]) 15 16 Affiliation 17 1Department of Animal Sciences, Department of Surgery, Institute for Data Science and 18 Informatics, University of Missouri, Bond Life Sciences Center, Columbia, MO 19 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 20 3 Department of Biology, New York University, New York, NY 21 4 Department of Biology, The College of Wooster, Wooster, OH 22 5 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 23 6 Department of Genome Sciences, University of Washington, Seattle, WA 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020.
    [Show full text]
  • The Complete Structure of the Small-Subunit Processome
    ARTICLES The complete structure of the small-subunit processome Jonas Barandun1,4 , Malik Chaker-Margot1,2,4 , Mirjam Hunziker1,4 , Kelly R Molloy3, Brian T Chait3 & Sebastian Klinge1 The small-subunit processome represents the earliest stable precursor of the eukaryotic small ribosomal subunit. Here we present the cryo-EM structure of the Saccharomyces cerevisiae small-subunit processome at an overall resolution of 3.8 Å, which provides an essentially complete near-atomic model of this assembly. In this nucleolar superstructure, 51 ribosome-assembly factors and two RNAs encapsulate the 18S rRNA precursor and 15 ribosomal proteins in a state that precedes pre-rRNA cleavage at site A1. Extended flexible proteins are employed to connect distant sites in this particle. Molecular mimicry and steric hindrance, as well as protein- and RNA-mediated RNA remodeling, are used in a concerted fashion to prevent the premature formation of the central pseudoknot and its surrounding elements within the small ribosomal subunit. Eukaryotic ribosome assembly is a highly dynamic process involving during which the four rRNA domains of the 18S rRNA (5′, central, in excess of 200 non-ribosomal proteins and RNAs. This process 3′ major and 3′ minor) are bound by a set of specific ribosome-assem- starts in the nucleolus where rRNAs for the small ribosomal subunit bly factors7,8. Biochemical studies indicated that these factors and the (18S rRNA) and the large ribosomal subunit (25S and 5.8S rRNA) 5′-ETS particle probably contribute to the independent maturation are initially transcribed as part of a large 35S pre-rRNA precursor of the domains of the SSU7,8.
    [Show full text]
  • Interdependent Action of KH Domain Proteins Krr1 and Dim2 Drive the 40S Platform Assembly
    ARTICLE DOI: 10.1038/s41467-017-02199-4 OPEN Interdependent action of KH domain proteins Krr1 and Dim2 drive the 40S platform assembly Miriam Sturm1, Jingdong Cheng 2, Jochen Baßler 1, Roland Beckmann2 & Ed Hurt 1 Ribosome biogenesis begins in the nucleolus with the formation of 90S pre-ribosomes, from which pre-40S and pre-60S particles arise that subsequently follow separate maturation pathways. Here, we show how structurally related assembly factors, the KH domain proteins 1234567890 Krr1 and Dim2, participate in ribosome assembly. Initially, Dim2 (Pno1) orchestrates an early step in small subunit biogenesis through its binding to a distinct region of the 90S pre- ribosome. This involves Utp1 of the UTP-B module, and Utp14, an activator of the DEAH-box helicase Dhr1 that catalyzes the removal of U3 snoRNP from the 90S. Following this dis- mantling reaction, the pre-40S subunit emerges, but Dim2 relocates to the pre-40S platform domain, previously occupied in the 90S by the other KH factor Krr1 through its interaction with Rps14 and the UTP-C module. Our findings show how the structurally related Krr1 and Dim2 can control stepwise ribosome assembly during the 90S-to-pre-40S subunit transition. 1 Biochemistry Centre, University of Heidelberg, Heidelberg 69221, Germany. 2 Department of Biochemistry, Gene Center, Center for integrated Protein Science - Munich (CiPS-M), Ludwig-Maximillian University, Munich 81377, Germany. Correspondence and requests for materials should be addressed to E.H. (email: [email protected]) NATURE COMMUNICATIONS | 8: 2213 | DOI: 10.1038/s41467-017-02199-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02199-4 he biogenesis of eukaryotic ribosomes is a complex and compacted, processes during which they migrate from the extremely energy-consuming process, during which nucleolus to the nucleoplasm, before export into the cytoplasm, T 2–4 actively growing cells devote most of their RNA poly- where final maturation occurs .
    [Show full text]
  • Ovary Transcriptome Profiling Via Artificial Intelligence Reveals a Transcriptomic Fingerprint Predicting Egg Quality in Striped Bass, Morone Saxatilis
    Ovary Transcriptome Profiling via Artificial Intelligence Reveals a Transcriptomic Fingerprint Predicting Egg Quality in Striped Bass, Morone saxatilis Robert W. Chapman1,2., Benjamin J. Reading3., Craig V. Sullivan4*.¤ 1 Marine Resources Division, South Carolina Department of Natural Resources, Charleston, South Carolina, United States of America, 2 Marine Genomics Core Facility, Hollings Marine Laboratory, Charleston, South Carolina, United States of America, 3 Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America, 4 Department of Biology, North Carolina State University, Raleigh, North Carolina, United States of America Abstract Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing ,2% of the queried ovary transcriptome explained .90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (,0.2-fold), with most individual transcripts making a small contribution (,1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic ‘‘fingerprint’’.
    [Show full text]
  • Bioinformatic Analysis of the Expression and Prognostic Value Of
    www.nature.com/scientificreports OPEN Bioinformatic analysis of the expression and prognostic value of chromobox family proteins in human breast cancer Xiaomin Li1,3, Junhe Gou2, Hongjiang Li3 & Xiaoqin Yang3* Chromobox (CBX) family proteins control chromatin structure and gene expression. However, the functions of CBXs in cancer progression, especially breast cancer, are inadequately studied. We assessed the signifcance of eight CBX proteins in breast cancer. We performed immunohistochemistry and bioinformatic analysis of data from Oncomine, GEPIA Dataset, bcGenExMiner, Kaplan–Meier Plotter, and cBioPortal. We compared mRNA and protein expression levels of eight CBX proteins between breast tumor and normal tissue. The expression diference of CBX7 was the greatest, and CBX7 was downregulated in breast cancer tissues compared with normal breast tissues. The expression of CBX2 was strongly associated with tumor stage. We further analyzed the association between the eight CBX proteins and the following clinicopathological features: menopause age, estrogen receptor (ER), progesterone receptor (PR) and HER-2 receptor status, nodal status, P53 status, triple-negative status, and the Scarf–Bloom–Richardson grade (SBR) and Nottingham prognostic index (NPI). Survival analysis in the Kaplan–Meier Plotter database showed that the eight CBX proteins were signifcantly associated with prognosis. Moreover, CBX genes in breast cancer patients had a high net alteration frequency of 57%. There were signifcant co-expression correlations between the following CBX protein pairs: CBX4 positively with CBX8, CBX6 positively with CBX7, and CBX2 negatively with CBX7. We also analyzed the Gene Ontology enrichment of the CBX proteins, including biological processes, cellular components, and molecular functions. CBX 1/2/3/5/8 may be oncogenes for breast cancer, whereas CBX 6 and 7 may be tumor suppressors for breast cancer.
    [Show full text]
  • Principles of RNA Processing from Analysis of Enhanced CLIP Maps for 150 RNA Binding Proteins Eric L
    Van Nostrand et al. Genome Biology (2020) 21:90 https://doi.org/10.1186/s13059-020-01982-9 RESEARCH Open Access Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins Eric L. Van Nostrand1,2, Gabriel A. Pratt1,2, Brian A. Yee1,2, Emily C. Wheeler1,2, Steven M. Blue1,2, Jasmine Mueller1,2, Samuel S. Park1,2, Keri E. Garcia1,2, Chelsea Gelboin-Burkhart1,2, Thai B. Nguyen1,2, Ines Rabano1,2, Rebecca Stanton1,2, Balaji Sundararaman1,2, Ruth Wang1,2, Xiang-Dong Fu1,2, Brenton R. Graveley3* and Gene W. Yeo1,2* Abstract Background: A critical step in uncovering rules of RNA processing is to study the in vivo regulatory networks of RNA binding proteins (RBPs). Crosslinking and immunoprecipitation (CLIP) methods enable mapping RBP targets transcriptome-wide, but methodological differences present challenges to large-scale analysis across datasets. The development of enhanced CLIP (eCLIP) enabled the mapping of targets for 150 RBPs in K562 and HepG2, creating a unique resource of RBP interactomes profiled with a standardized methodology in the same cell types. Results: Our analysis of 223 eCLIP datasets reveals a range of binding modalities, including highly resolved positioning around splicing signals and mRNA untranslated regions that associate with distinct RBP functions. Quantification of enrichment for repetitive and abundant multicopy elements reveals 70% of RBPs have enrichment for non-mRNA element classes, enables identification of novel ribosomal RNA processing factors and sites, and suggests that association with retrotransposable elements reflects multiple RBP mechanisms of action. Analysis of spliceosomal RBPs indicates that eCLIP resolves AQR association after intronic lariat formation, enabling identification of branch points with single-nucleotide resolution, and provides genome-wide validation for a branch point-based scanning model for 3′ splice site recognition.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Computational Methods and Epidemiologic Approaches for Revealing the Etiology of Autoimmune Diseases Permalink https://escholarship.org/uc/item/5xk430qk Author Rhead, Brooke Publication Date 2019 Supplemental Material https://escholarship.org/uc/item/5xk430qk#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Computational Methods and Epidemiologic Approaches for Revealing the Etiology of Autoimmune Diseases By Brooke Rhead A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computational Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Lisa F. Barcellos, Chair Professor Nir Yosef Professor Lexin Li Professor John Colford Summer 2019 Abstract Computational Methods and Epidemiologic Approaches for Revealing the Etiology of Autoimmune Diseases By Brooke Rhead Doctor of Philosophy in Computational Biology University of California, Berkeley Professor Lisa F. Barcellos, Chair Autoimmune diseases, in which normal tissues are inappropriately attacked by the immune system, are complex diseases driven by a combination of genetic and environmental factors. Most are chronic inflammatory diseases with some treatments available but no known cures, and the disease mechanisms are not completely understood. Epigenetic factors, such as DNA methylation and microRNAs, are affected by genetic and environmental exposures and in turn affect gene expression and thus may play a role in autoimmune disease pathogenesis. In this dissertation, I employ a combination of computational, bioinformatic, statistical, and epidemiologic methods to study the role of epigenetics in autoimmune diseases in humans, and to characterize inflammatory changes in human cell lines.
    [Show full text]
  • Driver Mutations of the Adenoma-Carcinoma Sequence Govern the Intestinal Epithelial Global Translational Capacity
    Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity Wouter Laurentius Smita, Claudia Nanette Spaana, Ruben Johannes de Boera, Prashanthi Rameshb,c, Tânia Martins Garciaa, Bartolomeus Joannes Meijera, Jacqueline Ludovicus Maria Vermeulena, Marco Lezzerinid, Alyson Winfried MacInnesd, Jan Kostere, Jan Paul Medemab,c, Gijs Robert van den Brinka,f, Vanesa Muncana, and Jarom Heijmansa,g,1 aDepartment of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; bLaboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cOncode Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; dLaboratory for Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; eDepartment of Oncogenomics, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; fRoche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland; and gDepartment of Internal Medicine and Hematology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands Edited by Napoleone Ferrara, University of California San Diego, La Jolla, CA, and approved August 26, 2020 (received for review July 25, 2019) Deregulated global mRNA translation is an emerging feature of (4), ribosomal proteins and ribosomal RNA (rRNA) (5), and the cancer cells. Oncogenic transformation in colorectal cancer (CRC) is presence of oncogenes such as PIK3CA and c-MYC, that modu- driven by mutations in APC, KRAS, SMAD4, and TP53, known as late translational control (6).
    [Show full text]