Implementation of the MSFD to the Deep Mediterranean Sea IDEM Project Coordinator: Roberto Danovaro

Total Page:16

File Type:pdf, Size:1020Kb

Implementation of the MSFD to the Deep Mediterranean Sea IDEM Project Coordinator: Roberto Danovaro Implementation of the MSFD to the Deep Mediterranean Sea IDEM Project Coordinator: Roberto Danovaro Review of literature on the implementation of the MSFD to the deep Mediterranean Sea. IDEM project Deliverable 1.1 Leader: Ifremer (Marie-Claire Fabri) Participants: CNR, CSIC, DFMR, ENEA, TAU, UB, UM, UUNIVNIVPMPM http://doi.org/10.13155/53809 Implementation of the second cycle of the Marine Strategy Framework Directive: achieving coherent, coordinated and consistent updates of the determinations of good environmental status, initial assessments and environmental targets ______________________________________________________________________________ SUBMISSION DATE January | 2018 IDEM - Implementation of the MSFD to the Deep Mediterranean Sea How to cite this document: Fabri Marie-Claire, Brind'Amour Anik, Jadaud Angelique, Galgani Francois, Vaz Sandrine, Taviani Marco, Scarcella Giuseppe, Canals Miquel, Sanchez Anna, Grimalt Joan, Galil Bella, Goren Menachem, Schembri Patrick, Evans Julian, Knittweis Leyla, Cantafaro Anna-Lucia, Fanelli Emanuela, Carugati Laura, Danovaro Roberto (2018). Review of literature on the implementation of the MSFD to the deep Mediterranean Sea. IDEM project, Deliverable 1.1. 228 p. www.msfd-idem.eu . http://doi.org/10.13155/53809 IDEM - Review of Literature 2 IDEM - Implementation of the MSFD to the Deep Mediterranean Sea Table of Content INTRODUCTION.......................................................................................................................................... 7 1 DESCRIPTOR 1: BIODIVERSITY .............................................................................................................. 9 1.1 STATE OF THE ART ................................................................................................................................... 9 1.1.1 Species groups of marine mammals, fish and cephalopods .......................................................... 10 1.1.2 Pelagic habitats ............................................................................................................................ 17 1.1.3 Benthic habitats ............................................................................................................................ 18 1.2 WHERE IS THE KNOWLEDGE ................................................................................................................... 32 1.3 HOW IS DIVERSITY MEASURED ................................................................................................................ 33 1.3.1 Methodological sampling aspects ................................................................................................. 33 1.3.2 The mortality rate per species from incidental by-catch (D1C1) - Primary ................................. 36 1.3.3 The population abundance of the species (D1C2) - Secondary .................................................... 37 1.3.4 The population demographic characteristics of the species (D1C3) - Secondary ........................ 37 1.3.5 The species distributional range (D1C4) - Secondary .................................................................. 38 1.3.6 The habitat extent and condition (D1C5) - Secondary .................................................................. 38 1.3.7 The condition of each habitat type (D1C6) - Primary .................................................................. 39 1.3.8 The extent of loss of the habitat type (D6C4) - Primary ............................................................... 39 1.3.9 The extent of adverse effects on the condition of the habitat type (D6C5) - Primary ................... 41 1.4 KNOWLEDGE ON THRESHOLD ................................................................................................................. 41 1.5 CONCLUSIONS ................................................................................................................................... 42 1.5.1 Gaps .............................................................................................................................................. 42 1.5.2 Recommendations ......................................................................................................................... 43 2 DESCRIPTOR 2 : NON-INDIGENOUS SPECIES ........................................................................................ 45 2.1 STATE OF THE ART ................................................................................................................................ 45 2.1.1 Pressures ....................................................................................................................................... 46 2.1.2 Possible Impacts ........................................................................................................................... 47 2.2 WHERE IS THE KNOWLEDGE ................................................................................................................... 48 2.3 HOW ARE NON INDEGENOUS SPECIES MEASURED ................................................................................... 49 2.3.1 Methodological sampling aspects ................................................................................................. 49 2.3.2 The number of non-indigenous species newly introduced (D2C1) - Primary ............................... 50 2.3.3 Abundance and spatial distribution of established non-indigenous species, particularly of invasive species (D2C2) - Secondary .................................................................................................................. 50 2.3.4 Proportion of the species group or spatial extent of the broad habitat type which is adversely altered (D2C3) - Secondary ................................................................................................................................ 51 2.4 KNOWLEDGE ON THRESHOLD ................................................................................................................. 51 2.5 CONCLUSIONS ................................................................................................................................... 52 2.5.1 Gaps .............................................................................................................................................. 52 2.5.2 Recommendations ......................................................................................................................... 53 3 DESCRIPTOR 3: POPULATIONS OF ALL COMMERCIALLY EXPLOITED FISH AND SHELLFISH ...................... 55 3.1 STATE OF THE ART ................................................................................................................................. 58 3.1.1 Species with a stock evaluation ..................................................................................................... 60 3.1.2 Species without Stock Evaluation .................................................................................................. 64 3.2 WHERE IS THE KNOWLEDGE ................................................................................................................... 65 3.3 HOW IS D3 MFSD EVALUATION DONE ................................................................................................... 72 3.3.1 Methodological sampling aspects ................................................................................................. 72 3.3.2 Criterion D3C1 - Fishing Mortality (Primary) ............................................................................. 73 3.3.3 Criterion D3C2 - Spawning stock biomass (Primary 3) ................................................................. 73 3.3.4 Criterion D3C3 - Demographic Characteristics (Primary 3) ........................................................ 73 3.4 KNOWLEDGE ON THRESHOLD ................................................................................................................. 75 3.5 FIRST APPLICATIONS ............................................................................................................................... 76 3.6 CONCLUSIONS ................................................................................................................................... 78 IDEM - Review of Literature 3 IDEM - Implementation of the MSFD to the Deep Mediterranean Sea 4 DESCRIPTOR 4 : ECOSYSTEMS, INCLUDING FOOD WEBS ...................................................................... 79 4.1 STATE OF THE ART ................................................................................................................................ 79 4.1.1 Stomach content and stable isotopes approach ............................................................................ 80 4.1.2 Modelling techniques .................................................................................................................... 81 4.2 WHERE IS THE KNOWLEDGE ................................................................................................................... 82 4.3 HOW IS FOOD WEB MEASURED ................................................................................................................ 86 4.3.1 Methodological sampling aspects ................................................................................................. 86 4.3.2 Diversity of the trophic guild (D4C1) - Primary ........................................................................... 87 4.3.3 Balance of total abundance between the trophic guilds (D4C2) - Primary .................................
Recommended publications
  • Di Camillo Et Al 2017
    This is a post-peer-review, pre-copyedit version of an article published in Biodiversity and Conservation on 23 December 2017 (First Online). The final authenticated version is available online at: https://doi.org/10.1007/s10531-017-1492-8 https://link.springer.com/article/10.1007%2Fs10531-017-1492-8 An embargo period of 12 months applies to this Journal. This paper has received funding from the European Union (EU)’s H2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 643712 to the project Green Bubbles RISE for sustainable diving (Green Bubbles). This paper reflects only the authors’ view. The Research Executive Agency is not responsible for any use that may be made of the information it contains. © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 AUTHORS' ACCEPTED MANUSCRIPT Building a baseline for habitat-forming corals by a multi-source approach, including Web Ecological Knowledge - Cristina G Di Camillo, Department of Life and Environmental Sciences, Marche Polytechnic University, CoNISMa, Ancona, Italy, [email protected] - Massimo Ponti, Department of Biological, Geological and Environmental Sciences and Interdepartmental Research Centre for Environmental SciencesUniversity of Bologna, CoNISMa, Ravenna, Italy - Giorgio Bavestrello, Department of Earth, Environment and Life Sciences, University of Genoa, CoNISMa, Genoa, Italy - Maja Krzelj, Department of Marine Studies, University of Split, Split, Croatia - Carlo Cerrano, Department of Life and Environmental Sciences, Marche Polytechnic University, CoNISMa, Ancona, Italy Received: 12 January 2017 Revised: 10 December 2017 Accepted: 14 December 2017 First online: 23 December 2017 Cite as: Di Camillo, C.G., Ponti, M., Bavestrello, G.
    [Show full text]
  • Ecological Mapping and Data Quality Assessment for the Needs of Ecosystem-Based Marine Spatial Management: Case Study Greek Ionian Sea and the Adjacent Gulfs
    Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Ecological mapping and data quality assessment for the needs of ecosystem-based marine spatial management: case study Greek Ionian Sea and the adjacent gulfs Y. ISSARIS1,2, S. KATSANEVAKIS1,3, M. PANTAZI1, V. VASSILOPOULOU1, P. PANAYOTIDIS4, S. KAVADAS1, A. KOKKALI1, M. SALOMIDI4, A. FRANTZIS5, A. PANOU6, D. DAMALAS1,7, D. KLAOUDATOS1, D. SAKELLARIOU4, V. DRAKOPOULOU4, C. KYRIAKIDOU4, I. MAINA1, J. FRIC8, C. SMITH1, S. GIAKOUMI1 and G. KARRIS9 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, Ag. Kosmas, Greece 2 Sector of Zoology and Marine Biology, Department of Biology, University of Athens, Zografos, Greece 3 European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy 4 Institute of Oceanography, Hellenic Centre for Marine Research, Anavyssos, Greece 5 Pelagos Cetacean Research Institute, Vouliagmeni, Greece 6 Archipelagos – environment and development, Kifissia, Greece 7 European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, Ispra, Italy 8 Hellenic Ornithological Society, Athens, Greece 9 Department of Environmental Technology and Ecology, TEI of the Ionian Islands, Zakynthos Island, Greece Corresponding author: [email protected] Received: 30 April 2012; Accepted: 2 November 2012; Published on line: 19 November 2012 Abstract Mapping of ecosystem components (natural and socioeconomic) is a prerequisite for ecosystem-based marine spatial manage- ment (EB-MSM). To initiate the process of EB-MSM in the Greek Ionian Sea and the adjacent gulfs, the main relevant ecosystem components were mapped based on existing spatial information and expert judgment.
    [Show full text]
  • Updated Classification of Benthic Marine Habitat Types for The
    Updated Classification of Benthic Marine Habitat Types for the Mediterranean Region TUNISIA - 2019 Legal notice: The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Specially Protected Areas Regional Activity Centre (SPA/RAC) and UN Environment/Mediterranean Action Plan (MAP) and those of the Lebanese Ministry of Environment concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. This publication was produced with the fi nancial support of the European Union in the framework of the MedMPA Network Project. Its contents are the sole responsibility of SPA/RAC and do not necessarily refl ect the views of the European Union. Copyright : All property rights of texts and content of different types of this publication belong to SPA/RAC. Reproduction of these texts and contents, in whole or in part, and in any form, is prohibited without prior written permission from SPA/RAC, except for educational and other non-commercial purposes, provided that the source is fully acknowledged. © 2019 - United Nations Environment Programme Mediterranean Action Plan Specially Protected Areas Regional Activity Centre (SPA/RAC) Boulevard du Leader Yasser Arafat B.P. 337 1080 Tunis Cedex - Tunisia. [email protected] For bibliographic purposes, this document may be cited as: SPA/RAC–UN Environment/MAP, 2019: Updated Classifi cation of Benthic Marine Habitat Types for the Mediterranean Region Layout : Atef OUERGHI Cover photos credit: © SPA/RAC, University of Seville, University of Alicante, Trainito E.
    [Show full text]
  • Composition and Abundance of Octocorals in the Sea of Marmara, Where the Mediterranean Meets the Black Sea
    SCIENTIA MARINA 79(1) March 2015, 125-135, Barcelona (Spain) ISSN-L: 0214-8358 doi: http://dx.doi.org/10.3989/scimar.04120.09A Composition and abundance of octocorals in the Sea of Marmara, where the Mediterranean meets the Black Sea Eda N. Topçu 1,2, Bayram Öztürk 1,2 1 Istanbul University Fisheries Faculty, Ordu cad No 200 Laleli, 34470 Istanbul, Turkey. E-mail: [email protected] 2 Turkish Marine Research Foundation, No 10, Beykoz, 81650, Istanbul, Turkey. Summary: Species composition and abundance of octocoral assemblages were investigated in the Sea of Marmara, which forms the connection between the Mediterranean and the Black Seas, two semi-enclosed seas with peculiar oceanographic conditions. Fourteen octocoral species were collected in the saline layer of the Marmara Sea (20-40 m), with a mean coral abundance of 5.21±5.11 colonies m–2 (mean ± SD) calculated from a total of 1390 colonies counted in transects. In spite of severe anthropogenic disturbances, dense assemblages of corals/gorgonians were observed during this study. The coral- ligenous communities—one of the most valuable structures of the Mediterranean Sea—harbored either Eunicella cavolini or Paramuricea macrospina as the dominant gorgonian in the Marmara Sea. Furthermore, the gorgonian assemblages of the Marmara Sea differed from those of the Mediterranean in their high abundance of P. macrospina and Spinimuricea klavereni, two species rarely encountered in the Mediterranean Sea at the studied depth range. The factors behind the observed differ- ences are discussed in regard to the particular oceanographic conditions of the Marmara Sea. Finally, we revised the main threats to corals/gorgonians in the Marmara Sea and provided some insights on management recommendations for coral conservation in this area.
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • Cnidarian Phylogenetic Relationships As Revealed by Mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1
    Kayal et al. BMC Evolutionary Biology 2013, 13:5 http://www.biomedcentral.com/1471-2148/13/5 RESEARCH ARTICLE Open Access Cnidarian phylogenetic relationships as revealed by mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1 Abstract Background: Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results: We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions: Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Characterization of the Zooxanthellate and Azooxanthellate Morphotypes of the Mediterranean Gorgonian Eunicella Singularis
    Mar Biol (2012) 159:1485–1496 DOI 10.1007/s00227-012-1928-3 ORIGINAL PAPER Characterization of the zooxanthellate and azooxanthellate morphotypes of the Mediterranean gorgonian Eunicella singularis Andrea Gori • Lorenzo Bramanti • Pablo Lo´pez-Gonza´lez • Jana N. Thoma • Josep-Maria Gili • Jordi Grinyo´ • Vanessa Uceira • Sergio Rossi Received: 26 September 2011 / Accepted: 14 March 2012 / Published online: 18 April 2012 Ó Springer-Verlag 2012 Abstract The gorgonian Eunicella singularis (Esper, with more ramified colonies at 40–60 m lacks symbionts. 1794) is abundant on rocky bottoms at Cap de Creus Sclerite differences among colonies were also identified (42°1804900 N; 003°1902300 E) in the western Mediterranean, along the depth gradient. The mitochondrial marker msh1 and this study compared zooxanthellate colonies from did not discriminate between the two morphotypes and relatively shallow depths with azooxanthellate colonies indeed did not discriminate among several Mediterranean living at depths to 60 m. The goal was to determine the species of Eunicella. Other genetic markers will be needed taxonomic status of a previously described subspecies, to firmly establish the taxonomic status of the two depth- E. singularis aphyta. Sampling at 10-m intervals from 20 to related morphotypes. 60 m using scuba or a remotely operated vehicle (ROV) in 2004 and 2010 allowed examination of colony shape, sclerite variability, genetic variability, and the presence/ Introduction absence of zooxanthellae. Two morphotypes were identi- fied: a shallow morphotype with candelabra-like colonies Morphological variation is ubiquitous within coral species, at 20–30 m has zooxanthellae, while a deep morphotype creating significant challenges for the advancement of taxonomic, evolutionary, and ecological studies (Vermeij et al.
    [Show full text]
  • Mediterranean Deep-Sea Corals in Need of Protection July 2013
    Mediterranean deep-sea corals in need of protection July 2013 Since the entry into force of the SPA/BD Protocol and its Annexes several amendments have been adopted in the framework of the Barcelona Convention bringing up to more than 150 the number of species listed in Annex II and more than 40 the number of species listed in Annex III. Such modifications have corresponded to different additions of species of flora, fish and birds. However, cnidarians group remain today represented only by Astroides calycularis, Errina aspera and Gerardia savaglia (Savalia savaglia) in Annex II, and Antipathes sp.plur. and Corallium rubrum in Annex III. Despite the important role of deep-sea corals for ecosystem functioning, they are neither sufficiently represented in the SPA/BD Protocol nor protected by the existing MPA network in the Mediterranean Sea. Up to date, this fact could have been justified by the lack of information for open and deep-sea environments in the Mediterranean basin. However, according to last years’ findings and scientific publications related to deep-sea corals, apart from the threats they are facing, there is an imperative need to amend the Annexes for an appropriate and urgent consideration of deep-sea corals. These fragile habitats are commonly found in summits and flanks of seamounts or submarine canyons among other deep-sea geological features. Furthermore, their occurrence is frequently patched accompanying other important habitats like sponge grounds (e.g. Asconema setubalense, Phakellia robusta, Pachastrella monilifera). Coral aggregations have been identified as special ecological features which require protection under the Convention of Biological Diversity [UNEP/CBD/EWS.MPA/1/2].
    [Show full text]
  • An Updated Overview of the Geographic and Bathymetric Distribution of Savalia Savaglia M
    Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms890 An updated overview of the geographic and bathymetric distribution of Savalia savaglia M. GIUSTI1, C. CERRANO2, M. ANGIOLILLO1, L. TUNESI1 and S. CANESE1 1 Italian National Institute for Environmental Protection and Research (ISPRA), Via Brancati 60, 00144 Roma, Italy 2 Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy Corresponding author: [email protected] Handling Editor: Argyro Zenetos Received: 29 April 2014; Accepted: 8 October 2014; Published on line: 6 February 2015 Abstract The distribution of gold coral Savalia savaglia is modified on the basis of bibliographic information and recent occurrence data collected by ROV (Remotely Operated Vehicle) and SCUBA divers. The species is long-lived, rare and has been exploited in the past by divers for collection purposes. S. savaglia is listed in Annex II of the SPA/BD Protocol of the Barcelona Convention and has a wider distribution than previously thought, including both the Mediterranean Sea and the Atlantic Ocean. Our results highlighted that specimens mainly live at a depth range of 15-90 m, but may reach as deep as 900 m in the Mediterranean Sea. This species can form monospecific facies of hundreds of colonies, as observed in Montenegro (Adriatic Sea), between 10 and 20 m, and in the Canary Islands, at a depth range of 27-70 m. Recent data highlighted numerous cases of specimens that were endangered by lost fishing gear, which exposed this species to further threats.
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • First Massive Mucilage Event Observed in Deep Waters of Çanakkale Strait (Dardanelles), Turkey
    J. Black Sea/Mediterranean Environment Vol. 27, No. 1: 49-66 (2021) RESEARCH ARTICLE First massive mucilage event observed in deep waters of Çanakkale Strait (Dardanelles), Turkey H. Barış Özalp ORCID ID: 0000-0003-2640-8912 Vocational School of Ocean Engineering, Çanakkale Onsekiz Mart University, Çanakkale, TURKEY Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, TURKEY Corresponding author: [email protected] Abstract During the regular surveys on coral monitoring for setting their developmental level, health status and likely threats responsible for mortality, a massive mucilage phenomenon was identified in the largest coral habitats in the Çanakkale Strait (Dardanelles) in December 2020. This study was performed to determine the effect of mucilage event on corals mainly observed at the depth level of 39-51 m in two stations, one in the European and the other in the Anatolian side of the strait. A massive mucilage with expanding cloud and floc types of aggregates was detected only in the Eceabat region (European side). A false-benthos mucilage was also identified at depths 4-20 m in the following control surveys. The current report is of the first circalittoral observation of this damaging event in the northernmost region of the Mediterranean Sea. Previous records of massive mucilage were reviewed and the first deep infralittoral record of massive mucilage event in 2008 is also described. Keywords: Mucilage, zoobenthos, coral, ecology, Turkish Straits System Received: 05.03.2021, Accepted: 05.04.2021 Introduction Mucilage, also known as marine snow, aggregated mass, foam accumulation, formation of flocs, cloud or mucilaginous and mucous agglomeration (Suzuki and Kato 1953; Riley 1963; Lancelot 1995; Rinaldi et al.
    [Show full text]