INSTITUT ZA RUDARSTVO I METALURGIJU BOR KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA

RUDARSKI RADOVI je časopis baziran na bogatoj Izdavač tradiciji stručnog i naučnog rada u oblasti rudarstva, Institut za rudarstvo i metalurgiju Bor podzemne i površinske eksploatacije, pripreme mineralnih 19210 Bor, Zeleni bulevar 35 sirovina, geologije, mineralogije, petrologije, geomehanike E-mail: [email protected] i povezanih srodnih oblasti. Izlazi dva puta godišnje od Tel. 030/454-254 2001. godine, a od 2011. godine četiri puta godišnje. Uređivački odbor Glavni i odgovorni urednik Prof. dr Živorad Milićević Dr Milenko Ljubojev naučni savetnik, Tehnički fakultet Bor dopisni član IAS Akademik Prof. dr Mladen Stjepanović Institut za rudarstvo i metalurgiju Bor Tehnički fakultet Bor E-mail: [email protected] Prof. dr Vladimir Bodarenko Tel. 030/454-110 Nacionalni rudarski univerzitet, Odeljenje za Zamenik glavnog i odgovornog urednika podzemno rudarstvo, Ukrajina Dr Mirko Ivković, viši naučni saradnik Prof. dr Miroslav Ignjatović Institut za rudarstvo i metalurgiju Bor Komitet za podzemnu eksploataciju Prof. dr Milivoj Vulić mineralnih sirovina Resavica E-mail: [email protected] Univerzitet u Ljubljani, Slovenija Prof. dr Jerzy Kicki Tel. 035/625-566 Državni institut za mineralne sirovine i energiju, Urednik Krakov, Poljska Vesna Marjanović, dipl.inž. Prof. dr Tajduš Antoni Prevodilac Stanislavov univerzitet za rudarstvo i metalurgiju, Nevenka Vukašinović, prof. Krakov, Poljska Prof. Dr Dušan Gagić Tehnički urednik Rudarsko geološki fakultet Beograd Suzana Cvetković, teh. Prof. dr Nebojša Vidanović Priprema za štampu Rudarsko geološki fakultet Beograd Ljiljana Mesarec, teh. Prof. dr Neđo Đurić Štamparija: Grafomedtrade Bor Tehnički institut, Bjeljina, Republika Srpska, BiH Prof. dr Vitomir Milić Tiraž: 100 primeraka Tehnički fakultet Bor Internet adresa Prof. dr Rodoljub Stanojlović Tehnički fakultet Bor www.mininginstitutebor.com Prof. dr Mevludin Avdić Izdavanje časopisa finansijski podržavaju RGGF-Univerzitet u Tuzli, BiH Ministarstvo za prosvetu i nauku Republike Srbije Prof. dr Nenad Vušović Institut za rudarstvo i metalurgiju Bor Tehnički fakultet Bor Komitet za podzemnu eksploataciju mineralnih Dr Miroslav R. Ignjatović, viši naučni saradnik sirovina Resavica Privredna komora Srbije ISSN 1451-0162 Dr Mile Bugarin, viši naučni saradnik Institut za rudarstvo i metalurgiju Bor Indeksiranje časopisa u SCIndeksu i u ISI. Dr Dragan Zlatanović Sva prava zadržana. Ministarstvo rudarstva i energetike Srbije Dr Miodrag Denić JP za podzemnu eksploataciju Resavica Dr Duško Đukanović, naučni saradnik Ugalj projekt Beograd Dr Ružica Lekovski, naučni saradnik Institut za rudarstvo i metalurgiju Bor Dr Jovo Miljanović Rudarski fakultet Prijedor RS, BiH Dr Zlatko Dragosavljević Ministarstvo rudarstva i energetike Srbije

VODEĆI ČASOPIS NACIONALNOG ZNAČAJA M51 ZA 2010.

MINING AND METALLURGY INSTITUTE BOR COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS

MINING ENGINEERING is a journal based on the Published by rich tradition of expert and scientific work from the Mining and Metallurgy Institute Bor field of mining, underground and open-pit mining, 19210 Bor, Zeleni bulevar 35 mineral processing, geology, mineralogy, petrology, E-mail: [email protected] geomechanics, as well as related fields of science. Phone: +38130/454-254 Since 2001, published twice a year, and since 2011 Editorial Board four times year. Prof.Ph.D. Živorad Milićević Editor-in-chief Technical Faculty Bor Ph.D. Milenko Ljubojev, Principal Reasearch Academic Prof.Ph.D. Mladen Stjepanović Fellow, Associate member of ESC Technical Faculty Bor Mining and Metallurgy Institute Bor Prof.Ph.D. Vladimir Bodarenko E-mail: [email protected] National Mining University, Department of Phone: +38130/454-110 Deposit Mining, Ukraine Prof.Ph.D. Miroslav Ignjatović Co-Editor Mining and Metallurgy Institute Bor Ph.D. Mirko Ivković, Senior Research Associate Prof.Ph.D. Milivoj Vulić Committee of Underground Exploitation of the University of Ljubljana, Slovenia Mineral Deposits Resavica Prof.Ph.D. Jerzy Kicki E-mail: [email protected] Gospodarkl Surowcami Mineralnymi i Energia, Phone: +38135/625-566 Krakow, Poland Editor Prof.Ph.D. Tajduš Antoni Vesna Marjanović, B.Eng. The Stanislaw University of Mining and Metallurgy, Krakow, Poland English Translation Prof.Ph.D. Dušan Gagić Nevenka Vukašinović Faculty of Mining and Geology Belgrade Technical Editor Prof.Ph.D. Nebojša Vidanović Suzana Cvetković Faculty of Mining and Geology Belgrade Prof.Ph.D. Neđo Đurić Preprinting Technical Institute, Bjeljina, Republic Srpska, Ljiljana Mesarec B&H Printed in: Grafomedtrade Bor Prof.Ph.D. Vitomir Milić Technical Faculty Bor Circulation: 100 copies Prof.Ph.D. Rodoljub Stanojlović Technical Faculty Bor Web site Prof.Ph.D. Mevludin Avdić www.mininginstitutebor.com MGCF-University of Tuzla, B&H MINING ENGINEERING is financially Prof.Ph.D. Nenad Vušović supported by Technical Faculty Bor The Ministry of Education and Science of the Ph.D. Miroslav R. Ignjatović, Senior Research Associate Republic Chamber of Commerce and Industry Serbia Mining and Metallurgy Institute Bor Ph.D. Mile Bugarin, Senior Research Associate Committee of Underground Exploitation of the Mining and Metallurgy Institute Bor Mineral Deposits Resavica Ph.D. Dragan Zlatanović Ministry of Mining and Energy of Republic Serbia ISSN 1451-0162 Ph.D. Miodrag Denić Journal indexing in SCIndex and ISI. PC for Underground Exploitation Resavica All rights reserved. Ph.D. Duško Djukanović, Research Associate Coal Project Belgrade

Ph.D. Ružica Lekovski, Research Associate

Mining and Metallurgy Institute Bor

Ph.D. Jovo Miljanović

Faculty of Mining in Prijedor, RS, B&H Ph.D. Zlatko Dragosavljević Ministry of Mining and Energy of Republic Serbia

LEADING NATIONAL JOURNAL CATEGORIZATION M51 FOR 2010.

SADR@AJ CONTENS

M. Bugarin, V. Marinković, V. Gardić, G. Slavković ISTORIJAT ISTRAŽIVANJA I GEOLOŠKA GRAĐA BORSKIH LEŽIŠTA BAKRA...... 1 HISTORY OF INVESTIGATION AND GEOLOGICAL STRUCTURE OF THE BOR COPPER DEPOSITS...... 7 G. Milentijević, B. Nedeljković HIDROGEOLOŠKE KARAKTERISTIKE TERMOMINERALNE VODE VUČA I NJEN UTICAJ NA ZDRAVLJE ...... 13 HYDROGEOLOGY CHARACTERISTICS OF THE THERMO-MINERAL WATER VUČA AND ITS EFFECT ON HUMAN HEALTH...... 21 D. Rakić, L. Čaki, S. Ćorić, M. Ljubojev REZIDUALNI PARAMETARI ČVRSTOĆE SMICANJA VISOKOPLASTIČNIH GLINA I ALEVRITA PK “TAMNAVA –ZAPADNO POLJE”...... 29 RESIDUAL PARAMETERS OF SHEAR STRENGTH THE HIGH PLASTICITY CLAY AND SILT FROM THE OPEN-PIT MINE “TAMNAVA – WEST FIELD“...... 39 R. Popović, M. Ljubojev, D. Ignjatović SPECIFIČNOSTI RADNIH PROCESA I RADNIH OPTEREĆENJA ROTORA U PROCESU OTKOPAVANJA ROTORNIM BAGEROM...... 49 SPECIFICITY OF WORK PROCESSES AND WORK LOADS OF ROTOR IN THE EXCAVATION PROCESS USING THE BUCKET WHEEL EXCAVATOR ...... 57 D. Ignjatović, M. Ljubojev, L. Đ. Ignjatović, J. Petrović KLASIFIKACIJA STENSKOG MASIVA PRE IZGRADNJE TUNELA (PO WICKHAM-U I BIENAWSKOM)...... 65 ROCK MASS CLASSIFICATION BEFORE THE TUNNEL CONSTRUCTION (PER WICKHAM AND BIENAWSKI)...... 69 M. Ljubojev,D. Ignjatović, L. Đ. Ignjatović PREDLOG POPREČNOG PRESEKA TUNELA KRIVELJSKE REKE...... 73 PROPOSAL OF CROSS SECTION FOR THE KRIVELJ RIVER TUNNEL ...... 79 A. Baraković, E. Bektašević, I. Sjerotanović ODREĐIVANJE FAKTORA SIGURNOSTI U STIJENSKOM MATERIJALU NA PRIMJERU BORSKOG LEŽIŠTA NUMERIČKOM METODOM „SWASE“...... 85 DETERMINATION OF SAFETY FACTOR IN THE ROCK MATERIALS ON EXAMPLE OF THE BOR DEPOSIT USING THE “SWASE” NUMERIC METHOD...... 93 M. Ljubojev, R. Popović, D. Rakić RAZVOJ DINAMIČKIH POJAVA U STENSKOJ MASI...... 101 DEVELOPMENT OF DYNAMIC PHENOMENA IN THE ROCK MASS ...... 109 Lj. Savić, R. Janković, S. Kovačević OTKOPAVANJE SIGURNOSNIH STUBOVA U RUDNIKU ’’TREPČA’’ – STARI TRG ...... 117 MINING OF SAFETY PILLARS IN THE’’TREPCA’’ - STARI TRG MINE ...... 125

M. Ljubojev,D. Ignjatović, L. Đ. Ignjatović, V.Ljubojev PRIPREME ZA ISTRAŽIVANJE TRASE TUNELA I SNIMANJE TERENA...... 135 PREPARATIONS FOR INVESTIGATION THE TUNNEL AXIS AND FIELD SURVEYING ...... 139 D. Milanović, Z. Marković, D. Urosević, M. Ignjatović UNAPREĐENJE SISTEMA USITNJAVANJA RUDE U POSTROJENJU „VELIKI KRIVELJ“...... 143 SYSTEM IMPROVEMENT OF ORE COMMINUTING IN VELIKI KRIVELJ PLANT...... 155 D. Đukanović, M. Denić, D. Dragojević BRZINA IZRADE PODZEMNIH PROSTORIJA, KAO USLOV UVOĐENJA MEHANIZOVANE IZRADE PODZEMNIH PROSTORIJA U RUDNICIMA JP PEU RESAVICA ...... 167 DRIVAGE RATE OF UNDERGROUND ROOMS, AS A CONDITION OF INTRODUCTION THE MECHANIZED DRIVAGE OF UNDERGROUND ROOMS IN THE JP PEU RESAVICA MINES...... 171 S. Krstić, G. Marinković, V. Ljubojev TUNEL ZA IZMEŠTANJE KRIVELJSKE REKE – TRAJNO REŠENJE RIZIKA MOGUĆIH KRITIČNIH ASPEKATA ...... 175 TUNNEL FOR RELOCATION THE RIVER KRIVELJ PERMANENT RISK SOLUTION OF POSIBLE CRITICAL ASPECTS...... 181 D. Đukanović, M. Popović, D. Zečević EKONOMSKI EFEKTI UPOTREBE JALOVINE IZ SEPARACIJE UGLJA IBARSKIH RUDNIKA ...... 187 ECONOMIC EFFECTS OF THE WASTE USE FROM COAL SEPARATION IN THE MINES...... 191 M. Bugarin, G. Slavković, Z. Stojanović UTVRĐIVANJE CENE KOŠTANJA U EKONOMSKOJ ANALIZI RUDARSKOG PROJEKTA ...... 197 DETERMINATION OF COST PRICE IN THE ECONOMIC ANALYSIS OF MINING PROJECT ...... 205

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:622.03:550.8.01:622.343(045)=861

Mile Bugarin*, Vladan Marinković*, Vojka Gardić*, Gordana Slavković*

ISTORIJAT ISTRAŽIVANJA I GEOLOŠKA GRAĐA BORSKIH LEŽIŠTA BAKRA**

Izvod

Pronalaženje zlata na Deli Jovanu (1888. god., Glogovica) uticalo je da se pristupi obimnijim geološkim i rudarskim istraživanjima, što je dovelo do otkrića borskog rudišta 1902. god. Prvi istražni radovi u Boru počinju 1897. god. 1902. god. je pronađeno telo „Čoka Dulkan“, a 1904. god se počinje sa proizvodnjom. U periodu posle prvog svetskog rata aktivirana su istraživanja u Boru, a naročito se intenziviraju od 1927. do 1930. god. Godine 1948., počinje se sa sistematskim istraživanjem kako u Rudniku bakra Bor, tako i na području timočkog andezitskog masiva. Stene od kojih je izgrađeno borsko ležište su: sveži i hidrotermalno izmenjeni andeziti, andezitski i dacitski piroklastiti, peliti sa tufovima i tufitima, konglomerati i peščari i kvarcni aluvijalni nanosi. Ključne reči: bakar, list Bor, rudno telo, hidrotermalno izmenjena zona, granični sadržaj.

1. UVOD

Rudnik bakra Bor se nalazi u To je područje ograničeno sa zapada severoistočnom delu Srbije na oko 11 km. Crnim Vrhom (1.027 m), sa severa Malim zapadno od Bugarske i na oko 70 km. Kršem (920m) i Velikim Kršem (1.148 m), južno od Rumunije (slika 1). a sa južne strane je teren mnogo niži te Područje rudnog polja Bor zauzima nema izrazitih visova. centralni deo timočkog eruptivnog masiva.

* Institut za rudarsvo i metalurgiju Bor ** Ovaj rad je proistekao iz Projekta broj 37001 koji je finansiran sredstvima Ministarstva za pro- svetu i nauku Republike Srbije.

Broj 1,2011. 1 RUDARSKI RADOVI

Sl. 1. Pregledna geografska karta – položaj lista Bor.

2. ISTORIJAT ISTRAŽIVANJA

Tereni koje zahvata list Bor Brestovac, Pjatra Roš, Krivelj). predstavljaju jedno od najinteresantnijih Doseljavanjem Slovena na Balkansko područja u istočnoj Srbiji kako zbog Poluostrvo nastavljena je rudarska rudnog bogatstva, tako i zbog vrlo aktivnost koja je kasnije znatno pojačana heterogenog geološkog sastava. Još od dolaskom Sasa (Crnajka, Šaška ). najstarijih vremena rudno bogatstvo ovih Moderno rudarstvo započelo je dolaskom terena je bilo predmet rudarske aktivnosti, A. Hedera (1835. god.) u Srbiju na poziv o čemu svedoče tragovi Rimskog kneza Miloša, sa ciljem „da se rudna blaga rudarstva utvrđeni u okolini Bora (Bor, učine poleznim za srpsko otačestvo“.

Broj 1,2011. 2 RUDARSKI RADOVI

Krajem 1848. god. počeli su istražni rezultata, bilo da je koncesionaru nestalo radovi sa ciljem pronalaženja gvožđa u para za izvođenje skupih rudarskih radova Majdanpeku, Rudnoj Glavi i Crnajki. ili je uspeo da koncesiju proda drugom Nalazak zlata na Deli Jovanu (1888. vlasniku. Postignuti rezultati su čuvani kao god., Glogovica) uticao je da se pristupi tajna. Ako se ovome doda i činjenica da su obimnijim geološkim i rudarskim radovi obavljani bez stručnog nadzora, istraživanjima, što je dovelo do otkrića dolazi se do zaključka da uspeha u okolini borskog rudišta 1902. god. Bora nije ni bilo. Prvi istražni radovi u Boru počinju Prekretnica u istraživanu nastaje po 1897. god. završetku drugog svetskog rata, kada je Godine 1902. je pronađeno rudno telo čitavo rudno bogatstvo tadašnje FNRJ, a „Čoka Dulkan“, a 1904. god se počinje sa kasnije i SFRJ postalo vlasništvo naroda. proizvodnjom. Sa sistematskim istraživanjem se nije U periodu do prvog svetskog rata odpočelo odmah posle rata, obzirom da su Francusko društvo borskih radnika po sve snage bile angažovane na preporuci inžinjera Šisteka izvodi istražne osposobljavanju rudnika i proizvodnju. radove u Metovnici, Velikom i Malom Godine 1948., počinje se sa Krivelju i tom prilikom je pronađeno malo sistematskim istraživanjem kako u ali bogato rudno telo u Kiridžijskom Rudniku bakra Bor, tako i na području potoku kod Malog Krivelja. Ovo rudno timočkog andezitskog masiva. telo francuzi su otkopali do 1912. god., a Istraživanja su se sastijala u izradi imalo je oko 6.000 tona bogate rude. istražnih hodnika i dubinskog bušenja. Do U ovom periodu, od strane francuskih 1962. god. profili istražnih hodnika su bili geologa Blanšana i Šlumbegera prime- 4 m2, dok se posle prelazi na 6 m2, koji su njuju se i geofizičke metode, pored locirani kao istražno pripremni. rudarskih istražnih radova. Istraživanja u ovom periodu bila su U periodu posle prvog svetskog rata ograničena na istraživanje poznatih rudnih aktivirana su istraživanja u Boru, a tela, dok su istraživanja u cilju naročito se intenziviraju od 1927. do pronalaženja novih rudnih tela bila 1930. god. U ovom periodu detaljno se zapostavljena. istražuju rudna tela Tilva Mike, a Godine 1961. se započelo sa istraži- delimično i Tilva Roš. Rudno telo Tilva vanjima u kriveljskoj hidrotermalno Roš je privlačilo manju pažnju za izmenjenoj zoni. Ova istraživanja su istraživanje zbog niskog sadržaja bakra. trajala sve do 1974. god. Doistraživanja Ovim istraživanjima su rudne rezerve bile ove zone su vršena u više navrata od 1982. znatno povećane, dok je proizvodnja do 1992. god. i od 1997. do 1998. god. Na blister bakra porasla na 40.000 tona. osnovu rezultata ovih istraživanja U periodu do 1940. god., francuzi otkriveno je ležište bakra „Veliki Krivelj“ počinju sa detaljnim istraživanjem borske i izrađeno je nekoliko elaborata o hidrotermalno izmenjene zone na nivou V rezervama rude bakra na ovom prostoru. horizonta i otkrivaju rudna tela „Tilva Prvi elaborat je bio izrađen 1978. god., Ronton“, „Kamenjar“ i rudno telo „E“. ovim elaboratom su overene rezerve od U ovom periodu istraživanja su 64.351.000 tona rude bakra sa graničnim intenzivirana i u okolini Bora, tako da sadržajem od 0,30% bakra po toni rude. praktično nije bilo rudnog izdanka na kome Drugi elaborat je bio izrađen 1992. god., se nije bar nešto radilo. Istražni radovi su ovim elaboratom su overene rezerve od bili u vidu kratkih podkopa i plitkog 164.572.853 tona rude bakra sa graničnim bušenja. Većina tih radova su ostali bez sadržajem od 0,20% bakra po toni rude.

Broj 1,2011. 3 RUDARSKI RADOVI

3. GEOLOŠKA GRAĐA ŠIRE OKOLINE Treći elaborat je bio izrađen 2005. god., Timočki andezitski masiv je nastavak ovim elaboratom su overene rezerve od subvulkanskog andezitskog masiva koji iz 465.150.392 tona rude bakra sa graničnim Rumunije prelazi u Srbiju. Pravac sadržajem od 0,20% bakra po toni rude. pružanja mu je sever – jug i proteže se u Poslednnji elaborat je bio izrađen 2010. dužini od 70 km i širini od 15 km. god., ovim elaboratom su overene rezerve Magmatsko tektonska evolucija krajem od 621.921.288 tona rude bakra sa krede i početkom tercijara je bila sledeća: graničnim sadržajem od 0,15% bakra po narušavanjem izostatičke ravnoteže u toni rude . srednjogorskoj geosinklinali od Majdanpeka Na području Kraku Bugaresku koje se preko Bora, pa sve do Bugarske na Crnom nalazi severno od Bora geološka moru došlo je do vulkanske erupcije u istraživanja su vršena u više navrata, od donjem senonu. 1965. do 1967. god. Detaljna geološka Submarinski vulkanizam se odvijao u istraživanja su vršena u periodu od 1975. tri faze: do 1978. god. Dok su doistraživanja - U prvoj fazi je došlo do izlivanja, a vršena od 1981. do 1995. god. Ovim zatim i do očvršćavanja hornblenda, istraživanjima je otkriveno ležište bakra hornblenda biotitskih andezita i dacita. Za „Cerovo“. Prvim proračunom rezervi rude ove vulkanite je karakteristična porfirska bakra je overeno 238.141.000 tona rude. struktura sa krupnim fenokristalima Dok je elaboratom iz 2007. god. overeno plagioklasa, hornblende i biotita. 319.377.890 tona rude sa graničnim - U drugoj fazi su stvarani piroksenski, sadržajem od 0,20% bakra po toni rude. amfibolske i piroksensko – amfibolske Takođe na prostoru Kraku Bugaresku, andezite i piroklastite, sa sitnim nešto severnije u odnosu na ležište fenomfistalima plagioklasa, hornblende i „Cerovo“ su vršena geološka istraživanja piroksena. koja su započeta 1977. god. a završena - Pirokseni treće faze nisu nađeni pa se 1986. god. Detaljna istraživanja ovog smatra da su erodovani. prostora su vršena u periodu od 1987. god Laramijska orogeneza mobilisala je i trajala do 1991. god., a doistraživanja su ognjišta dajući niz plutonita i njihovih započeta 1999. god i trajala su do 2001. hipoabisalnih ekvivalenata, odnosno god. Ovim istraživanjima je potvrđeno monconita, diorita, kvarcdiorita i gabra. postojanje još jednog ležišta bakra na Sve pomenute magmatite su pratili ovom prostoru, sa rezervama rude bakra hidrotermalni rastvori koji su vršili od 70.092.715 tona i graničnim sadržajem hidrotermalne izmene ranije stvorenih od 0,20% bakra po toni rude. Ovo ležište stena. je nazvano „Kraku Bugaresku – Hidrotermalno izmenjene zone javljaju Cementacija“. se u vidu izduženih zona, dimenzija od U periodu od 1976. do 1999. god. više kilometara, a pravac pružanja im se vršena su geološka istraživanja u području poklapa sa laramijskim dislokacijama. Borske reke, pri čemu je otkriveno rudno Sve napred opisane stenske jedinice su telo „Borska reka“ sa ustanovljenim prikazane na osnovnoj geološkoj karti rezervama rude bakra od 15.496.154 tona. (List Bor) (slike 2. i 3.).

Broj 1,2011. 4 RUDARSKI RADOVI

Sl. 2. Osnovna geološka karta 1 : 100.000 (list Bor), umanjen prikaz.

Sl. 3. Geološki stub Porečke antiformne i Timočke sinformne strukture 1 : 15.000, umanjen prikaz

Broj 1,2011. 5 RUDARSKI RADOVI

4. GEOLOŠKA GRAĐA RUDNOG 5. ZAKLJUČAK POLJA BOR Istorijat geoloških istraživanja a u vezi sa Borska hidrotermalno izmenjena zona njima i rudarenja u Boru i okolini se proteže se nalazi u povlati moćne serije na period od preko 1000 godina, još iz doba konglomerata i peščara. Rimljana. A u novijoj istoriji na period od Neposrednu granicu predstavlja borski 1835. god. pa sve do danas. Pri čemu ovaj rased koji se proteže u dužini od 40 km. proces nikako nije završen, već se naprotiv Uz borski rased leži i kriveljska sa porastom cene bakra na svetskom tržištu hidrotermalno izmenjena zona. Obe zone intenzivira sa ciljem doistraživanja već imaju pravac severozapad – jugoistok i postojećih i pronalaženja novih ležišta, kako pad ka jugozapadu pod uglom od 70°. bi se postojeće rezerve bakra uvećale a Većina istraživača smatra de je Borski samim tim i obezbedila budućnost rudarenja rased reversni rased duž koga je zapadni – na ovim prostorima. povlatni blok kretan naviše. Na sveže otkrivenim delovima rasedne površi se to LITERATURA moglo i utvrditi. Stene od kojih je izgrađeno borsko [1] Miličić M., Grujčić B., i ostali: Elaborat ležište su: o rudnim rezervama rudnika bakra Bor ¾ sveži i hidrotermalno izmenjeni stanje, Institut za bakar Bor, Srbija, andeziti; 1977. ¾ andezitski i dacitski piroklastiti; [2] Grujčić B., Nikolić R., Mišković V. i ostali: Elaborat o rudnim rezervama ¾ peliti sa tufovima i tufitima; rudnika bakra Bor stanje, Institut za ¾ konglomerati i peščari; bakar Bor, Srbija, 1982. ¾ kvarcni aluvijalni nanosi. [3] Tumač za list Bor L34 – 141, 1976 Hidrotermalni rastvori su pratili god., Srbija. laramijsku orogenezu, metasomatski su [4] Brajović M. i ostali: Elaborat o rudnim izmenili hornblenda – biotitske andezite i rezervama rudnog tela „Borska reka“ njihove piroklastične ekvivalente. ležišta bakra Bor, Institut za bakar Bor, Hidrotermalne promene nisu svuda iste, Srbija, 1999. niti je njihov intenzitet isti. Do sada su [5] Maksimović M., Pačkovski G. i ostali: konstatovane sledeće izmene: hloriti- Elaborat o rezervama ležišta bakra zacija, kaolinizacija, alunitizacija, karbo- „Veliki Krivelj“, Institut za rudarstvo i natizacija, sericitizacija, silifikacija, metalurgiju Bor, Srbija, 2010. piritizacija i epidotizacija. [6] Maksimović M, Nikolić K. i ostali: Sve pomenute promene su hidro- Elaborat o rezervama ležišta bakra termalnog porekla i vezane su za „Cerovo“, Institut za rudarstvo i tektonske zone. Te zone predstavljale su metalurgiju Bor, Srbija, 2006. put najmanjeg otpora nadolazećim [7] Maksimović M, Nikolić K. i ostali: hidrotermalnim rastvorima, čiji su se Elaborat o rezervama ležišta bakra sadržaji i temperature lateralno menjali. „Kraku Bugaresku-Cementacija“, Institut za rudarstvo i metalurgiju Bor, Srbija, 2006.

Broj 1,2011. 6 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK: 622.03:550.8.01:622.343(045)=20

Mile Bugarin*, Vladan Marinković*, Vojka Gardić*, Gordana Slavković*

HISTORY OF INVESTIGATION AND GEOLOGICAL STRUCTURE OF THE BOR COPPER DEPOSITS**

Abstract

The finding of gold on Deli Jovan (1888, Glogovica) has affected to access with the extensive geological and mining investigations, what resulted into discovery the Bor ore deposit in 1902. The first prospecting works in Bor started in1897. In 1902, the ore body Čoka Dulkan was found and the production started in 1904. In the period after the First World War the investigations were activated in Bor, and they were especially intensified from the 1927 to 1930. In 1948, the system- atic investigation has started both in the Copper Mine Bor and in the area of Timok andesite mas- sif. The Bor deposit is built of the following rocks: fresh and hydrothermally altered andesites, an- desite and dacite pyroclastites, pelytes with tuffs and tuffites, conglomerates and sandstones and quartz alluvial deposits. Key words: copper, the Bor leaf, ore body, hydrothermal altered zone, cut-off grade

1. INTRODUCTION

Copper Mine Bor is located in the massif. This area is bounded on the west northeastern part of Serbia about 11 km on with Crni (1,027 m), from the north the west of Bulgaria and about 70 km on with Mali Krš (920 m) and Veliki Krš the south of Romania (Figure 1). (1,148m) and on the south side, the The area of the ore field Bor occupies ground is much lower and there no pro- the central part of the Timok volcanic nounced peaks.

* Mining and Metallurgy Institute, Bor ** This paper is produced from the project no. 37001 which is funded by means of the Ministry of Education and Science of the Republic of Serbia

No 1, 2011. 7 MINING ENGINEERING

Figure 1. Geographic map – position of the Bor leaf

2. HISTORY OF INVESTIGATIONS

The fields affected by the Bor leaf repre- works began aimed at finding the iron in sent one of the most interesting areas in the Majdanpek, Rudna Glava and Crnajka. Eastern Serbia both for the mineral resources The finding of gold on Deli Jovan and very heterogeneous geological structure. (1888, Glogovica) has affected to access Since the ancient times, the mineral re- with the extensive geological and mining sources of these fields was the subject of investigations, what resulted into discov- mining activity as evidenced by the traces of ery the Bor ore deposit in 1902. Roman mining identified in the vicinity of The first prospecting works in Bor Bor (Bor, Brestovac, Piatra Roche, Krivelj). started in1897. In 1902, the ore body Čoka By settlement of the Slavs on the Balcan Dulkan was found and the production Peninsula, the mining activity continued that started in 1904. was later significantly increased with the In the period before the First World arrival of the Sasa (Crnajka, Šaška River). War, the French Society of the Bor work- Modern mining began with the arrival of A. ers as recommended by engineers Sistek Header (1835) into Serbia at the invitation of carried out the prospecting works in Me- Duke Miloš, with the aim “to make useful tovnica, Veliki and Mali Krivelj and at the mineral resources for the Serbian home- that occasion a small but rich ore body land”. At the end of 1848, the prospecting was found in the Kiridžijski Creek near

No 1, 2011. 8 MINING ENGINEERING

Mali Krivelj. This ore body, the French In 1948, the systematic investigation was excavated up to 1912 and it had about started both in the Bor copper mine, and in 6,000 tons of rich ore. the area of the Timok andesite massif. In this period, the geophysical methods Investigations consisted of drifting and were applied by the French geologists deep drilling. Until 1962, the profiles of Blanchan and Schlumbeger in addition to drifts were 4 m2, and later they were 6 m2, the mining exploration works. located as the exploratory – preparation. In the period after the First World Investigations in this period were lim- War, the investigations were activated in ited on exploration the known ore bodies, Bor, and especially intensified from 1927 while the investigations, aimed to finding to 1930. In this period, the ore bodies of the new ore bodies, were neglected. Tilva Mika were investigated in detail, In 1961, the investigations began in and partly Tilva Roche. The ore body the Krivelj hydrothermal altered zones. Tilva Rosh attracted less attention for in- Those investigations lasted until 1974. vestigation due to the low copper content. Additional investigations of this zone By these investigations, the ore reserves were carried out on several occasions were significantly increased, while the from 1982 to 1992 and from 1997 to 1998. production of blister copper increased to Based on the results of these investiga- 40,000 tons. tions, the copper deposit Veliki Krivelj In the period to 1940, the French be- was discovered and several elaborated gan with a detailed investigation of the were made on the reserves of copper ore Bor hydrothermally altered zone at the in this area. The I Elaborate was made in level of V horizon and discovered the ore 1978 that has confirmed the reserves of bodies Tilva Ronton, Kamenjar and the 64,351,000 tons of copper ore with a cut- ore body “E”. off grade of 0.30% copper per ton of ore. During this period, the investigations The II Elaborate was made in 1992 that were intensified in and around Bor, so has confirmed the reserves of 164,572,853 there was no practically the ore outcrop on tons of copper ore with a cut-off grade of which at least something was worked. The 0.20% copper per ton of ore. The III exploration works were in the form of Elaborate was made in 2005 that has con- short adits and shallow drilling. Most of firmed the reserves of 465,150,392 tons of these works were left with no results, copper ore with a cut-off grade of 0.20% whether the concessionaire missed the copper per ton of ore. The last Elaborate money for realization the expensive min- was made in 2010 that has confirmed the ing works or he was able to sell the con- reserves of 621,921,288 tons of copper ore cession to another owner. The achieved with a cut-off grade of 0.15% copper per results were kept as a secret. If the fact is ton of ore. added to this that the works were under- In the area Kraku Bugaresku, located taken without professional supervision, it north of Bor, the geological investigations can be concluded that the success in the were carried out on several occasions, from region of Bor did not exist. 1965 to 1967. Detailed geological investiga- A milestone in the investigation oc- tions were carried out in the period from curred at the end of the Second World 1975to 1978; while the additional investiga- War, when the entire mineral resources of tions were carried out from 1981 to 1995. the former FPRY and later SFRY became These investigations have discovered the the property of the people. A systematic copper deposit Cerovo. The first calculation study did not started immediately after the of the copper ore reserves has verified war, since all forces were engaged in the 238,141,000 tons of ore. While the elaborate reconstruction of mine and production. from 2007 has verified 319,377,890 tons of

No 1, 2011. 9 MINING ENGINEERING ore with a cut-off grade of 0.20% copper per over Bor up to Bulgaria at the Black Sea, ton of ore. resulted into a volcanic eruption in the lower Also in the area Kraku Bugaresku, Shannon. Submarine volcanism took place slightly further north than the Cerovo, the in three phases. geological investigations were carried out The first phase resulted into spilling that began in 1977 and finished in 1986. and then the induration of hornblende, Detailed investigations of this area were hornblende biotite andesite and dacite. carried out in the period from 1987 and These vulcanites are characterized by por- lasted until 1991, and the additional inves- phyritic structure with large phenocrysts tigations began in 1999 and lasted until of plagioclase, hornblende and biotite. 2001. These investigations have con- Pyroxene, amphibole and pyroxene - firmed the existence of another copper amphibole andesites and pyroclastics were deposit in this area, with reserves of cop- created in the second phase with fine per ore from 70,092,715 tons and a cut-off phenophystale plagioclase, hornblende grade of 0.20% copper per ton of ore. This and pyroxene. deposit was called the Kraku Bugaresku - Pyroxenes of the third phase were not Cementation. found and it is believed that they were In the period from 1976 to 1999, the eroded. geological investigations were carried out Laramian orogeny mobilized the in the area of the Bor River, where the ore homes, giving a series of plutonic rocks body Bor River was discovered with the and their hypabyssal equivalents or mon- established reserves of copper ore of zonites, diorite, and quartzdiorite and gab- 15,496,154 tons. bro. All mentioned magmatic rocks were 3. GEOLOGICAL STRUCTURE OF accompanied the hydrothermal solutions THE WIDER ENVIRONMENT that performed the hydrothermal changes of previously generated rocks. The Timok andesite massif is a con- Hydrothermally altered zones occur in tinuation sub-volcanic andesite massif that the form of elongated zones, the dimen- moves from Romania to Serbia. The direc- sions of several kilometers and their direc- tion of it is north - south and extends to tion coincides with the Laramian disloca- length of 70 km and width of 15 km. tions. Magmatic and tectonic evolution of All of the above described rock units the late Cretaceous and early Tertiary pe- are shown in the basic geological map (the riod was the following: Bor leaf) (Figures 2 and 3). Violation of isostatic equilibrium, in the central mountain syncline from Majdanpek

No 1, 2011. 10 MINING ENGINEERING

Figure 2. Geographic map 1 : 100,000 (the Bor leaf)

Figure 3. Geological column of the Poreč antiform and Timok synform structure 1 : 15.000, thumbnail

No 1, 2011. 11 MINING ENGINEERING

4. GEOLOGICAL STRUCTURE OF THE ORE FIELD BOR

The Bor hydrothermal altered zone is and in the recent history for the periods located in a fault block of powerful series from 1835 until nowadays. While this of conglomerates and sandstones. process is by no means complete, but The immediate border is the Bor Fault rather with the increase of copper prices that extends to a length of 40 km. The on the world market intensifies with the Krivelj hydrothermally altered zone lies aim of additional investigations of already next to the Bor Fault. Both zones have existing and finding the new deposits as direction to the northwest – southeast and the existing copper reserves would be in- fall to the southwest at angle of 70°. creased and thus ensure the future of min- Most scientists believe the Bor Fault is ing in this area. a reverse fault along which the west - fault block moved upwards. It could be seen REFERENCES and determined on freshly uncovered parts of the fault surface. [1] Miličić M., Grujčić B., et al., 1977: The Bor deposit is built of the follow- Elaborate on the Ore Reserves of the ing rocks: Copper Mine Bor, condition 01. 01. ¾ fresh and hydrothermally altered 1977, Copper Institute Bor, Serbia (in andesites; Serbian) ¾ andesite and dacite pyroclastics; [2] Grujčić B., Nikolić R., Mišković V., et ¾ pelites with tuffs and tuffites; al., 1982: Elaborate on the Ore Reserves ¾ conglomerates and sandstones; of the Copper Mine Bor, condition 01. ¾ quartz alluvial deposits. 01. 1982, Copper Institute Bor, Serbia (in Serbian) Hydrothermal solutions followed the [3] Legend for the Bor Leaf L34 – 141 Laramian orogeny and metasomaticaly 1976, Serbia (in Serbian) altered the hornblende - biotite andesite and [4] Brajović M., et al., 1999: Elaborate on their pyroclastic equivalents. Hydrothermal the Ore Reserves of the Ore Body Bor alterations are not everywhere neither the River the Copper Deposit Bor, Copper same, nor their intensity is the same. Until Institute Bor, Serbia (in Serbian) now, the following alterations were stated: [5] Maksimović M., Pačkovski G., et al., chloritization, kaolinization, alunitiyation, 2010: Elaborate on the Ore Reserves of carbonation, sericitization, silicification, the Copper Deposit Veliki Krivelj, pyritization and epidotizacion. Mining and Metallurgy Institute Bor, All these changes are of hydrothermal Serbia (in Serbian) origin and related to the tectonic zone. [6] Maksimović M, Nikolić K., et al., 2006: These zones represented the path of the Elaborate on the Ore Reserves of the lowest resistance of the coming hydro- Copper Deposit Cerovo, Mining and thermal solutions with their lateral Metallurgy Institute Bor, Serbia (in changes of contents and temperatures. Serbian) [7] Maksimović M, Nikolić K., et al., 5. CONCLUSION 2006: Elaborate on the Ore Reserves The history of geological investigations of the Copper Deposit Kraku and, in connection with them, the mining in Bugaresku-Cementacija, Mining and Bor and its surroundings are stretches for Metallurgy Institute Bor, Serbia (in over 1000 years, since the Roman times; Serbian)

No 1, 2011. 12 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK: 711.455(045)=861

Gordana Milentijević*, Blagoje Nedeljković*

HIDROGEOLOŠKE KARAKTERISTIKE TERMOMINERALNE VODE VUČA I NJEN UTICAJ NA ZDRAVLJE**

Izvod

U ovom radu prezentovani su rezultati novih saznanja o termomineralnoj vodi Vuča u smislu geneze, ocene potencijalnosti, fizičko-hemijskog sastava i lekovitosti. U tom pravcu izvedena su i neophodna terenska (geološka i hidrogeološka) i laboratorijska (mineraloško-petrografska analiza, fizičko-hemijska analiza i analiza radioaktivnosti) istraživanja. Rezultati istraživanja su prikazani u ovom radu. Termomineralna voda Vuča je ocenjene kao lekovita voda sa ograničenim mogućnostima upotrebe, što proizilazi iz činjenice da su pH vrednosti veoma visoke. Ključne reči: termomineralna voda, geneza, fizičko-hemijske karakteristike, balneološke karak- teristike, lekovitost.

1. UVOD

Analizirana termomineralna voda izvire u medicina je prepoznala lekovitost termo- selu Vuča na južnim padinama planine mineralne vode Vuča, tako da je ona, do sada, Rogozna, na levoj dolinskoj strani Ibra, na korišćena u tom pravcu. Cilj ovog rada je 520 m nadmorske visine (slika 1.). Selo Vuča prezentovanje saznanja proistekla novim, nalazi se na oko 17 km severozapadno od geološkim, hidrogeološkim i laboratorijskim Kosovske Mitrovice. Pojava termomineralne istraživanjima, u smislu ocene potencijalnosti, vode Vuča je posledica brojnih ektonskih [3] i geneze, fizičko-hemijskih karakteristika i vulkanskih aktivnosti u prošlosti. Narodna lekovitosti.

* Univerzitet u Prištini, Fakultet tehničkih nauka Kosovska Mitrovica ** Ovaj rad je realizovan u okviru projekta „Istraživanje klimatskih promena na životnu sredinu: praćenje uticaja, adaptacija i ublažavanje“ (43007) koji finansira Ministarstvo za prosvetu i nauku Republike Srbije u okviru programa Integrisanih i interdisciplinarnih istraživanja za period 2011-2014. godine.

Broj 1,2011. 13 RUDARSKI RADOVI

Termomineralni izvor Vuča

Slika 1. Prostorni položaj mesta isticanja termomineralne vode Vuča

2. GENEZA TERMOMINERALNE VODE VUČA

Geneza termomineralne vode dovodi Tercijarni magmatizam označava granitske se u vezu sa tektomagmatizmom Rogozne. intruzive praćene vulkanizmom u više Evolutivni razvoj planine karakterišu sekvenci, kada se stvaraju vulkaniti tektomagmatski procesi koji svojim (dacito-andenziti, kvarclatiti, piroksensko- produktima beleže pojedine faze razvića amfibolitski andenziti, tufovi i konglo- mezozojika i kenozojika. Magmatizam u merati). U opisanim stenama, pojavljaje se trijasu i gornjoj kredi reprezentuju serpen- termomineralna voda [7]. tinisani peridotiti, dijabazi sa efuzivnim Rezervoar termomineralnih voda čini ekvivalentima i gabro stene. U hronologiji kompleks karbonatnih mezozojskih i tektomagmatizma najstarije i najraspro- paleozojskih stena. Najverovatnije se radi stranjenije magmatske stene su peridotiti. o trijaskim krečnjacima, s obzirom da su Po mineraloškom sastavu odgovaraju bili kratko izloženi eroziji tokom jure i harcburgitskom tipu uz minimalno učešće donje krede. Vode u rezervoaru potiču iz ekvivalenata - lerzolita, dunita i dr. Karak- perioda semiaridne klime (20.000 god.) i teristika ovih stena je serpentinizacija- imaju temperaturu oko 1200C [6]. serpentinisani peridotiti i serpentiniti. Radi sticanja novih saznanja o genezi Hidrotermalnim procesima tercijarnog termomineralne vode Vuča urađene su magmatizma nastaju magnezitske žilice i mineraloško-petrografske analize iz pro- žice. Procesi raspadanja su izraženi u boja u zoni isticanja (slika 2.). serpentinitima (nontroniti, žični magnezit).

Broj 1,2011. 14 RUDARSKI RADOVI

1

2 3

Slika 2. Proboj za koji je vezano isticanje termomoneralne vode Vuča, a gde su uzeti uzorci za mineraloško-petrografsku analizu (foto G. Milentijević, 2008.g.)

2.1. PRIKAZ MINERALOŠKO- PETROGRAFSKE ANALIZE UZORAKA IZ PROBOJA U ZONI ISTICANJA TERMOMINERALNE VODE VUČA

U sklopu istraživačkog projekta sastava ukazuju da su ispitivane stene: Hidrogeološka istraživanja mineralnih i kvarcit sa kalcitom i epidotom i serpentinit termomineralnih voda severnog dela Kosova nastao metamorfozom harcburgita. i Metohije, koji je finansiralo Ministarstvo Analize dva uzoraka iz podinskog dela za zaštitu životne sredine i prostornog plani- proboja prema odlikama sklopa i mineralnog ranja, uzeti su uzorci stena iz proboja u zoni sastava ukazuju da su ispitivane stene to- isticanja termomineralne vode i urađene su nalit i hidrotermalno promenjeni tonalit. mineraloško-petrografske analize. Minera- Analiza uzorka iz centralog dela proboja loško-petrografske analize su urađene u prema odlikama sklopa i mineralnog sastava laboratoriji za mineraloško-petrografska ukazuje da je to kvarcit. ispitivanja na Rudarsko-geološkom fakultetu Makroskopski izgled stene: kvarcit je u Beogradu. stena mlečnobele boje, granoblastične Analizirani su uzorci iz ’’krovine strukture i homogenog sastava. Po svojim proboja’’ (2), iz ’’podinskog dela proboja’’ makroskopskim karakteristikama odgovara (1) i iz ’’centralnog dela proboja’’ (3) [8]. uzorku br. 1. Oštrih je prelomnih ivica Analize dva uzoraka iz ’’krovine pro- otporna na dejstvo hlorovodonične kiseline, boja’’ prema odlikama sklopa i mineralnog para staklo. Stenska masa je intezivno

Broj 1,2011. 15 RUDARSKI RADOVI ispucala, a pukotine imaju više pravaca minerali, kao i nešto filosilikata koji pružanja. Prisutne su i limonitske skrame po zapunjavaju tanke prsline. Karakteristično pojedinim površinama i duž prslina. je da kvarc pokazuje dva pravca prslina Mikroskopski izgled stene: stena je koje su najverovatnije nastale tokom granoblastične strukture. Mikroskopski se deformacija koje su odgovrne i za pojavu takođe zapaža ispucalost stenske mase. talasastog potamnjenja. Kretanjem po Izgrađena je od krupnozrnog kvarca, pri navedenim rupturama došlo je do čemu je petografskim preparatom otvaranja prslina i formiranja tzv. „pull- najverovatnije zahvaćeno jedno zrno. apart’’ struktura u kojima su deponovani Manje od 1% vol. stene čine neprovidni sitnozrni filosilikatni agregati (slika 3.).

Slika 3. Tzv.“pull-apart“struktura nastala kretanjima posle deformacija, xpl

3. PRIKAZ REZULTATA MERENJA IZDAŠNOSTI I FIZIČKO-HEMIJSKOG SASTAVA TERMOMINERALNE VODE VUČA

Terenskim istraživanjima utvrđeno je i tu ističe. Merenje izdašnosti je bilo mo- da voda ističe po dnu napravljenih bazena, guće na ostavljenom prelivu iz prvog sa jasno vidljivim mehurićima gasa. bazena i iz bušotine. Konstatovano je i da je u zoni isticanja Temperatura je merena na mestima vode urađena jedna bušotina dužine 70 m najjačeg prisustva mehurića gasa, odnosno gde su postavljena dva tuša i da sada voda na mestima pretpostavljenog najvećeg

Broj 1,2011. 16 RUDARSKI RADOVI priliva voda kroz dno bazena i iz tuša. i 32oC (isticanje iz bušotine). Režim izdašnosti i temperature praćen je u Radi utvrđivanja kvaliteta termomine- toku 2008. godine [8]. ralne vode urađena je kompletna fizičko- Može se zaključiti da je režim izdašnosti hemijska analiza, bakteriološka analiza i prilično stabilan, što ide u prilog pretpo- radiološka analiza (tabela 2.). Pored toga stavkama o dubokoj cirkulaciji termomine- analizirani su i publikovani podaci ranijih ralne vode Vuča. Izdašnost se kreće u grani- istraživanja [9]. Za potrebe izrade ovog cama od 0,8 – 1,2 l/s (preliv iz bazena) i od rada prikazane su osnovne fizičko- 0,9-1,3 l/s (isticanje iz bušotine) dok je tem- hemijske veličine i makrokomponente peratura vode oko 25oC (preliv iz bazena) (tabela 1, slika 4)

Tabela 1. Fizičko-hemijski sastav termomineralne vode Vuča (Institut za javno zdravlje “dr Milan Jovanović-Batut”, Beograd, 2008.godine) Redni Osnovne fizičko-hemijske Sadržaj Oznaka metode boj veličine 0 1. Temperatura ( C) 32,0± 0,1 UP-501

2. pH 11,5± 0,1 UP-503 3. Boja (Pt-Co skale) bezbojna UP-536# 4. Miris Bez mirisa UP-537# 5. Elektroprovodljivost (µS/cm) 430±40 UP-507 6. Ukupna tvrdoća (dH) 6,7 UP-510

7. Utrošak KMnO4(mg/l) 2,2 UP-506 8. Suvi ostatak (mg/l) 168 UP-505 Makrokomponente Katjoni Sadržaj(mg/l) Oznaka metode 1. Kalcijum (Ca++) 48±4 UP-516# 2. Natrijum (Na+) 15,6 UP-916# 3. Kalijum (Ka+) 0,6 UP-917# 4. Magnezijum (Mg++) <0,5 UP-517 Anjoni 1. Hloridi (Cl-) 17±1 UP-521 - - 2. Sulfati (SO4 ) 0,9±0,1 UP-521 - 3. Hidrokarbonati (HCO3 ) 164±10 UP-509

Broj 1,2011. 17 RUDARSKI RADOVI

Slika 4. Kružni dijagram hemijskog sastav

Merenja radioaktivnosti u uzorku termo- mir Karajović”, u Beogradu čiji rezultati su mineralne vode obavljena su u Institutu za dati u tabeli 2. medicinu rada i radiološku zaštitu „dr Drago-

Tabela 2. Tabelarni prikaz rezultata gamaspektrometrijske analize, (Institut za medicinu rada i radiološku zaštitu „dr Dragomir Karajović”, Beogradu 2008. godine): 137Cs 134Cs 40K 232Th 238U 226Ra Vrsta uzorka (Bq/l) (Bq/l) (Bq/l) (Bq/l) (Bq/l) (Bq/l) Termomineralna < 0.006 < 0.002 0.10 ± 0.01 < 0.02 < 0.11 < 0.02 voda Vuča

4. DISKUSIJA REZULTATA ISTRAŽIVANJA

Mineraloško-petrografska analiza uka- strane. Pretpostavlja se da su ove dve zuje da užu zonu isticanja termomineralne činjenice glavno hidrogeološko obeležje vode Vuča izgrađuju serpentiniti koji su terena. Za njih je vezivana i geneza intezivno tektonizirani, odnosno izrasedani i termomineralne vode. U okviru pukotinskog ispucali s jedne strane, i pojava jedne mar- sistema u serpentinitima i kalcitima olakšana kantne strukture kvarcita linijskog pravca je cirkulacija podzemnih voda koje se duž pružanja duž toka Vučanske reke, s druge rasednih struktura i mreže pukotina spuštaju

Broj 1,2011. 18 RUDARSKI RADOVI do znatnih dubina u terenu, poprimajući Visoka alkalnost daje specijalne i vrlo karakteristični hemijski sastav i temperaturu. ograničene balneološke karakteristike. Formiranje i isticanje termomineralne vode Eventualno pijenje (hronično) ove vode vezano je za pukotinski tip izdani zastupljen može da izazove ozbiljne poremećaje u u okviru serpentinita i sočiva kvarcita u sekreciji, a takođe u varenju i apsorpciji njima. Zone prihranjivanja izdani sa termo- nutrijenata i digestrivnom sistemu. Visoka mineralnom vodom treba tražiti na znatno alkalnost u unutrašnjosti tela bi izazvala većim udaljenostima od isticanja duž ozbiljne poremećaje pre svega centralnog regionalnih rasednih struktura i pukotinskih nervnog sistema i bubrega. Zbog svega sistema s obzirom na temperature i minera- ovoga ova voda može da se koristi u lizaciju termomineralne vode. spoljašnoj aplikaciji (kupanje) u slučaju Na osnovu rezultata fizičko-hemijske nekih nezapaljivih i neifektivnih kožnih analize može se reći da od katjona bolesti, kao što je keratoza [5]. dominira sadržaj kalcijuma i natrijuma. Rezultati gamaspektrometrijske ana- Od anjona, najviše ima hidrokarbonata, lize vode (specifična aktivnost) ukazuje da zatim hlorida, a ukupan sadržaj anjona su analizirane vode u skladu sa propisima oko tri puta je veći od sadržaja katjona. Na za vode za piće (shodno propisima osnovu dosadašnjih saznanja i saznanja S.L.SRJ br. 9/1999) . pristeklim navedenim istraživanjima može se reći da je termomineralna voda Vuče 5. ZAKLJUČAK hidrokarbonatno – natrijumskog tipa. Ana- lizirana voda se odlikuju visokom pH Geneza, potencijalnost, kvalitet i leko- vrednošću koja se kreće do 11,5 [8]. vitost termomineralne vode Vuča čine Na osnovu pregleda osnovnih karakte- lokalitet veoma interesantan za dalja ristika mineralnih voda reona Šumadijsko- proučavanja i sticanja novih saznanja.To kopaoničko-kosovske oblasti, termomine- se pre svega odnosi na dalja proučavanja u ralna voda Vuča ima sledeću formulu cilju dobijanja novih saznanja o genezi hemijskog sastava [9] : termomineralne vode i uslova pod kojima se formira karakterističan fizičko-hemijski 3 sastav što se pre svega odnosi na veoma CO86Cl12 M 0.3 Q = 0.8 visoke pH vrednosti. Lekovitost termo- Na + K98 mineralne vode je, pre svega zbog veoma visoke pH vrednosti, i iste se mogu U svetu su retke pojave voda sa koristiti kao pomoćno sredstvo u lečenju navedenim pH vrednostima. Registrovane različitih oboljenja kod čoveka uz su u Kaliforniji, Oregonu, Omanu, Novoj lekarsku kontrolu. Kaledoniji [2] , u Kulašima u Bosni [4]. Na Zlatiboru su otkrivene kalcijum-hidrok- LITERATURA sidne vode sa pH vrednostima od 11,4-11,9 duž dva paralelna raseda i to: u reci Ribnici [1] Bames, I., O, Neil, J, (1969): The relati- (Jovanova voda) i Crnom Rzavu (Lazarevo onship between fluids in some fresh vrelo) i Kamišnoj reci u Mokroj Gori (Bela alpine-type ultramafics and possible voda) [5]. Poreklo ovih voda u svežim i modern serpentinization, Western delimično serpentinisanim ultramafitima United States.-Geol. Soc. Bull., 80, (lerzoliti, harcburgiti, dunit) objašnjava se 1947-1960. savremenom serpentinizacijom primarnih anhidrovanih minerala (olivina, enstatita, [2] Bames, I., O, Neil, J. And Trescasses, diopsida) i stvaranjem hrizotil-lizarditskih J.J. .(1978) Present day serpentization serpentinskih stena [1]. in New Caledonija, Oman and

Broj 1,2011. 19 RUDARSKI RADOVI

Yugoslavia. Geoshim. Cosmochimica [7] Milentijević, G. (2005). Podzemne Acta, 42, 144-145. vode severnog dela Kosova i Meto- [3] Dimitrijević, M. D.(1995). Geologija hije – iskorišćavanje i zaštita. Beo- Jugoslavije. Beograd.: Geoinstitut, grad.: Rudarsko-geološki fakultet, Beograd.: Barex doktorska disertacija [4] Đerković, B. (1973) A new type of [8] Milentijević, G., Nedeljković B. i dr. strongly hydrokside-sodium-calcium (2008). Elaborat o izvedenim hidrogeo- waterat Kulaši (Bosnia) Yugoslavia.- loškim istraživanjima po aneksu Bull. Sci. Acad. Sci. Arts Yugoslavia, projekta “Hidrogeološka istraživanja Sect. A, 18, 134-135 mineralnih i termomineralnih voda [5] Maksimović Z., Ršumović M., - severnog dela Kosova i Metohije”. nović T, (1997): Vode iz ultramafita Kosovska Mitrovica.: Univerzitet u Zlatibora i njihov uticaj na zdravlje. Prištini, Fakultet tehničkih nauka Monografija: 100 godina hidrogeologije [9] Filipović, B., Krunić, O. i Lazić, M. u Jugoslaviji, Beograd.: RGF (2005). Regionalna hidrogeologija [6] Milivojević M, (2001). Elaborat o re- Srbije. Beograd.: Rudarsko-geološki zervama geotermalnih mineralnih fakultet. voda Novopazarske banje Beograd: RGF

Broj 1,2011. 20 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK:711.455(045)=20

Gordana Milentijevic*, Blagoje Nedeljkovic*

HYDROGEOLOGY CHARACTERISTICS OF THE THERMO-MINERAL WATER VUČA AND ITS EFFECT ON HUMAN HEALTH**

Abstract

The results of new study the thermo mineral water Vuča, in a sense of genesis, potentiality evaluation, physical-chemical composition and healing properties are present in this paper. The necessary field investigation (geological and hydrogeolical) and laboratory investigations (min- eralogical – petrographical analysis, physical-chemical analysis, microbiology analysis, radioac- tivity analysis and balneological analysis) were carried out. The investigation results are present in this paper. The thermo mineral water Vuča was evaluated as the healing water with limited usage as the pH values are very high. Key words: thermo mineral water, genesis, physical-chemical characteristics, balneological characteristics, healing property

1. INTRODUCTION

The analyzed thermo mineral water past. The folk medicine has recognized the sources in village Vuča, on the southern healing properties of thermo mineral water slopes of Rogozna mountain, on the left Vuča, so it was used as medicine water. valley bank of the river Ibar, at altitude of The aim of this work is to present the 520 m (Figure 1). Village Vuča is situated achieved knowledge as the result of a new at 17 km northwest of Kosovska Mi- geological, hydrogeological and laboratory trovica. The occurrence of thermo mineral investigations regarded to the evaluation water Vuča is a consequence of numerous the potentiality, genesis, physical-chemical tectonic [3] and volcanic activities in the characteristics and healing properties.

* University of Priština, Faculty of Technical Sciences Kosovska Mitrovica ** This paper was realized as a part of the project "Studying climate change and its influence on the environment: impacts, adaptation and mitigation" (43007) financed by the Ministry of Education and Science of the Republic of Serbia within the framework of integrated and inter- disciplinary research for the period 2011-2014.

No 1, 2011. 21 MINING ENGINEERING

Thermo mineral spring Vuča

Figure 1. Spatial location of discharge the Vuča thermo mineral water Vuča

2. GENESIS OF THE THERMO MINERAL WATER VUČA

Genesis of thermo mineral water is re- tertiary magmatism. The degradation proc- lated to the tecto-magmatism of Rogozna. esses are present in serpentinites (nontronites The evolutionary development of mountain vain magnesite). is characterized by tecto-magmatic proc- Tertiary magmatism marks granite intru- esses, marking separate phases of develop- sive followed by the volcanism in several ment the Mesozoic and Cenozoic. The sequences, when the vulcanite are formed magmatism in Triassic and Upper Creta- (dacite-andesite, quartzlatite, pyroxene- ceous is represented by the serpentinized amphibolite andesite, tuffs and conglomer- peridotite, diabases with effusive equivalents ates). Thermo mineral water occurs in de- and gabbro rocks. In the chronology of scribed rocks [7]. tecto-magmatism, periodites are the oldest The reservoir of thermo mineral water and the most prevailing magmatic rocks. By includes a complex of carbonate Mesozoic their mineralogy compositions, they corre- and Paleozoic rocks. The most probably spond to the hartzburgite type with mini- those are the Triassic limestone, as they mum participation of equivalents-lherzolite, were shortly exposed to the erosion during dunite etc. The characteristics of these rocks Upper Cretaceous. Water in the reservoir are serpentinization-serpentinized peridotites originated from the period of semi arid cli- and serpentinites. The magnesite veins are- mate (20,000 year) with temperature of formed by hydrothermal processes of 120oC [6].

No 1, 2011. 22 MINING ENGINEERING

1

2 3

Figure 2. Breaking related to the discharge of thermo mineral water Vuča, and sampling locations for mineralogical - petrographical analysis (Photo G. Milentijevic, 2008)

2.1. REVIEW OF MINERALOGCAL

PETRO GRAPHICAL ANALYSIS

OF SAMPLES TAKEN FROM A

BREAKING IN DISCHARGE

ZONE OF THERMO MINERAL WATER VUČA Within the investigation project “ Hy- Analyze of two samples taken from the drogeological Investigations the Mineral ’’roof breaking’’ showed that the investi- and Thermo Mineral Water of the North- gated rocks are quartzite with calcite and ern part of Kosovo and Metohija” fi- epidote, and serpentinite formed by hartz- nanced by the Ministry of Environment burgite metamorphose, according to the and Spatial planning, the samples were block features and mineral compositions. taken from a penetration in thermo min- Analyze of two samples taken from the eral water discharge zone and mineralogi- ’’floor breaking’’ showed that the investi- cal and petrographical analyses were car- gated rocks are tonalite and hydrother- ried out. Mineralogical-petrographical mally altered tonalite, according to the analyses were carried out in a laboratory block features and mineral compositions. for mineralogy-petrography investigations Analyze of a sample taken from the at the Mining-Geology Faculty in Bel- ’’central breaking’’ showed that the inves- grade. The results are presented in the tigated rock is quartzite, according to the further text. block features and mineral compositions. The analyzed samples were taken from Macroscopic view of rock: Quartzite the “roof breaking” (2), “floor breaking” is milky white rock of a granuloblastic (1) and ’’central part of breaking’’ (3) [8]. structure, with homogenous composition.

No 1, 2011. 23 MINING ENGINEERING

By its macroscopic properties it matches ing the petrographic analysis, only one to the sample no.1. The rock surface grain is observed. Less than 1% of volume shows glassy glow, sharp cutting edges, is made of non-transparent minerals, as ability to cut the glass, and resistant to the well as some phyllosilicates filling narrow hydrochloric acid. The rock mass is a fissures. It is characteristic that quartz cracked- impregnated with fissure extend- shows two directions of fissures, most ing in several directions. At the rock sur- likely created during deformations respon- face and along the cracks, the limonite is sible also for wave darkening. By moving observed. along listed ruptures, there are opened fis- Microscopic view of rock: The rock sures and formation of so called “pull- has a granuloblastic structure. The cracking apart” structures with small grained phyl- of rock mass is observed by microscope. It losilicates aggregates depo-sited (Figure 3). is made of large grained quartz, where us-

Figure 3. So called “pull-apart” structure made by movements after deformations, xpl

3. REVIEW OF MEASURING RESULTS THE YEILD AND PHYSICAL-CHEMICAL COMPOSITION OF THE THERMO MINERAL WATER VUČA

The field investigations have defined and two showers were installed, and the that water is discharged on the bottom of water is discharged there. The yield meas- formed basins, with clearly visible gas bub- urement was possible on overflow from the bles. It is determined that in the zone of dis- first basin and drill hole. Temperature was charge one drill hole was made, 70 m length, measured on the sites of the largest

No 1, 2011. 24 MINING ENGINEERING presence of gas bubbles, or at the sites of about 25oC (overflow from the basin) and assumed larges yield of water through ba- 32 oC (outflow from the drill hole). sin bottom and from shower. The yield For determination the quality of regime and temperatures were monitored thermo mineral water, a complete physi- during 2008 [8]. cal-chemical analysis, bacteria analysis It can be concluded that the yield re- and radiology analysis are were carried gime is a quite stable, supporting the as- out (Table 2). In addition to this, the data sumptions on deep circulation of thermo published in previous studies were anal- mineral water Vuča. The yield is in the zyed [9]. For the purpose of this work, the intervals of 0.8–1.2 l/s (overflow from the basic physical-chemical values and basin) and 0.9-1.3 l/s (outflow from the macro-components (Table 1 and Figure 4) drill hole) and the water temperature is were presented.

Таble 1. Physical-chemical composition of thermo mineral water Vuča (Institute for Public Health “Dr Milan Jovanovic-Batut”, Belgrade, 2008) Order Basic physical –chemical pa- Value Method mark No. rameters 0 1. Temperature ( C) 32.0± 0,1 UP-501

2. pH 11.5± 0,1 UP-503 3. Color (Pt-Co scale) colorless UP-536# 4. Odor No odor UP-537# 5. Electro conductivity (µS/cm) 430±40 UP-507 6. Total hardness (dH) 6.7 UP-510

7. Consumption of KMnO4(mg/l) 2.2 UP-506 8. Dry residue (mg/l) 168 UP-505 Macro components Kat ions Composition (mg/l) Method applied 1. Calcium (Ca++) 48±4 UP-516# 2. Sodium (Na+) 15.6 UP-916# 3. Potassium (Ka+) 0.6 UP-917# 4. Magnesium (Mg++) <0.5 UP-517 Anions 1. Chlorides (Cl-) 17±1 UP-521 - - 2. Sulfates (SO4 ) 0.9±0.1 UP-521 - 3. Hydro carbonates (HCO3 ) 164±10 UP-509

No 1, 2011. 25 MINING ENGINEERING

Figure 4. Circular diagram of chemical composition

Radioactivity measurements in a sam- cine and Radiological Protection ”Dr ple of thermo mineral water were carried Dragomir Karajovic” in Belgrade, and the out in the Institute for Professional Medi results are presented in Table 2. Table 2. The results of gamma spectrometry analysis (Institute for Professional Medicine and Radiological Protection ”Dr Dragomir Karajović” Belgrade, 2008) . 137Cs 134Cs 40K 232Th 238U 226Ra Sample type (Bq/l) (Bq/l) (Bq/l) (Bq/l) (Bq/l) (Bq/l) Thermo mineral < 0.006 < 0.002 0.10 ± 0.01 < 0.02 < 0.11 < 0.02 water Vuča

4. DISCUSSION OF THE INVESTIGATION RESULTS

Mineralogical-petrographiccal analysis The genesis of thermo mineral water is shows that the narrow discharge zone of connected with these two facts. Within the thermo mineral water Vuča is made by cracking system in serpentinites and cal- serpentinites which are intensively tec- cites, the circulation of ground water is tonized or faulted and cracked on one released, discharged into the depth of ter- side, and occurrence of an imposing struc- rain, getting the characteristic chemical ture of quartzite with direction along the composition and temperature along fault river Vuča, on the other side. It is assumed structures and crack network. Formation that these two facts are the main and discharge of thermo mineral water is hydrogeological feature of the terrain. related to the crack type spring with

No 1, 2011. 26 MINING ENGINEERING thermo mineral water within the serpen- permanent drinking of this water can cause tinite and quartzite grains in them. Re- severe disfunctions in secretion, and also charge zone with thermo mineral water digestion and absorption of nutritients in should be found in long distances from the digestive szstem. High alkalinity inside discharge zone along regional fault struc- the body would cause severe disfunctions tures and fissure systems, considering the of central nervous system and kidneys. Due temperature and water mineralization. to these reasons, this water can be only Based on the results of physical- used in the external application (bathing) in chemical analysis, it can be said that the a case of some non-flamable and non- calcium and sodium content is a predomi- infective skin deseases, as keratosis [5]. nant cation. For anions, the most presented The results of gamma spectrometrical are hydro carbonates, then chlorides, and analysis of water (specific activity) showed total content of anions is three times higher that the analyzed water is in accordance than content of cations. Based on previous with the regulations for drinking water (in studies and present investigations, it can be accordance with the regulations, “Official said that thermo mineral water Vuča is hy- Gazette SRS No. 9/1999”). drocarbonate-sodium type of water. The analyzed water has high pH value up to 5. CONCLUSION 11.5 [8]. Based on the review of basic characteris- The genesis, potentiality, quality and tics the thermo mineral water in the Šumadija healing properties of the thermo mineral – - Kosovo region, thermo mineral water Vuča made this locality very inter- water Vuča has the following formula of esting for further investigations and ac- chemical composition [9]: quiring a new knowledge. This is primar- ily related to the further investigation for 3 CO Cl the aim of obtaining a new knowledge on M 86 12 Q = 0.8 0.3 genesis the thermo mineral water and Na + K98 conditions of formation the characteristic There are just a few occurrences of wa- physical-chemical composition, first of all ter with such high pH values in the world. very high pH values. The healing proper- They are registered in California, Oregon, ties of thermo mineral water are due to Oman, New Caledonia [2], Kulasi in Bos- very high pH value, and these can be used nia [4]. On the mountain Zlatibor , the as a supplementary medicine in treatment calcium hydroxide types of water were of various diseases in humans with medi- discovered with pH values in the interval cal control. 11.4-11.9 along two parallel faults: in the river Ribnica (the Jovan water) and Crni REFERENCES Rzav (the Lazar spring) and the river [1] Bames I., O’Neil J., (1969), The Kamišna in Mokra Gora (Bela voda) [5]. Relationship between Fluids in some The origin of these types of water in a fresh Fresh Alpine-type Ultramafics and and partly serpentinized ultramuffites (lher- Possible Modern Serpentinization, zolite, hartzburgite, dunite) is explained by Western United States.-Geol.Soc. Bull., modern serpentinization of primary anhy- 80, 1947-1960; drated minerals: (olivine, enstatite, diop- side) and formation of chrysotile-lizardite [2] Bames I., O’Neil J., Trescasses, J.J., serpentinite rocks [1]. (1978), Present Day Serpentization in High alcalinity gives special and very New Caledonia, Oman and Yugoslavia, limited balneology characteristics. Possible Geoshim. Cosmochimica Acta, 42, 144- 145;

No 1, 2011. 27 MINING ENGINEERING

[3] Dimitrijević, M.D., (1995), Geology [7] Milentijević, G., (2005), Ground Wa- of Yugoslavia, Belgrade, Geoinstitut ter of the North Part of Kosovo and Belgrade (in Serbian) Metohija – Utilization and Protection, [4] Djerković, B., (1973), A New Type of Belgrade, Faculty on Mining and Strongly Hydroxide-Sodium-Calcium Geology, Doctoral Dissertation (in Water at Kulaši (Bosnia) Yugoslavia, Serbian) Bull. Sci. Acad. Sci. Arts Yugoslavia, [8] Milentijević G., Nedeljković B., et all Sect. A, 18, 134-135 (in Serbian) (2008), Elaborate on Realized Hydro- [5] Maksimović Z., Ršumović M., Jova- geological Investigations According to nović T., (1997), Water from Ultra- the Annex of Project “Hidrogeological mafics of Zlatibor and their Impact on Investigation the Mineral and Thermo- Health. Monograph: 100 Years of mineral Water of the North Part of Ko- Hydrogeology in Yugoslavia, Bel- sovo and Metohija”, Kosovska Mitro- grade, Faculty on Mining and Geology vica, University of Priština, Faculty of (in Serbian) Technical Sciences (in Serbian) [6] Milivojević M., (2001), Elaborate on [9] Filipović B., Krunić O., Lazić M., the Reserves of geothermal mineral (2005), Regional Hydrogeology of water in Novopazarska Spa, Belgrade, Serbia, Belgrade, Faculty of Mining Faculty on Mining and Geology (in and Geology (in Serbian) Serbian)

No 1, 2011. 28 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:622.271:622.36(045)=861

Dragoslav Rakić*, Laslo Čaki*, Slobodan Ćorić*, Milenko Ljubojev**

REZIDUALNI PARAMETARI ČVRSTOĆE SMICANJA VISOKOPLASTIČNIH GLINA I ALEVRITA PK “TAMNAVA –ZAPADNO POLJE”***

Izvod

Prilikom analiza stabilnosti završnih kosina na površinskim kopovima, posebna pažnja se posvećuje određivanju parametara čvrstoće smicanja. U radu je prikazan način određivanja rezidualnih parametara čvrstoće smicanja visokoplastičnih proslojaka glina i alevrita sa P.K. Tamnava –Zapadno Polje, pomoću aparata za kružno smicanje. Osim toga, dat je i osvrt na druge metode laboratorijskog određivanja parametara čvrstoće - posebno rezidualnog smicanja. Treba reći da su ova ispitivanja po prvi put izvedena u Srbiji aparatom sa kružnim smicanjem. Ključne reči: opit kružnog smicanja, rezidualna čvrstoća smicanja, ugao unutrašnjeg trenja.

1. UVOD

Složeni geotehnički uslovi u severo- projektovanje eventualnih sanacionih mera, zapadnom delu površinskog kopa koristi rezidualna čvrstoća smicanja, koja je „Tamnava – Zapadno polje“ često dovode na uzorcima sa pomenute lokacije, pored do pojave nestabilnosti završnih kosina. opita direktnog smicanja, po prvi put u Jedno veće klizanje masa, desilo se u blizini Srbiji određivana i u aparatu za kružno groblja Kalenić, gde je površina pokrenutog smicanje, koristeći Rowe-vu konstrukciju. dela terena iznosila oko 3 ha, sa zapreminom koluvijuma od oko 180 000 3 2. ŠIRA GEOLOŠKA GRAĐA m . Ovim klizanjem, istočna strana groblja LOKACIJE bila je ozbiljno ugrožena, jer se našla na kritičnom rastojanju od oko 25 m od U široj građi prodručja ”Tamnava čeonog ožiljka klizišta [1]. Iz tih razloga Zapad” učestvuju paleozojski škriljci koji vršena su laboratorijska ispitivanja za čine osnovu tercijarnog basena, dacito- određivanje vršnih i rezidualnih parametara andeziti premiocenske starosti, neogeni čvrstoće smicanja. Po pravilu se za sedimenti i kvartarni sedimenti kao završni

* Rudarsko-geološki fakultet, Beograd ** Institut za rudarsvo i metalurgiju Bor *** Rad je proizašao iz projekta broj 36014 koji se finansira sredstvima Ministarstva za prosvetu i nauku Republike Srbije

Broj 1,2011. 29 RUDARSKI RADOVI

član sedimentacije u basenu. Pliocen, kompleksa ugljene serije (ugljevite gline, odnosno pontski kat, predstavlja najvažniji sivo-zelene gline i alevriti). stratigrafski član, kako u ovom području tako i u celom Kolubarskom basenu i on je 3. OPŠTE O METODAMA nosilac produktivnih horizonata u basenu. U LABORATORIJSKOG okviru njega mogu se izdvojiti facije ODREĐIVANJA REZIDUALNIH peskova, glina i alevrita. Ovaj kompleks PARAMETARA ČVRSTOĆE ugljene serije u P.K. “Tamnava–Zapad” SMICANJA raslojava iz jednog jedinstvenog sloja P.K. “Tamnava-Istok” debljine 30 m u više tanjih Triaksijalni opit slojeva. Ove nepovoljne promene su Triaksijalni opit je najčešći način za posledica paleoreljfa i različitih uslova određivnje vršnih parametara čvrstoće smi- sedimentacije. U građi takve, heterogene i canja c', ϕ'. Međutim, nije pogodan za anizotropne serije, učestvuju pre svega određivanje čvrstoće pri kritičnom stanju a ugljevi, ugljevite gline, sivo-zelene gline, posebno rezidualne čvrstoće, zato što u alevriti i peskovi. Ugljonosna serija, u celini njemu nije moguće proizvesti velika pom- posmatrano približno je horizontalna sa blago izraženim plikativnim formama u vidu eranja duž kliznih površina. Izvode se na- sinformi i antiformi a generalni pad serije je jčešće konsolidovani nedrenirani opiti (CU) od severoistoka prema jugozapadu pod na zasićenim uzorcima sa merenjem pornog blagim nagibom od oko 20. Na otvorenim pritiska, ili konsolidovani drenirani opiti kosinama zapaženo je prisustvo (CD). Za praktične potrebe ovi opiti daju neotektonike disjuktivnog karaktera u vidu iste vrednosti efektivnih parametara tenzionih i smičućih pukotina. Ugljonosnu čvrstoće smicanja ako se ispitivanja korek- seriju čine dva ugljena sloja razdvojena tno izvode. Pojedinosti aparata i postupke slojem peska. Ugalj je ksilitni i amorfni. ispitivanja detaljno je prikazao Head [2]. Pri Debljina glavnog-gornjeg ugljenog sloja se izboru parametara čvrstoće smicanja, na povećava od severa ka jugu i od istoka ka osnovu više izvedenih triaksijalnih opita za zapadu, pa u neraslojenom delu iznosi 10- istu sredinu, preporučuje se da se oni de- 20 m dok je u raslojenom znatno deblja i finišu iz s-t dijagrama a ne osrednjavanjem iznosi 20-60 m. Donji ugljeni sloj je ta- podataka dobijenih za pojedine opite ili pak kođe promenljive debljine. Najmanji je na crtanjem Morovih krugova svih ispitivanja severu 2 m, a najveći na jugu 26 m. Bitno na jedan dijagram. je istaći da sa raslojavanjem opada kvantitet i kvalitet uglja. Visokoplastične Opit direktnog smicanja slojeve predstavljaju alevriti i ugljevite i Opit direktnog smicanja je najčešći postu- sivo-zelene gline koje prožimaju ugalj u pak određivanja smičuće čvrstoće tla kako zapadnom i jugozapadnom delu ležišta [1]. vršne tako i rezidualne čvrstoće oslabljenih Debljine su promenljive, od nekoliko zona (ravni) u tlu - npr. kliznih površina i pu- santimetara pa čak do 10 m. Međuslojni kotina u stenama. Opit direktnog smicanja se pesak nalazi se između gornjeg i donjeg može koristi i za određivanje vršne čvrtoće ugljenog sloja i debljine je uglavnom oko 5 m, izuzetno u severozapadnom delu sredina bez oslabnjenih zona. Rezidualna kopa gde iznosi i 30 m. Za potrebe čvrstoća je najmanja čvrstoće smicanja ost- ispitivanja čvrstoće smicanja, izvršen je varena pri velikim pomeranjima duž klizne izbor uzoraka visokoplastičnih slojeva iz površine. Skempton [3] je dao

Broj 1,2011. 30 RUDARSKI RADOVI tabelarni prikaz neophodnog pomeranja za glinenih frakcija (Tabela 1). određena stanja kod tla koja sadrže >30% Tabela 1. Neophodna pomeranja pri različitim stanjima smicanja kod tla sa >30% glinenih frakcija, Skempton (1985) Stanje(1) Pomeranje mm Normalno konsolido- Prekonsolidovani vani Vršna 0.5-3 3-6 Zapreminska promene dV=0(2) 4-10 0 Pri ϕ'R+1 30-200

Rezidualno ϕ'R 100-500 (1) za σ'n <600 kPa (2) potpuno omekšala čvrstoća (kritično stanje)

Većina laboratorijskih aparata za di- vito tlo, dobija se i do 40 veći ugao a kod rektno smicanje, omogućuju maksimalna peskova i do 60 manji efektivni ugao trenja. pomeranja u rasponu od 6-10 mm, što je Ovaj zahtev, prilikom izvođenja opita, dovoljno samo za određivanje vršne uključen je i u novije propise o ispitivanju čvrstoće, eventualno za delimično Eurocod 7: Part 2 [5]. Za razliku od ovde omekšalu čvrstoću. Zbog toga rezidualna izloženih praktičnih problema, postoje i te- čvrstoća smicanja, korišćenjem aparata za orijska ograničenja primene aparata za di- direktno smicanje može da se dobije samo rektno smicanje. višestrukim smicanjem. Neke od po- teškoća, koje se javljaju tokom izvođenja Opit kružnog smicanja ispitivanja u aparatu za direktno smicanje, pri određivanju rezidualne čvrstoće su: Opit kružnog smicanja, kao posebna - neophodnost ponavljanja smicanja u varijanta direktnog smicanja, dosta se suprotnom (povratnom) smeru, remeti retko izvodi ali u mnogim slučajevima uređenost čestica u kliznoj ravni, čime se omogućuje mnogo pouzdaniji način sprečava dostizanje rezidualne čvrstoće; određivanje rezidualne čvrstoće smicanja. - vraćanje kutije aparata često dovodi Aparat je konstrukciono složen i skup, i do istiskivanja uzorka između kutija može se reći da spada u karegoriju is- aparata; traživačke opreme. On je prvobitno bio - obezbeđivanje potpune zasićenosti dizajniran za ispitivanje rezidualne uzorka je otežano; čvrstoće smicanja duž glatkih kliznih - nasuprot triaksijalnom opitu, porni površina, s obzirom da omogućava pritisak se ne može meriti; neograničenu deformaciju uzorka. Opšti - ispitivanja u domenu “visokih vred- koncept konstrukcije aparata predložio je nosti” normalnih napona dovodi do precen- Hvorslev (1939), koji je kasnije iskorišćen jivanja c' i podcenjivanja ϕ', kao posledica i poboljšan od strane Bishopa [6], Bromheda zakrivljenosti anvelope loma (ovo je [7], Savage and Sayed (1984), Sassa (1984, karakteristično i za triaksijalni opit). 1992), Hungr and Morgenstern (1984), Tika Iskustva su pokazala (Wernick, [4]) da je (1989), Garga i Sendano (2002) (Tabela 2), neophodno obezbediti paralelnost kutija [8]. U svetu je široko prihvaćen postupak tokom smicanja, posebno pri određivanju ispitivanja koji je razvijen od strane rezidualne čvrstoće. U suprotnom, za glino stručnjaka Imperial College of Science and

Broj 1,2011. 31 RUDARSKI RADOVI

Technology (Bishop, [6]) i Norveškog uzorak koji se izlaže konstantnom nor- geotehničkog instituta. Uopšteni princip malnom opterećenju σ'n pri sprečenoj aparata, prikazan je na Slici 1. U aparatu bočnoj deformaciji. za kružno smicanje, ugrađuje se prstenasti

Sl. 1. Opšti koncept aparata za kružno smicanje

Uzorak se smiče sa konstantnom brzi- Uzorak u Bromhedovom aparatu je nešto nom rotacije (donje u odnosu na gornju manjih dimenzija: spoljni prečnik je 100 površinu uzorka). Kod Bishopovog mm, unutrašnji prečnik 70 mm a visina aparata, dimenzije uzorka su: spoljni uzorka 5 mm. U ovom aparatu moguće je prečnik R = 150 mm, unutrašnji prečnik ispitivanje samo poremećenog uzorka - r = 100 mm a debljina uzorka iznosi h = zbog male debljine uzorka. U oba ova 19 mm (Tabela 2) [8]. Obično se ispituje aparata opit se obično izvodi na poremećeni ali moguće je ispitivanje i zasićenom uzorku u konsolidovanim neporemećenog uzoraka. Bromhed [7] je dreniranim uslovima. opisao takođe jedan jednostavan aparat.

Broj 1,2011. 32 RUDARSKI RADOVI

Tabela 2. Osnovne karakteristike različitih aparata za kružno smicanje Hungr i Garga i Sassa Sassa Sassa Bishop i sar. Tika Autor Morgenst Sendano DPRI-3 DPRI-4 DPRI-5 (1971) (1989) er (1984) (2002) (1992) (1996) (1997) Dimenzije unutr.preč. (cm) 10.16 22 10.16 9.2 21 21 12 spolj. preč. (cm) 15.24 30 15.24 13.3 31 29 18 visina uzor. 1.9 2 1.9 2.0 9 9.5 11.5 (cm) odnos vis/duž 0.75 0.5 0.75 0.98 1.8 2.38 3.83 površ. smicanja 101.34 326.73 101.34 72.45 408.4 314.16 141.37 (cm2) max. nor. nap. 980 200 980 660 500 3000 2000 (kPa) max. brz. sm. - 100 9.33 - 30 18 10 (cm/s) kont. obrt. da (0.5 momenta Ne Ne Ne Ne da (5 Hz) da (5 Hz) Hz) (max. frekven.) nedren opit i kontr. pornog Ne Ne Ne Ne Da Da Da pritiska

Originalni aparat za kružno smicanje uzorka; ovo je prevaziđeno kon- velike brzine (DPRI-1), sa kojim je bilo strukcijom DPRI aparata); moguće obezbediti ciklične napone - može se dobiti samo rezidualna smicanja, razvijen je od strane prof. Sassa čvrstoća smicanja; (1984), sa Kyoto Univerziteta [8]. Prvi - uzorak teži da se istiskuje bočno iz- dinamički aparat za kružno smicanje (DPRI- među prstenova (odnosi se na starije 3), omogućio je da se pomoću sistema aparate). kontrole, modeliraju seizmički uticaji i izvodi nedrenirani opit sa merenjem pornih ANALIZA DOBIJENIH pritisaka. Aparat je kasnije nekoliko puta REZULTATA modifikovan (Tabela 2), tako da noviji DPRI aparati prate čitav proces loma uzorka U sklopu ovog rada prikazana je počev od poznavanja inicijalnog statičkog i analiza rezultata koji se odnose na dinamičkog opterećenja, preko loma rezidualnu čvrstoću smicanja, dobijenu na izazvanog smicanjem, velika pomeranja, glinovitim visokoplastičnim uzorcima iz promenu pornog pritiska, a u peskovima je kompleksa ugljene serije. Na njima su na neki način moguće pratiti i pojavu pored opita direktnog smicanja i pratećih likvefakcije. identifikaciono-klasifikacionih opita, iz- Suština aparata za kružno smicanje je da vršeni i opiti kružnog smicanja. Za razliku omogući neograničenu veličinu pomeranja u od ranijih ispitivanja, kada su se rezidualni jednom smeru, čime se prevazilazi nedosta- parametri čvrstoće smicanja određivali na tak višestrukog smicanja u aparatu za direk- osnovu uobičajenih konvencionalnih opita tno smicanje. Međutim, kao i kod triaksi- (triaksijalnog i direktnog smicanja), ovog jalnog opita i opita direktnog smicanja, i kod puta je za ispitivanje izabran i aparat za izvođenja ovog opita, postoje određena kružno smicanje. Sam aparat za kružno ograničenja i poteškoće, i to: smicanje, koji je korišćen prilikom ispiti- - najčešće se ispituje samo poremećeni vanja je konstrukcija P. W. Rowe (Man- uzorak (aparati sa malom visinom chester University) [9].

Broj 1,2011. 33 RUDARSKI RADOVI

Dimenzije uzorka su iste kao i u definisana u sloju alevrita, uzorci su Bishopovom aparatu a i konstrukcija je odabrani i iz nekretanog dela terena, i iz vrlo slična uz neke minimalne razlike. zone klizanja. S obzirom na poreklo Svrha izvođenja opita kružnog smicanja uzoraka, na uzorcima ugljevite gline, nije bila provera dobijenih rezultata u posebana pažnja posvećena je aparatu za direktno smicanje, već je cilj sprovođenju klasifikacionih ispitivanja, bio da se rezidualni parametri čvrstoće pre svega određivanju sadržaja organskih smicanja odrede i pomoću jednog nekon- materija, tako da je oksidacija organskog vencionlnog aparata, na način kako su i materijala sprovedena pre analize predložili njegovi autori. granulometrijskog sastava (slika 2a). Identifikaciono-klasifikaciona ispiti- Pored toga, određivane su i plastične vanja, kao i opiti direktnog smicanja, iz- karakteristike uzoraka, stim da su ove vedeni su u Laboratoriji za mehaniku tla analize sprovedena na uzorcima u Rudarsko-geološkog fakulteta, dok su prirodnom stanju vlažnosti tj. nije opiti kružnog smicanja izvedeni u geome- izvršeno sušenje (slika 2b). Na osnovu haničkoj laboratoriji Instituta za puteve, s vrednosti indeksa konsistencije, moglo se obzirom da je to jedina ustanova u Srbiji zaključiti da je materijal iz nekretanog koja poseduje aparat za kružno smicanje. dela terena u polutvrdom stanju Iz pomenutog kompleksa ugljene serije, konzistencije (Ic=1.02-1.35), a materijal iz laboratorijska ispitivanja su obavljena na klizne površine u plastičnom stanju ukupno dvadeset uzoraka, čime su konzistencije (Ic=0.33-0.60). Kod ostalih obuhvaćeni: alevriti (ukupno 11 uzoraka), uzoraka konstatovano je uglavnom sivo-zelena glina (ukupno 4 uzorka) i polutvrdo ali i plastično stanje ugljevita glina (ukupno 5 uzoraka). Kako konzistencije (Ic=0.92-1.12). Rezultati je klizna površina ovih ispitivanja prikazani su na slici. 3.

Sl. 2. a) trougli dijagram granulometrijskog sastava; b) granice tečenja pre i nakon sušenja

Broj 1,2011. 34 RUDARSKI RADOVI

Sl. 3. Identifikaciono-klasifikacioni pokazatelji ispitivanih uzoraka

U aparatu za kružno smicanje uzorku alevrita, smicanje je izvršeno i duž ugrađivani su uzorci sa poremećenom veštački formirane klizne površine. Osim strukturom, ali u stanju prirodne vlažnosti. alevrita, u aparatu za kružno smicanje Što se tiče uzorka alevrita iz klizne zone, ispitani su i uzorci ugljevite gline. Tok za ispitivanje je korišćen materijal sa smicanja u aparatima za direktno i kružno indeksom konsistencije koji je nešto veći smicanje za uzorke alevrita i ugljevite od 0.70. Na jednom neporemećenom gline, predstavljen je na slikama 4 i 5.

Sl. 4. Tok smicanja u aparatu za direktno smicanje za uzorak ugljevite gline

Sl. 5. Tok smicanja u aparatu za kružno smicanje za uzorake ugljevite gline i alevrita

Broj 1,2011. 35 RUDARSKI RADOVI

0 Na osnovu izvršenih ispitivanja, dobijeni ϕ`r = 8.0 - 8.7 , i c`r = 0 kPa, dok je su rezidualni parametri čvrstoće smicanja rezidualni ugao unutrašnjeg trenja za uglje- 0 koji su se za alevrite kretali u granicama od vitu glinu iznosio ϕ`r = 7.6 - 9.0 (slika 6).

Sl. 6. Vrednosti rezidualnih parametara čvrstoće smicanja u zavisnosti od načina ispitivanja

5. OSVRT NA IZBOR PARAMETARA ČVRSTOĆE SMICANJA Koje parametre čvrstoće smicanja, Posledica toga je da se nova kretanja vršne - pri kritičnom stanju, ili pak masa, ne odvijaju po već ranije for- rezidualne, treba koristiti u analizi miranoj kliznoj površini, već dolazi do stabilnosti kosina, zavisi od prisustva formiranja nove (Lokin i Ćorić) [11]. odnosno od odsustva klizne površine i od Prema tome u ovakvim slučajevima, stanja ispucalosti prirodne sredine [10]. U prilikom analize stabilnosti, ne treba nastavku teksta daju se sledeće preporuke: koristiti rezidualnu čvrstoću smicanja; - Opšte je poznato da kada postoji klizna - Kllizne površine formirane duž me- površina, tada se u analizama stabilnosti đuslojnih ravni, imaju čvrstoću smi- koriste isključivo rezidualni parametri canja pribižnu rezidualnoj. U tom čvrstoće smicanja. Međutim, kod slučaju u praksi treba koristiti umirenih klizišta, često kao posledica rezidualnu čvrstoću smicanja; cirkulacije vode sa najrazličitijim - Kod nasipa izgrađenih od zbijenog jonima, dolazi do izmene mehaničkih tla, na kojima se ne vide tragovi osobina materijala duž klizne površine. deformacija (pukotine), tj. nasipe

Broj 1,2011. 36 RUDARSKI RADOVI

koji nisu zahvaćeni klizanjem, treba - višestruko direkno smicanje na gli- ih analizirati sa vršnom čvrstoćom nama, precenjuje terensku rezidualnu smicanja; čvrstoću za 10 do 40. - Ispucala tla imaju čvrstoću između vršne i rezidualne u zavisnosti od pri- 6. ZAKLJUČAK rode ispucalosti, orijentacije pukotina, njihove kontinualnosti, širine-zeva, U ovom radu, opisan je princip iz- zapunjenosti pukotina i sl; vođenja opita kružnog smicanja, a prika- Pri izboru parametara čvrstoće smi- zani su i konkretni rezultati dobijeni na canja za projektovanje, obično se povlači uzorcima ugljevitih glina i alvrita iz tzv. linija loma takva da iznad nje ostane 75 % uglenje serije PK. “Tamnava – Zapadno a ispod 25% “rezultata” (linija donje kvar- Polje”. Iako izvođenje opita iziskuje tile), ali se može koristiti i metoda na- relativno složenu aparaturu za ispitivanje, jmanjih kvadrata ili pak “donja granična” na osnovu dobijenih rezultata može se linija, zavisno od okolnosti. Međutim, bez zaključiti da su rezidualni parametri obzira na sve gore navedeno, pri odabiru čvrstoće smicanja, približniji realnim parametara čvrstoće smicanja, izuzetno je vrednostima u odnosu na vrednosti koje su važno i “pravilno inženjersko rasuđi- dobijene klasičnim opitom direktnog vanje”. Razloga za to ima više a kao neki smicanja. Naime, povratnim analizama od najbitnijih su: stabilnosti, koje su sprovedene za potrebe - slab kvalitet izvedenih ispitivanja; sanacije zapadne kosine kopa u blizini - nelinearnost anvelope loma, i stim u groblja Kalenić, utvrđen je rezidualni ugao unutrašnjeg trenja koji je za 1.5 - 20 vezi 0 - usvajanje niže efektivne kohezije koja (ϕ'm=6.5 ) manji od rezidualnog ugla pravilnije modelira ovakvo ponašanje. unutrašnjeg trenja dobijenog u aparatu za kružno smicanje. Međutim, klasičnim Ima mnogo publikovanih radova u ko- načinom određivanja rezidualnih jima se upoređuju čvrstoća smicanja dobi- parametara čvrstoće smicanja u aparatu za jena povratnom analizom, i rezultati izve- direktno smicanje, mobilisani ugao denih opita direktnog smicanja, na materi- unutrašnjeg trenja je bio veći i za 4 - 60. jalu iz klizne zone, kao i rezultati dobijeni Zato se u ovakvim slučajevima višestrukim smicanjem u aparatu za direk- preporučuje izvođenje opita direktnog tno smicanje, odnosno, rezultati opita smicanja sa višestrukim smicanjem. kružnog smicanja. Opšti zaključak za sva Međutim, treba napomenuti da je zahtev ova poređenja bio bi sledeći: EC 7 standarda da se rezidualna čvrstoća - opit direktnog smicanja izveden na smicanja određuje kružnim smicanjem. uzorcima iz klizne površine ili duž Jedan od razloga za to je što za ispitivanje slojevitosti, najpouzdaniji je indikator čvrstoće smicanja u aparatu za kružno za terensku rezidualnu čvrstoću; smicanje, nije neophodan neporemećeni - opit kružnog smicanja, ili podcenjuje, uzorak, koji se po pravilu teško ili daje približnu veličinu (-10 do +20) obezbeđuje kada se radi o aktivnim terenske rezidualne čvrstoće (Skemp- klizištima. ton) [3];

Broj 1,2011. 37 RUDARSKI RADOVI

LITERATURA

[1] L. Čaki, D. Rakić, V. Bogdanović, A. [7] E. N. Bromhed, A simple ring shear Pajić, Izbor parametara čvrstoće apparatus, Ground Engineering, Vol 12, smicanja za analizu stabilnosti završne No. 5., 1979, pp. 40-44. kosine “Tamnava-Zapadno polje”, [8] K. Sassa, H. Fukuoka, G. Wang, N. Treći simpozijum “Istraživanje i Ishikawa, Undrained dynamic-loading sanacija klizišta” Donji Milanovac, ring-shear apparatus and its application 2001., str. 493-500. to landslide dynamics, Landslides, No. [2] K. H. Head, Manual of Soil Laboratory 1, 2004. pp. 7-19. Testing, Vol. 1, 2 and 3. 1980, 1981, [9] P. W. Rowe, Instruction Manual for the 1985, Pentech Press. ring shear Apparatus, 1969, pp, 1-12. [3] A. W. Skempton, Residual strength of [10] D. Rakić, L. Čaki, Soil Strength clays in landslides, Folded Strata and Neogene Clayey Complex in the the Laboratory, Geotechnique 35, No. Belgrade Area, Journal of mining and 1, 1985, pp. 3-18. geological sciences - Časopis za [4] E. A. Wernick, A “true direct shear rudarske i geološke nauke, Volume 38. apparatus” to measure soil parameters Belgrade, 2000, pp. 39-49. of shear bands, Proc. VII. ECSMFE, [11] P. Lokin, S. Ćorić, Plenarni referat. Brighton, Vol. 2, 1979, pp.175-182. Metodologija istraživanja klizišta. [5] Eurocode 7, EN 1997-1, 2007: “CEN Drugi Simpozijum: Istraživanje i (2007): Geotechnical design – Part 2”: sanacija klizišta, Donji Milanovac, Ground investigation and testing 1995. [6] A. W. Bishop, G. E. Green, V. K. Garga, A. Andersen and J. D. Brown, A new ring shear apparatus and its application to the measurement of residual strenght, Geotechnique 21, No. 4., 1971, pp. 273-328.

Broj 1,2011. 38 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK: 622.271:622.36(045)=20

Dragoslav Rakić*, Laslo Čaki*, Slobodan Ćorić*, Milenko Ljubojev**

RESIDUAL PARAMETERS OF SHEAR STRENGTH THE HIGH PLASTICITY CLAY AND SILT FROM THE OPEN-PIT MINE “TAMNAVA – WEST FIELD“***

Abstract

When the final slope stability analysis for surface mining, special attention is paid to determin- ing the shear strength parameters. This paper presents a method for determining the residual shear strength parameters from high plasticity layers of the clay and silt from the Open Pit Tam- nava-West field, using a ring shear apparatus. In addition, it is reviewed to the other methods of laboratory determination of strength parameters - especially the residual shear. It should be noted that this tests were performed for the first time in Serbia device with a ring shear apparatus. Key words: ring shear test, residual shear strength, angle of internal friction.

INTRODUCTION

Complex geotechnical conditions in is used, which is on samples from the said the northwestern part of the open pit site, in addition to the direct shear experi- “Tamnava - West Field” often lead to the ment for the first time in Serbia was de- instability of the final slopes. One large termined using the apparatus for ring mass sliding, occurred near the cemetery shear, using by the Rowe construction. Kalenić, where the surface of moved part WIDER GEOLOGICAL of the field was about 3 hectares, with a STRUCTURE OF THE LOCATION volume of colluvium of about 180 000 m3. By this slide, the east side of the cemetery In wider geological structure of the was severely endangered, as it was situ- area ”Tamnava - West” , the Paleozoic ated at a critical distance of about 25 m shales participates that forms the base of from the frontal scar of landslide [1]. For the Tertiary basin, dacite-andesite Premio- these reasons, the laboratory tests were cene age, Neogene sediments and Quater- performed to determine peak and residual nary sediments, as the final member of shear strength parameters. According to sedimentation in the basin. Pliocene, that the rule, for designing the possible reme- is Pontian floor, is the most important dial measures, the residual shear strength

* Faculty of Mining and Geology, Belgrade ** Mining and Metallurgy Institute, Bor *** This paper is produced from the project no. 36014 which is funded by means of the Ministry of Education and Science of the Republic of Serbia

No 1, 2011. 39 MINING ENGINEERING stratigraphic member, both in this area and strength tests, samples were selected from in the whole basin Kolubara and it is the the complex layers of the high palsticity holder of the productive horizons in the coal series (carboniferous clay, gray-green basin. Within it, it can be distinguished the clay and silts). facies sands, clays and silts. This complex of coal series at the Open Pit “Tamnava – GENERAL METHODS OF West” is separated from a single layer of LABORATORY TESTING THE the Open Pit “Tamnava –East”, width of RESIDUAL SHEAR STRENGTH 30m into multiple thin layers. These ad- PARAMETERS verse changes are the result of paleorelief and different conditions of sedimentation. Triaxial experiment In a structure of such heterogeneous and Triaxial experiment is the most com- anisotropic series, primarily are included: mon method for determination of peak coal, carboniferous clay, gray-green clay, shear strength parameters c', ϕ'. However, silts and sands. Coalbearing series, as a it is not suitable for determination of whole is approximately horizontal with a strength in critical condition and, particu- slightly pronounced compressive forms lar, the residual strength, because it is not synforms forms as synforms and anti- possible to produce large displacements forms, and general decline of series is along the sliding surfaces. Consolidated from the northeast to the southwest at a 0 undrained experiments (CU) are often slight angle of about 2 . On the open carried out on saturated samples with pore slopes, the presence of neotectonics of pressure measurements, or consolidated disjunctival character in the form of ten- drained experiments (CD). For practical sion and shear cracks is observed. Coal- purposes, these experiments give the same bearing series include two coal layers value of effective shear strength parame- separated by a layer of sand. Coal is xy- ters if the tests are performed correctly. linitic and amorphous. The thickness of Details on apparatus and testing proce- the main-top coal layer increases from dures in detail were shown by Head [2]. In north to the south and from east to the the selection of shear strength parameters, west, and in a unstratified part is 10-20 m, based on several carried out triaxial ex- while in the stratified is considerably periments for the same environment, it is thicker and 20-60 m. The lower coal layer recommended that they are defined from also has a variable thickness. The smallest s-t diagrams rather than averaging the data is 2 m in the north, and the largest in the obtained for individual experiments or south of 26 m. It is important to note that drawing the Moro circles of all tests on the stratification decreases the quantity one diagram. and quality of coal. High plasticity layers are silts and carboniferous and gray-green Direct shear experiment clay that pervade the coal in the western and southwestern part of the deposit [1]. Description of irect shear is the most Thickness is variable, ranging from sev- common method of determining the shear eral centimeters or even up to 10 m. Inter- strength of the soil as well as the peak and layered sand, located between the upper residual strength of weakened zone (planes) and lower coal seam and the thickness, is in the soil - e.g. sliding surfaces and cracks generally around 5 m, exceptionally, in in the rocks. Direct shear experiment can the northwestern part of the mine where it be used for determination the peak is and 30 m. For the purpose of shear strengths of areas without weak zones. The

No 1, 2011. 40 MINING ENGINEERING residual strength is the lowest shear gave a table of necessary displacementsto strength achieved at high displacement the specific conditions in the soils contain- along the sliding surface. Skempton [3] ing >30% of clay fractions (Table 1).

Tabela 1. Necessary movements at different states of shear in the soil with different conditions of shear with >30% of clay fractions, Skempton (1985) State(1) Displacement mm Preconsolidated Normally consolidated Peak 0.5-3 3-6 Volume changes dV=0(2) 4-10 0 At ϕ'R+1 30-200

Residual ϕ'R 100-500 (1) for σ'n <600 kPa (2) fully softened strength (critical state)

Most laboratory apparatus for direct ing the residual strength. Otherwise, the shear, allowing the maximum displacement clay soil, gets up to 40 higher slopes and in the range of 6-10 mm, that is enough to in sand up to 60 smaller effective friction determine the peak strength, possibly for angle. This requirement, while performing the partially softened strength. Therefore, the experiment, is involved in the recent the residual shear strength, using the direct regulations on examination of Eurocode 7: shear apparatus can only be obtained by Part 2 [5]. Unlike here exposed to practi- multiple shear. Some of the difficulties that cal problems, there are theoretical limita- arise during the experiments in the direct tions of use for direct shear apparatus. shear apparatus in determination the resid- Ring shear experiment ual strength are: - necessity of repeating the shear in the Ring shear experiment, as a special opposite (reverse) direction, alter the variant of the direct shear, is carried out arrangement of particles in the sliding very rarely but in many cases provides a plane, which prevents the achievement more reliable way of determining the re- of residual strength; sidual shear strength. Apparatus is con- - restoring the box of apparatus often structive complex and expensive, and it leads to displacement of the sample can be said that it belongs into a category between the boxesof apparatus; of research equipment. It was originally - ensuring a complete saturation of the designed to investigate the residual shear sample is difficult; strength along a smooth sliding surface, - opposite to the triaxial experiment, the since it allows for unlimited deformation pore pressure cannot be measured; of the sample. The general concept of con- - research in the domain of “high val- struction equipment proposed Hvorslev ues” of normal stresses leads to over- (1939), which was later used and im- estimation of c' and underestimation of proved by Bishop [6], Bromhead [7], Sav- ϕ', as a consequence of the curvature age and Sayed (1984), Sassa (1984, 1992), failure envelope (this is also typical for Hungr and Morgenstern (1984), Tika the triaxial experiment). (1989), Garga and Sendano (2002) (Table Experiences have shown (Wernick) [4] 2), [8]. The world has widely accepted the that is necessary to provide parallel box test procedure that was developed by the during shearing, particularly in determin- experts of the Imperial College of Science

No 1, 2011. 41 MINING ENGINEERING and Technology (Bishop, [6]) and the Nor- the apparatus, a ring sample is mounted that wegian Geotechnical Institute. General prin- is exposed to a constant normal load σ'n at ciple of apparatus is shown in Figure 1. In the prevented lateral deformation.

Figure 1. General concept of the ring shear apparatus

Sample is sheared with a constant in the Bromhead apparatus is with some- speed of rotation (lower than the top sur- what smaller dimensions: outer diameter face of the sample). In the Bishop appara- 100 mm, inner diameter 70 mm and sam- tus, the sample dimensions are: outer di- ple height 5 mm. In this apparatus, it is ameter R = 150 mm, inner diameter r = possible to test only a disturbed sample - 100 mm and the sample thickness h = 19 due to the small thickness of the sample. mm (Table 2) [8]. Disturbed samples are In both of these apparatus, the experiment usually tested and the undisturbed sam- is usually performed on a saturated sample ples can be also tested. Bromhead [7] also in the consolidated drained conditions. described a simple apparatus. The sample Table 2. Basic characteristics of different apparatus for ring shear Hungr Bishop and Garga and Sassa Sassa Sassa Tika Author et al. Morgen- Sendano DPRI-3 DPRI-4 DPRI-5 (1989) (1971) ster (2002) (1992) (1996) (1997) (1984) Dimensions Inner diameter (cm) 10.16 22 10.16 9.2 21 21 12 Outer diameter (cm) 15.24 30 15.24 13.3 31 29 18 Sample height (cm) 1.9 2 1.9 2.0 9 9.5 11.5 Ration height/length 0.75 0.5 0.75 0.98 1.8 2.38 3.83 Shear surface (cm2) 101.34 326.73 101.34 72.45 408.4 314.16 141.37 max. normal stress (kPa) 980 200 980 660 500 3000 2000 max. shear rate (cm/s) - 100 9.33 - 30 18 10 Continuous torque Yes Yes Yes No No No No (max. frequency) (0.5 Hz) (5 Hz) (5 Hz) Undrained experiment and No No No No Yes Yes Yes control of pore pressure

No 1, 2011. 42 MINING ENGINEERING

Original apparatus for high-speed ring shear strength parameters were deter- shear (DPRI-1), with which it was possi- mined on the basis of the usual conven- ble to provide cyclic shear stresses, was tional experiment (triaxial and direct developed by Prof. Sassa (1984), the shear), this one was chosen for testing the Kyoto University [8]. The first dynamic apparatus for ring shear. The ring shear device for ring shear (DPRI-3), made it apparatus, used in testing, was the con- possible to use the control system, model- struction of P. W. Rowe (Manchester Uni- ing of seismic actions and performing the versity) [9]. Dimensions of samples are undrained experiment with measurement the same as the Bishop apparatus and the of pore pressure. The appratus was later structure is very similar with some minor modified several times (Table 2), so that differences. The purpose of performing the newer devices DPRI monitor the experiments was not checking the ob- whole process of sample fracture from the tained results in apparatus for direct shear, initial static and dynamic loading, over the but the aim was to determine the residual fracture caused by shear, large displace- shear strength parameters using an uncon- ments, change of pore pressure and, in vential apparatus in such a way as it was sands, is somehow possible to follow also suggested by its authors. the occurrence of liquefaction. Identification and classification testing The essence of the apparatus for ring and direct shear experiments, were per- shear is to allow the unlimited size of dis- formed in the Laboratory of Soil Mechan- placement in one direction, which over- ics, Faculty of Mining and Geology, and comes the lack of multiple shear apparatus the experiments of ring shear were carried for direct shear. However, as with the tri- in the Geomechanical Laboratory of the axial experiment and the experiment of Institute for Roads, since it is the only direct shear, in the execution of this ex- institution in Serbia, which has the ring periment, there are certain limitations and shear apparatus. From that complex of difficulties, as follows: carbon series, the laboratory tests were - only the disturbed samples are usually carried out on the total of twenty samples, examined (apparatus with low height which included: silts (total of 11 samples), of sample; this is overcome by the gray-green clay (total of 4 samples) and construction of apparatus DPRI) carboniferous clay (total of 5 samples). - only residual shear strength can be ob- As the sliding surface was defined in tained; the layer of silts, the samples were se- - sample tends to crowd out laterally be- lected from non-displaced part of the field, tween the rings (this is for the older and the slip zone. Regarding to the origin machines). of samples, on samples of carboniferous clay, special attention was paid to the im- ANALYSIS OF THE OBTAINED plementation of classification tests, pri- RESULTS marily to determine the content of organic matter, so that the oxidation of organic Within this paper, an analysis of the material is carried out before the analysis results concerning the residual shear of particle size distribution (Figure 2a). In strength, obtained on clay high plasticity addition, the plastic characteristics of sam- samples from a complex series of coal. On ple were determined providing that the them, in addition to the direct shear ex- analysis was carried out on samples in periments and related identifiable- natural moisture state, i.e. drying was not classification experiments, the experi- carried out (Figure 2b). Based on the con- ments of ring shear were carried out. sistency index value, it could be con- Unlike previous studies, when the residual cluded that the material from non-

No 1, 2011. 43 MINING ENGINEERING displaced part of the field is in the semi- In other samples, it was noted that mainly hard consistency condition (Ic=1.02-1.35), semi-hard but plastic consistency condition and the material from sliding surfaces is in (Ic=0.92-1.12). The results of these tests are the plastic state consistency (Ic=0.33-0.60). shown in Figure 3.

Figure 2. a) triangle diagram of particle b) yield strength before and after drying size distribution,

Figure 3. Identification - classification parameters of tested samples

Samples with disturbed structure were shearing was done along artificially formed fitted into ring shear apparatus, but in a sliding surface. Besides silts, the samples of state of natural moisture. As for the sample carboniferous clay were tested. Shear flow of silts from sliding zone, the material with in apparatus for direct shear and circular an index of consistency that is slightly shear for samples of silts and carboniferous higher than 0.70 was used for testing. At clay, is presented in Figures 4 and 5. one undisturbed sample of silts, the

No 1, 2011. 44 MINING ENGINEERING

Figure 4. Shear flow in the apparatus for direct shear for sample of carboniferous clay

Figure 4. Shear flow in the apparatus for ring shear for samples of carboniferous clay and silts

Based on the realized testing, the resid- residual angle of internal friction for the ual shear strength parameters were obtained carboniferous clay was ϕ ' = 7.6 −9.00 that were for silts in the limits of r (Figure 6). ' 0 ϕr = 8.0 −8.7 , and c`r = 0 kPa, while the

No 1, 2011. 45 MINING ENGINEERING

Figure 6. Values of residual shear strength parameters depending on the method of testing

REVIEW OF SELECTION THE SHEAR STRENGTH PARAMETERS

The parameters of shear strength, peak - along the previously formed sliding in critical condition, or residual, that should surface, but leads to the formation of be used in the analysis of slope stability, a new one (Lokin and Ćorić) [11]. depend on the presence or absence of the Therefore, in such cases, when ana- sliding surfaces and state of cracks of the lyzing the stability, the residual shear natural environment [10]. The following strength should not be used; recommendations are given below: - Sliding surfaces formed along inter- - It is generally known that when there layer planes have shear strength ap- is a sliding surface, then the stability proximate to the residual. In this analysis using only the residual shear case, the residual shear strength strength parameters. However, in the should be used in practice; steady landslides, often as the result of water circulation with different - The dams, constructed of compacted ions, there are changes in mechanical soil, on which there are no traces of de- properties of materials along the slid- formstions (cracks), i.e. the dams that ing surface. As the result, the new are not affected by sliding, should be movements of the masses do not go analyzed from the peak shear strength;

No 1, 2011. 46 MINING ENGINEERING

- The cracked lands have strength be- on samples of clay and carboniferous silts tween the peak and residual, depending from the so-called coal series from the on the nature of cracks, orientation of Open Pit “Tamnava – West Field”. Al- cracks, their continuity, width, filling though the performing of experiment re- of cracks, etc.; quires a relatively complex apparatus for In the selection of shear strength pa- testing, based on the obtained results, it rameters for design, usually a line of frac- can be concluded that the residual shear ture is drawn such as it remains above strength parameters are closer to the real 75% and below 25% of the “results: (line values in relation to values obtained by of bottom quartile), but the method of conventional direct shear experiment. least squares can be used, or “lower limit Namely, the feedback stability analyses, line”, depending the circumstances. How- carried out for the rehabilitation of the ever, despite all above, in the selection of western slope pit near the cemetery shear strength parameters, the proper “en- Kalenić, have revealed a residual angle of 0 gineering reasoning” is extremely impor- internal friction, which is 1.5 - 2 ' 0 tant. Reasons for this are many as some of (ϕm =6.5 ) lower than the residual angle the most important are: of internal friction obtained from in the - poor quality of realized testing; apparatus for ring shear. - non-linearity of fracture envelope, However, in the conventional method and regarded to this of determining the residual shear strength - adoption of lower effective cohesion parameters in the apparatus for direct that accurately models such behavior. shear, the mobilized angle of internal fric- There are many published works in tion was higher for 4 - 60. Therefore, the which the shear strength obtained by performing of direct shear experiment comparing the return analysis is compared with multiple shear is recommended in with the results of experiments carried out these cases. However, it should be noted on direct shear, the material from sliding that the claim of EC 7 Standard is to de- zone, and the results obtained in the multi- termine the residual shear strength using shear apparatus for direct shear, i.e., the the ring shear. One reason for this is that results of experiment on the ring shear. the shear strength test apparatus for ring The general conclusion of all these com- shear does not require the undisturbed parisons would be as follows: samples, which are normally difficult to - direct shear experiment, performed on provide when they come from the active samples from the sliding surface or landslides. along the layers, the most reliable in- dicator of the residual field strength; REFERENCES - experiment of ring shear, or underes- timates, or gives the approximate [1] L. Čaki, D. Rakić, V. Bogdanović, A. size (-10 to +20) of the residual field Pajić, Selection of Parameters of Shear strength (Skempton) [3]; Strength for Analysis the Stability of - multiply directly shear on clay, over- Final Slope “Tamnava – West Field:, estimates the residual field strength Third Symposium on Investigation and by 10 to 40. Remediation of Landslides, Donji Milanovac, 2001, pp.493-500 (in CONCLUSION Serbian) [2] K. H. Head, Manual of Soil Laboratory This paper describes the principle of performing the experiments of ring shear, Testing, Vol. 1, 2 and 3. 1980, 1981, and presents the concrete results obtained 1985, Pentech Press.

No 1, 2011. 47 MINING ENGINEERING

[3] A. W. Skempton, Residual strength of [8] K. Sassa, H. Fukuoka, G. Wang, N. clays in landslides, Folded Strata and Ishikawa, Undrained dynamic-loading the Laboratory, Geotechnique 35, No. ring-shear apparatus and its application 1, 1985, pp. 3-18. to landslide dynamics, Landslides, No. [4] E. A. Wernick, A “true direct shear 1, 2004. pp. 7-19. apparatus” to measure soil parameters [9] P. W. Rowe, Instruction Manual for the of shear bands, Proc. VII. ECSMFE, ring shear Apparatus, 1969, pp, 1-12. Brighton, Vol. 2, 1979, pp.175-182. [10] D. Rakić, L. Čaki, Soil Strength [5] Eurocode 7, EN 1997-1, 2007: “CEN Neogene Clayey Complex in the (2007): Geotechnical design – Part 2”: Belgrade Area, Journal of Mining and Ground investigation and testing Geological Sciences, Volume 38, [6] A. W. Bishop, G. E. Green, V. K. Belgrade, 2000, pp. 39-49. Garga, A. Andersen and J. D. Brown, [11] P. Lokin, S. Ćorić, Plenary Paper, A new ring shear apparatus and its Research Methodology of Landslides, application to the measurement of Second Symposium on Investigation residual strenght, Geotechnique 21, and Remediation of Landslides, Donji No. 4., 1971, pp. 273-328. Milanovac, 1995 (in Serbian) [7] E. N. Bromhed, A simple ring shear apparatus, Ground Engineering, Vol 12, No. 5., 1979, pp. 40-44.

No 1, 2011. 48 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:622.23.05(045)=861

Ratomir Popović*, Milenko Ljubojev*, Dragan Ignjatović*

SPECIFIČNOSTI RADNIH PROCESA I RADNIH OPTEREĆENJA ROTORA U PROCESU OTKOPAVANJA ROTORNIM BAGEROM

Izvod

U radu je analiziran rad rotornih bagera pri eksploataciji i proračun osnovnih parametara bagera ERG 1600 pri radu. Ključne reči: rotorni bager, ukupni otpor kopanju, vedrica rotora, tangencijalna komponenta otpora stenske mase, normalna komponenta otpora stenske mase, kapacitet, momenti na vratilu rotora

UVOD

Proces otkopavanja i transport prilikom okretanja rotora u vertikalnoj otkopane mase kod rotornih bagera je ravni i zaokretom u horizontalnoj ravni neprekidan. Rotorni bageri otkopavaju platforme sa katarkom i rotorom koji se na naizmeničnim rezovima koji se skidaju njoj nalaze.

Sl. 1. Šema otkopavanja rotornim bagerom - a, vertikalnim zahvatom - b, horizontalnim zahvatom

* Institut za rudarstvo i metalurgiju, Bor

Broj 1,2011. 49 RUDARSKI RADOVI

Otkopavanje se obavlja obično po ca iz zahvata otkopavanja, i spoljašnje vertikalnim ili horizontalnim rezovima sa opterećenje na rotoru u procesu otkopavanja nepromenljivim poluprečnikom otkopavanja ima periodični karakter. Promena vanjskog r (ako se zanemare oscilacije radnog organa opterećenja uvećava se dopunskim prome- z) i pri određenim brzinama okretanja rotora nama sila rezanja koje potiču od neisto- w i katarke sa obrtnom platformom wk. vetnosti mehaničkih svojstava masiva koji se Pri radu u vertikalnim rezovima posle otkopava. Promene spoljašnjeg opterećenja su svakog zaokreta platforme sa katarkom za periodične i izazivanju oscilacije i do-punska ugao (β), čija je veličina uslovljena dinamička opterećenja na katarci i rotoru, veličinom otkopa, bager sa katarkom ili zatim na elementima konstrukcije gornjeg samo katarka (ako je njena dužina stroja i konstrukcije osnove rotornog bagera. promenljiva), pomera se za veličinu (a) Ta dopunska dinamička opterećenja mogu jednaku maksimalnoj dubini reza. biti vrlo opasna za elemente konstru-kcije u Pri radu sa horizontalnim rezom posle trenutku pojave rezonantnih oscilacija. svakog zaokreta platforme sa katarkom za Na sl. 2. prikazano je niz oscilograma ugao (β), katarka sa rotorom se spušta za koji karakterišu oscilacije i dinamička veličinu (a). opterećenja koja se javljaju pri radu Usled periodičnog ulaska i izlaska vedri- transportera odlagača.

Sl. 2. Oscilogrami koji karakterišu dinamička opterećenja pri radu transportera odlagača OŠ 4500/180 a) puštanje transportera u rad bez opterećenja, b) uspostavljeno kretanje transportera bez optere- ćenja, c) kočenje transportera bez opterećenja, d) opterećenje na različitim mestima trake po dužini pri puštanju opterećenog transportera (krive 6, 7, 8, 9, 10 i 11) 1. naponi u gornjoj sekciji odložne konzole, 2. brzina obrtanja motora glavnog pogonskog bubnja, 3 i 4. obrtni moment na vratilu pogonskog bubnja, 5. hod kolica zateznog mehanizma

Broj 1,2011. 50 RUDARSKI RADOVI

1. SPOLJAŠNJE OPTEREĆENJE 1.1. Određivanje spoljašnjeg opterećenja pri otkopavanju bez oscilacija rotora i Od svih oblika spoljašnjih opterećenja promena sile rezanja i otpora koji se savladavaju pogonom najveću specifičnost za razmatrane mašine Ukupni otpor otkopavanju stenske mase predstavljaju: rotornim bagerom je zbir otpora koji se - otpor stenske mase u procesu otkopa- javljaju na pojedinim vedricama koje su u vanja, zahvatu stenske mase, sl. 3. Ukupan otpor - opterećenja koja se javljaju pri radu kopanju na bilo kojoj vedrici sastoji se od tri transportera. komponente.

Sl. 3. Sile koje deluju po obodu rotora

gde je: R = R2 + R2 + R2 (1) i Ti Ni Bi - L, dužina dela režuće konture vedrice gde je: koja se nalazi u zahvatu i jednaka - RTi, tangencijalna komponenta je otpora stenske mase u vertikalnoj polovini obima preseka reza, ravni - F, površina preseka reza,

- RNi, normalna komponenta otpora - KL, koeficijent otpora kopanju [KN/m’], 2 stenske mase u vertikalnoj ravni - KF, koeficijent otpora kopanju [KN/m ],

- RBi, bočna komponenta otpora U datom slučaju koeficijentima KL i KF stenske mase obuhvaćeni su ne samo otpori kopanju, Osnovna komponenta koja karakteriše nego i otpori rezanju, pomeranje otkopane otpor stenske mase kopanju je RTi, i obično mase u vedrici i otpori na obodu radnog se naziva otporom kopanju u procesu točka. Praktično, za određivanje srednjih rezanja i može se odrediti za bilo koji veličina komponenti RNi i RBi polazi se od položaj vedrice u zahvatu. veličina tangencijalne komponente RTi. R (2) R =ψ ⋅ R Ti=Lsr. ⋅K L Ni n Ti (4) R (3) Ti=Fsr. ⋅K F RBi =ψ b ⋅ RTi (5)

Broj 1,2011. 51 RUDARSKI RADOVI gde su: F = a ⋅b ⋅sinα (8) - ψ n i ψ b , koeficijenti dobijeni ekspe- −αn rimentom čije vrednosti ugla- K L ⋅ r∫ ()a ⋅ sinα + b dα = 0 (9) vnom zavise od fizičko- −α = K ⋅ r n a ⋅ b ⋅ sinα ⋅ dα mehaničkih svojstava otkopa- F ∫0 vane stenske mase i konstru- gde je: ktivnih karakteristika radnog - a i b, maksimalna dubina i širina reza. organa, odnosno parametara rezanja a i b i bočne i obodne α n K L ⋅ r a ⋅ cos α + ba 0 = brzine Vb i Vo, sl. 3 = K ⋅ r ab ⋅ cos α α n Pri otkopavanju stenskih masa I i II F 0 kategorije K ⋅r[−a + acosα +bαn] = ψ = 0,4 ÷ 0,5;ψ = 0,25 ÷ 0,35 , a pri L n b = K ⋅r()− ab+ abcosαn otkopavanju stenske mase IV i V F kategorije njihove se vrednosti kreću: nakon sređivanja dobije se: ab(1− cosα n) ψ n = 0,5 ÷ 0,8;ψ b = 0,35 ÷ 0,50 K = K (10) L F α n ⋅b + a()1− cosαn Zavisnost RTi od ugla rezanja α, sl. 3, ili od vremena t pri konstantnoj brzini obrtanja Polazeći od pretpostavke da je rotora, svrsishodno je koristiti izraze (2) i kapacitet bagera funkcija parametara KL i (3) pošto eksperimentalna istraživanja KF i osnovnih parametara rotora, to ćemo pokazuju da prosečna vrednost KL ostaje koeficijente otpora kopanju KL i KF izraziti praktično konstantna na čitavoj dužini preko kapaciteta i osnovnih parametara rezanja. Pošto je koeficijent KL za mašine rotora: različite klase različit, a srednja vrednost K F b zavisi od fizičko-mehaničkih svojstava =ν = const. koeficijent rotora. (11) stenske mase koja se otkopava i a konstrukcije radnog organa. Prema tome, Satni kapacitet će biti: celishodno je za korišćenje K pri funkciji L Q = 60 ⋅ q ⋅ nz [m3 / h] (12) RTi = f ()a naći njegovu vezu sa KF. Polazeći od sl. 3 šrafiranog reza i gde je: jednakosti utrošenog rada moguće je - q [m3], zapremina vedrice napisati: - z, broj vedrica na rotoru αα− K ⋅ r nnL ⋅ dα = K ⋅ r F ⋅ dα (6) - n, broj obrtaja rotora u minuti L ∫∫00F Uzimajući u obzir i koeficijent rastresi- gde je: tosti k iz uslova promene materijala u - α , polazni ugao rezanja. r n vedrici moguće je napisati: Izražavajući tekuću vrednost dubine Q reza a preko amax = a ⋅sinα , moguće je q = a ⋅b ⋅ h = (13) 60 ⋅ n ⋅ z ⋅ kr napisati tekuće vrednosti F i L u sledećim oblicima gde je: a ⋅sinα - h, ukupna visina rotora, i izražena L = + b ≈ asinα + b (7) sinγ preko poluprečnika rotora r je: - γ, ugao nagiba bočne rezne ivice → 90º h = r(1− cosαn) (14)

Broj 1,2011. 52 RUDARSKI RADOVI

Uvrštavajući izraz (14) u (13) dobije se: gde je: Q - αn , ugao između vedrica ab = (15) 60 ⋅ n ⋅ z ⋅ r()1− cosαn ⋅ kr - Rsr , srednja vrednost tangencijalne komponente otpora kopanju pri Q b = zahvatu jedne vedrice, 60⋅ n ⋅ z ⋅ kr ⋅ h K L [a(1− cosαn + b ⋅αn )] Rsr. = 1 Q αn a = ν 60 ⋅ n ⋅ z ⋅ kr ⋅ h Polazeći od prethodnog izraza (10) dobije se: Uvrštavajući izraze za a i b i (14) u K F ⋅ a ⋅b(1− cosαn ) izraz (10), dobije se: Rsr. = αn K K = F ⋅ ovo se odnosi na jednu vedricu. Ukupna L 1 αn + ()1− cosαn sila će biti jednaka: ν (16) αn αn ⋅ z Q()1− cosαn Psr. = Rsr. ⋅ = Rsr. ⋅ , te će ukupni ⋅ n 2π 60ν ⋅ n ⋅ z ⋅ r ⋅ kr srednji tangencijalni otpor kopanju biti:

π K F ⋅ a ⋅b(1− cosαn )⋅ z Za αn = , što se najčešće usvaja u Psr. = (21) 2 2π proračunima: Uvrštavajući izraze ab iz (15) u (21) 2KF Q Q KL = ⋅ (17) ab = 2 2 60⋅ nzrkr ()1− cosαn π + 60 ⋅ n ⋅ z ⋅ r ⋅ kr ν π Q P = K (22) Polazeći od uslova minimalne sr F 120π ⋅ n ⋅ r ⋅ kr 2 specifične potrošnje ν = , tada će biti: π KF ⋅Q M sr = (23) 120π ⋅ n ⋅ k Q r KL = KF (18) Srednja vrednost snage na vratilu 120π ⋅ n ⋅ z ⋅ r ⋅ kr rotora koja se angažuje pri kopanju Ne uzimajući u obzir oscilacije rotora, stenske mase je: veličinu srednjeg momenta na vratilu QKF rotora od otpora kopanju možemo izraziti Nsr. = []kW (24) na sledeći način: 360⋅ kr

M sr. = Psr. ⋅ r (19) 2. DEFINISANJE RAČUNSKIH gde je: OPTEREĆENJA NA OSOVINI ROTORA UZROKOVANA - Psr., srednji tangencijalni otpor kopa- nju stenske mase OTPOROM U PROCESU KOPANJA Polazeći od jednakosti utrošenog rada Polazeći od sl. 3 spoljašnji otpor kopanju može se napisati: moguće je zameniti zajedničkim optereće- njima koja deluju na osi rotora, momentom −αn −αn Rsr. = ∫0 dα = K L ∫0 ()a ⋅sinα + b dα (20) M i silom P, koji deluju u ravni rotora

Broj 1,2011. 53 RUDARSKI RADOVI zajedničkom silom PB od bočnih opterećenja rezom, moment na vratilu rotora brzo raste pri kopanju i momentom MB, koji uvrće za veličinu: katarku. M = r ⋅ K ⋅b (26) Svrsishodno je silu P razložiti na 1 L vertikalnu i horizontalnu komponentu (PV i a izlazak vedrice iz procesa rada praćen je PH), pošto se PV pojavljuje kao osnovna sila smanjenjem ukupnog momenta na vratilu koja pobuđuje konstrukciju u vertikalnoj rotora, a koji potiče od otpora kopanju za ravni. Da bi se objasnili dinamički efekti na vrednost: elemente konstrukcije, neophodno je objasniti prirodu promene momenta M na M 2 = r ⋅ KL ⋅(a ⋅sinαn + b) (27) vratilu rotora u zavisnosti od otpora u Ne uzimajući u obzir promenu otpora procesu kopanja u funkciji ugla zaokreta kopanju na račun odlamanja, promenu rotora α i vremena zaokreta t. fizičko-mehaničkih svojstava po dužini U skladu sa izrazima (2), (3) i (7), reza i drugih faktora, koji izazivaju moment od tangencijalnog otpora kopanju promenu sila otpora kopanju, i ako se na bilo kojoj vedrici RTi u odnosu na osu pretpostavi da u periodu vremena od rotora O, sl. 3, može se napisati ulaska vedrice u zahvat do njenog izlaska Mi = r ⋅ KL ()a ⋅sinα + b (25) menja se moment otpora na vratilu Mi, gde je: tada će dijagram promene ukupnog - r, radijus rotora do režućeg ruba vedra. momenta na vratilu rotora M(α) od otpora Polazeći od realne pretpostavke, da pri kopanju na svim vedricama moći da se ulasku vedrice u proces rada vertikalnim izrazi redom, sl. 4.

Sl. 4. Promena računskog momenta otpora kopanju na vratilu rotora a) opšti slučaj b) rotorni bager ERG-1600 pri odgovarajućem αn = 0,4π c) αn = 0,5π d) αn = 0,6π

Broj 1,2011. 54 RUDARSKI RADOVI

Prema izrazu (23) određuje se srednja M 2 M max = M sr. + − M1[]j − ()m + 0,5 (30) vrednost momenta Msr. otpora kopanju. 2 Veličine skokova M1 i M2 potrebno je M 2 odrediti za uglove α i α koji odgovaraju M min = M sr. − − M1[]j − ()m + 0,5 (31) 1 2 2 radu rotora sa manjim i većim brojem Pri celom broju vedrica koje se istovre- vedrica u radu. Veličinu uglova α1 i α2 određujemo sa sl. 3. meno nalaze u sadejstvu sa stenskom αn α1 = ()m +1 α š −αn (28) masom, tj. kada je j = = m biće αš α2 = αnmα š (29) M 2 − M1 gde je: M max = M sr. + (32) 2 - aš , uglovni korak vedrice M 2 − M1 α M min = M sr. − (33) - m = n 2 αš Naglašavamo, da pri konstantnoj brzini α1 α2 obrtanja rotora, konstruisani dijagram = ()m +1 − j i = j − m , tj. M = f predstavlja istovremeno i dija- αš αš ()α gram promene momenta u funkciji vremena višak u (j) od celog broja (m) biće deo α2 u M = f()t . α š , a nedostajući deo do sledećeg celog Primera radi, razmotrićemo rad bagera broja (m+1) iznosiće deo α1 u αš. 3 Kod stvarnih konstrukcija rotora sa z = 6 ERG 1600 pri kapacitetu Q = 3750 [m /h] i broju obrtaja rotora n = 3,7 [min-1] u stenskoj do 14 vedrica i uglovima αn=(0,4 do 0,6) π, (j) se nalazi u granicama 1,2 do 4,2, masi sa KF = 0,3 [MPa] i sa koeficijentom odgovarajući broj koji se istovremeno nalazi rastresitosti kr = 1,25. u sadejstvu sa stenskom masom će iznositi Pri navedenim uslovima, tabelarnoi od 1-2 i od 4-5. Kod toga će većina vedrica dijagramski smo prikazali M = f()α i (m+1) učestvovati u kopanju za vreme M = f()t . trajanja ugla α , a manji broj vedrica (m) 2 Koristeći izraze za a i b i izraze (16) i menjaće se u toku ugla α1. Veličina ugla β, sl. 4a, potrebna za izraz (23), izračunate su veličine KL, a, b i Msr., a zatim veličine skokova momenata M1 konstrukciju M(α), određuje se kao i M2 za uglove αn = 0,4π , αn = 0,5π i M 2 − M1 tgβ = . Veličine Mmax i Mmin αš αn = 0,6π , tj. kada se u sadejstvu sa određuju se u opštem obliku polazeći od stenskom masom nalazi srednji broj vedrica, uslova jednakosti šrafiranih površina koje a koji je jednak 2; 2,5 i 3. se nalaze počev odozgo prema dole od Msr. Dobijeni podaci su prikazani u tabeli 1 i na dijagramima, sl. 4. Tabela 1.

αn Msr. a b KL M1 M2 [rad.] [kNm] [m] [m] [kN/m] [kNm] [kNm] 0,4π 647,0 0,796 0,436 65,5 161,0 444,0

0,5π 647,0 0,614 0,389 58,5 129,0 332,5

0,6π 647,0 0,518 0,356 53,5 107,4 256,0

Broj 1,2011. 55 RUDARSKI RADOVI

LITERATURA

[1] R. Popović sa saradnicima, Elaborat o [4] M. Ljubojev, R. Popović, Problematika terenskim istraživanjima uticajnih para- eksploatacije stenskog materijala, metara na režim rada bagera schRS Međunarodni naučno-stručni simpo- 315/1,5-12,5 u uslovima kopanja sloja zijum u povodu 120 godišnjice Kreke, uglja na P.K. „Gračanica“ Gacko, Tuzla, 2005. Institut za rudarska istraživanja, Tuzla, [5] R. Popović, M. Ljubojev, M. Ivković, 1983. Mehanizacija i produktivnost preduslov [2] R. Popović, D. Đukić, Utvrđivanje promenama rudnika sa podzemnom uticaja radnih parametara rotornog eksploatacijom, Međunarodni naučno- bagera na njegov efektivni kapacitet u stručni simpozijum u povodu 120 uglju, V Jugoslovenski simpozijum o godišnjice Kreke, Tuzla, 2005. površinskoj eksploataciji mineralnih [6] R. Popović, M. Ljubojev, Osnove sirovina, Skoplje, 1983. rušenja stena primenjenom mehani- [3] M. Ljubojev, R. Popović, Osnove zacijom pri eksploataciji čvrstih rušenja stena primenjenom mehaniza- mineralnih sirovina, Monografija, Bor, cijom pri eksploataciji čvrstih 2011. mineralnih sirovina (knjiga u štampi) Institut za rudarstvo i metalurgiju, Bor

Broj 1,2011. 56 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK:622.23.05(045)=20

Ratomir Popović*, Milenko Ljubojev*, Dragan Ignjatović*

SPECIFICITY OF WORK PROCESSES AND WORK LOADS OF ROTOR IN THE EXCAVATION PROCESS USING THE BUCKET WHEEL EXCAVATOR

Abstract

This work gives an analysis of operation the bucket wheel excavator in the exploitation and calculation the basic parameters if excavator ERG 1600 in operation. Key words: bucket wheel excavator, total excavation resistance, rotor bucket, tangential com- ponent of rock mass resistance, normal component of rock mass resistance, capacity, torque of rotor shaft

INTRODUCTION The process of excavation and trans- cuts that are removed during the rotation port of excavated mass using the bucket of rotor in the vertical plane and by turn in wheel excavators is continuous. Bucket the horizontal plane of platform with arm wheel excavators excavate by alternate and rotor that are situated on it.

Figure 1. Scheme of excavation using the bucket wheel excavator - a, vertical web - b, horizontal web

* Mining and Metallurgy Institute Bor

No 1, 2011. 57 MINING ENGINEERING

Excavation is usually done by vertical external load on the rotor in the process of or horizontal cuts with the fixed radius of excavation has a recurring character. excavation r (not considering the oscilla- Changing the external load is increased by tions of the working body z) and at certain additional changes in cutting forces that speeds the rotor turning w and arm with a arise from non-similar mechanical proper- turning platform wk. ties of the massif which is excavated. When working in vertical cuts after Changes of external load are periodic and each shift of platform with arm for angle causing oscillations and additional dynamic (β), whose size is determined by the size of loads on the arm and rotor, then the struc- excavation, the excavator with arm or just tural elements of the superstructure and base arm (if its length is variable) shifts for the construction of rotor excavator. These addi- size (a) equal to the maximum depth of cut. tional dynamic loads can be very dangerous When working with a horizontal cut, for the structural elements at the time of after each turn of the platform with arm occurrence the resonant oscillations. for the angle (β), the arm with rotor is Figure 2 shows a series of oscil- lowered for the size of (a). lograms characterized by oscillations and Due to periodic entry and exit of buck- dynamic loads that arise when working ets from the web of excavation, also the the conveyor stacker.

Figure 2. Oscillograms characterized by dynamic loads at work of conveyor stacker OŠ 4500/180 a) starting the conveyor into operation without load b) setting the movement of conveyhor without load c) no-load conveyor braking d) load at different locations along the length f belt during starting the loaded conveyor (curves 6,7,8,9,10 and 11) 1 - stresses in the upper section of the shelf jib 2 - rotation speed of main engine of driving drum 3 and 4 - torque on the drive drum shaft 5 - walking stroller tension mechanism

No 1, 2011. 58 MINING ENGINEERING

1. EXTERNAL LOAD 1.1. Determination of external load during excavation without The following types of external loads oscillations of rotor and change of and overcoming resistance that are the cutting force most specific for machines are: The total resistance of the rock mass - resistance of rock mass in the exca- excavation using the bucket wheel excava- vation process tor is the sum of resistances which occur in - loads that arise during working of some buckets that are in the web of rock conveyor. mass, Figure 3. The total resistance to ex- cavation on any bucket consists of three components.

Figure 3. The forces acting on the edge of the rotor

vation resistance in the process of cutting 2 2 2 Ri = RTi + RNi + RBi (1) and it can be determined for any position of the bucket in web. where: R (2) - RTi, tangential component of the Ti=Lsr. ⋅K L rock mass resistance in the vertical R (3) plane Ti=Fsr. ⋅K F - RNi, normal component of the rock where: mass resistance in the vertical plane - L, length of cutting contour of bucket - RBi, side component of the rock located in the web and it is equal to mass resistance a volume half of intersection The basic component that character- - F, cross sectional cut izes the rock mass resistance of excava- - KL, resistance coefficient to excava- tion is RTi, and is usually called the exca- tion [KN/m’]

No 1, 2011. 59 MINING ENGINEERING

- KF, resistance coefficient to excava- Starting from Figure 3 and hatched cut tion [KN/m2] and equality of consumption, it can be In this case, the coefficients KL and KF written: are included not only to the excavation αα− K ⋅ r nnL ⋅ dα = K ⋅ r F ⋅ dα (6) resistance, but the resistances to cutting, L ∫∫00F moving the excavated mass into bucket where: and resistance around the perimeter of the - α , starting cutting angle working wheel. Practically, the determina- n Expressing the current value of the tion of medium size components R and Ni depth of cut a through a = a ⋅sinα , it RBi starts with the size of tangential com- max ponent RTi. is possible to write the current values F and L in the following forms R =ψ ⋅ R Ni n Ti (4) a ⋅sinα L = + b ≈ asinα + b (7) RBi =ψ b ⋅ RTi (5) sinγ where: - γ, angle of the side cutting edges→ 90º - ψ n and ψ b , coefficients obtained F = a ⋅b ⋅sinα (8) by experiment whose values −αn generally depend on the physi- K L ⋅ r∫ ()a ⋅ sinα + b dα = 0 (9) cal-mechanical properties of −α excavated rock mass and = K ⋅ r n a ⋅ b ⋅ sinα ⋅ dα F ∫0 structural characteristics of the working body, that is the cut- where: ting parameters a and b and - a and b, maximum cut depth and width lateral and circumferential ve- α n K L ⋅ r a ⋅ cos α + ba 0 = locities Vb and Vo, Figure 3. = K ⋅ r ab ⋅ cos α α n In excavation of rock masses of the I F 0 and II category: KL ⋅r[−a + acosα +bαn] = ψ n = 0,4 ÷ 0,5;ψ b = 0,25 ÷ 0,35 , and in = KF ⋅r()− ab+ abcosαn rock mass excavation of the IV and V category, their values are in the range: After arranging, the following is got: ψ n = 0,5 ÷ 0,8;ψ b = 0,35 ÷ 0,50 ab(1− cosan) K L = K F (10) Dependence RTi on the cutting angle α, an ⋅b + a()1− cosαn Figure 3, or from time t at constant speed Assuming that the capacity of the ex- rotor, it is the best to use expressions (2) and cavator is the function parameters K and (3) as experimental studies show that the L K and basic parameters of the rotor, the average value of K remains practically con- F L resistance coefficients to excavation K stant across the entire length of the cutting. L and K will be expressed in terms of ca- Since the coefficient K for different classes F L pacity and basic parameters of the rotor of different machines is different, and the mean value of K depends on the physical - F b mechanical properties of rock mass that is =ν = const. rotor coefficient (11) excavated and construction of working a Hourly capacity will be: body. Therefore, the appropriate is use KL in a function RTi = f ()a to find its connection Q = 60⋅ q ⋅ nz [m3 / h] (12) with the KF.

No 1, 2011. 60 MINING ENGINEERING where: Starting from the conditions of mini- - q [m3], volume of bucket, 2 mum specific consumption ν = , then it - z, number of buckets on the rotor, π - n, number of rotor rotations per minute. will be: Taking also into account the coeffi- cient of loosening kr from the conditions Q KL = KF (18) of material change in the bucket, it is pos- 120π ⋅ n ⋅ z ⋅ r ⋅ kr sible to write: Without taking into account the oscil- Q q = a ⋅b ⋅ h = (13) lations of the rotor, the size of secondary 60⋅ n ⋅ z ⋅ kr torque on the rotor shaft of excavation where: resistance can be expressed as follows: - h, total rotor height, and expressed M sr. = Psr. ⋅ r (19) over rotor radius r is: h = r()1− cosαn (14) where: - Psr., middle tangential resistance of Including the expression (14) into (13), rock excavation it is obtained: Based on the equality of consumption, Q it can be written: ab = (15) 60⋅ n ⋅ z ⋅ r()1− cosαn ⋅ kr −αn −αn Rsr. = ∫0 dα = K L ∫0 ()a ⋅sinα + b dα (20) Q where: b = - α , angle between buckets 60 ⋅ n ⋅ z ⋅ kr ⋅ h n - Rsr , mean value of tangential compo 1 Q a = nent of excavation resistance in ν 60⋅ n ⋅ z ⋅ kr ⋅ h the grip of a bucket Including the expressions for a and b K L [a(1− cosαn + b ⋅αn )] Rsr. = and (14) into expression (10), it is ob- αn tained: Based on the previous expression (10) K K = F ⋅ it is obtained: L 1 αn + ()1− cosαn K F ⋅ a ⋅b(1− cosαn ) ν (16) Rsr. = αn Q()1− cosαn ⋅ this refers to a bucket. The total force will 60ν ⋅ n ⋅ z ⋅ r ⋅ kr be equal to: π αn αn ⋅ z For αn = , that is usually adopted in Psr. = Rsr. ⋅ = Rsr. ⋅ , and the total 2 n 2π calculations: average tangential excavation resistance will be: 2KF Q KL = ⋅ (17) K ⋅ a ⋅b(1− cosα )⋅ z 2 2 P = F n (21) π + 60 ⋅ n ⋅ z ⋅ r ⋅ kr sr. ν π 2π

No 1, 2011. 61 MINING ENGINEERING

Including the expressions ab from (15) in a function of rotor turning angle α and into (21) turning time t. Q According to the expressions (2), (3) ab = and (7), a moment from tangential resis- 60 ⋅ nzrkr ()1− cosα n tance to excavation at any bucket RTi re- Q garding to the rotor axis O, Figure 3, P = K (22) sr F could be written as 120π ⋅ n ⋅ r ⋅ kr M i = r ⋅ KL (a ⋅sinα + b) (25) KF ⋅Q M sr = (23) where: 120π ⋅ n ⋅ k r - r, rotor radius from cutting edge of a The mean value of power on the rotor bucket shaft, engaged in rock mass excavation, is: Starting from the real assumption that QKF in the bucket entry into the working proc- Nsr. = []kW (24) 360 ⋅ k ess by vertical cut, the moment on the r rotor shaft increases fast for the value: 2. DEFINING THE CALCULATED M1 = r ⋅ KL ⋅b (26) LOADS ON THE ROTOR SHAFT and a bucket exit from the working process CAUSED BY RESISTANCE IN THE is followed by the reduction of the total EXCAVATION PROCESS torque on the rotor shaft, which is derived Starting from Figure 3, the external from the excavation resistance value: excavation resistance can be replaced by M 2 = r ⋅ KL ⋅(a ⋅sinαn + b) (27) the joint loads acting on the rotor axis by Without taking into account the the moment M and force P, acting on a change in excavation resistance at the ex- joint force of the rotor plane PB of the lat- pense of breaking off, change the physi- eral loads in excavation and moment M ,, B cal-mechanical properties along the length which twists the arm. of cut and other factors causing the change It is useful to divide the force P on of resistance excavation force, assuming vertical and horizontal component (P and V that during the period of time from enter- PH), as PV appears as a fundamental force ing the bucket in operation until its re- that stimulates the structure in the vertical lease, the torque on the rotor shaft M is plane. In order to explain the dynamic i changed, then the diagram of total torque effects on the structure elements, it is nec- on the rotor shaft M(α) of resistance to ex- essary to explain the nature of change the cavation in all buckets can be expressed torque M on the rotor shaft, depending on respectively, Figure 4. the resistance in the process of excavation

No 1, 2011. 62 MINING ENGINEERING

Figure 4. Change the calculation of torque resistance to excavation on the rotor shaft a) general case b) bucket wheel excavator ERG-1600 at suitable αn = 0,4π c) αn = 0,5π d) αn = 0,6π

According to the expression (23), the In the actual structures of the rotor mean value is determined of the moment with z = 6 to 14 buckets and corners

Msr of the excavation resistance. It is nec- αn=(0,4 do 0,6) π, (j) is located within the essary to determine the values of jumps 1.2 to 4.2, the corresponding number, at M1 and M2 for the angles α1 and α2 corre- the same time in a conjunction with the sponding to the rotor work with small and rock mass, will be from 1-2 and 4-5. In large number of buckets in the paper. Size addition, the majority of buckets (m+1) of the angles α1 and α2 are determined will participate in the excavation for the from Figure 3. duration of the angle α2, and smaller num- ber of buckets (m) will be changed during α1 = ()m +1 α š −αn (28) the angle α1. α2 = αnmα š (29) Size of angle β, Figure 4a, required for where: the structure M(α) , is determined as - α š , angular step of a bucket M − M tgβ = 2 1 . Sizes M and M are α max min - m = n αš αš determined in general form starting from the conditions of equality of hatched sur- α1 α2 - = ()m +1 − j and = j − m , i.e. faces from the top to the bottom of Msr. αš αš M 2 M max = M sr. + − M1[]j − ()m + 0,5 (30) excess in (j) of an integer (m) will be part 2 α2 in αš, and a missing part to the next M 2 whole number (m+1) will be a part α in α . M min = M sr. − − M1[]j − ()m + 0,5 (31) 1 š 2

No 1, 2011. 63 MINING ENGINEERING

-1 At the whole number of buckets which n = 3.7 [min ] in the rock mass, KF = 0.3 are also found in a conjunction with the [MPa] and with the coefficient of loosening αn kr = 1.25. rock mass, i.e. when j = = m , will be: At given conditions, M = f and αš ()α M 2 − M1 M = f()t were presented in tables and M max = M sr. + (32) 2 diagrams. M 2 − M1 Using the expressions for a and b and M min = M sr. − (33) 2 expressions (16) and (23), the sizes KL, a, It is emphasized that at a constant speed b and Msr. were calculated, and then the rotor, constructed diagram M = f()α also sizes of torque jumps M1 and M2 for presents a simultaneous diagram of moment αn = 0,4π , αn = 0,5π and αn = 0,6π , changes in a function of time M = f()t . i.e. when the mean number of buckets is in a conjunction with the rock mass, and For example, we will consider the work that is equal to 2; 2.5 and 3. of excavator ERG 1600 with capacity 3 The obtained data are present in Table Q = 3750 [m /h] and rpm of rotor 1 and on diagrams, Figure 4.

Table 1.

αn Msr. a b KL M1 M2 [rad.] [kNm] [m] [m] [kN/m] [kNm] [kNm] 0.4π 647.0 0.796 0.436 65.5 161.0 444.0 0.5π 647.0 0.614 0.389 58.5 129.0 332.5 0.6π 647.0 0.518 0.356 53.5 107.4 256.0

[4] M. Ljubojev, R. Popović, Problems in REFERENCES Exploitation the Rock Material Inter- [1] R. Popović et al. Elaborate on the national Scientific Symposium on the Field Investigations the Influential Occasion of 120 Anniversary of Parameters on the Operation Mode of Kreka, Tuzla, 2005. Excavators schRS 315/1.5-12.5 in the [5] R. Popović, M. Ljubojev, M. Ivković. Conditions of Excavation of Coal Mechanisation and Productivity Pre- Layer at the Open pit “Gračanica“ condition to the Changes of Under- Gacko, Institute of Mining Research, ground Mines, International Scien- Tuzla, 1983. tific Symposium on the Occasion of [2] R. Popović, D. Djukić, Determination 120 Anniversary of Kreka, Tuzla, the Effects of Operational Parmeters 2005. of the Bucket Wheel Excavator at its [6] R. Popović, M. Ljubojev, Basis of Effective Capacity in Coal V Yugo- rock destruction by aplied mechani- slav Symposium on Open Pit Mining zation in exploitation of solid mineral of Minerals, Skoplje, 1983. raw materials Monograph, Bor, 2011. [3] M. Ljubojev, R. Popović, Fundamen- tals of Rock Destruction by the Used Mechanization in the Exploitation of Solid Mineral Resources (books in print) Mining and Metallurgy Insti- tute, Bor

No 1, 2011. 64 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:551.49:622.26(045)=861

Dragan Ignjatović*, Milenko Ljubojev*, Lidija Đurđevac Ignjatović*, Jelena Petrović*

KLASIFIKACIJA STENSKOG MASIVA PRE IZGRADNJE TUNELA (PO WICKHAM-U I BIENAWSKOM)**

Izvod

Pre bilo kakve aktivnosti na izradi tunela, neophodno je definisati stanje stene, kroz koju će biti konstruisan novi tunel. Šema klasifikacije stenskih masiva je razvijena pre više od 100 godina, od kako je Riter (1879) pokušao da formalizuje empirijski pristup projektovanju tunela, naročito za definisanje podgrade. Dok su klasifikacione šeme prikladne za originalnu primenu, treba obratiti pažnju na njihovu pri- menu u klasifikaciji stenskog masiva za druge inženjerske problem. Ključne reči: klasifikacija stenskog masiva, izgradnja tunela

1. UVOD

Tokom faze projekta o izvodljivosti i deformacijskih svojstava stenske mase. idejnog rešenja, kada je vrlo malo detaljnih Veoma je bitno da se razumeju informacija dostupno za stenske mase o ograničenja šema za klasifikaciju stenske njihovom stanju napona i hidrološkim mase (Palmstrom i Broch, 2006) i da nji- karakteristikama, korišćenje šema klasifi- hova primena ne treba (i ne može) da kacije stenske mase mogu biti od velike zameni neke procedure projektovanja. koristi. Najjednostavnije rečeno, one se Ipak, korišćenje ovih procedura za projek- mogu koristiti kao liste za proveru kako bi tovanje zahtevaju relativno detaljne infor- se osiguralo da su sve relevantne macije o naponu in situ, karakteristike informacije uzete u obzir. Sa druge strane, stenske mase i planirani način ot- jedna ili više klasifikacionih šema mogu da kopavanja, a sve ove informacije nisu dos- se koriste da se izgradi slika o sastavu i tupne u ranoj fazi projektovanja. Čim ova karakteristikama stenske mase da bi se informacija bude dostupna, šeme klasifi- obezbedile početne procene za podgradu, i kacija treba dopuniti i koristiti u sprezi sa da se obezbedi procena čvrstoće i specifičnim terenskim istraživanjima.

* Institut za rudarsvo i metalurgiju ** Ovaj rad je proistekao iz Projekta br. 33021 koji se finansira sredstvima Ministarstva za pros- vetu i nauku Republike Srbije

Broj 1,2011. 65 RUDARSKI RADOVI

2. OCENA STENSKE STRUKTURE (RSR)

Vikam i saradnici (1972) su opisali Značaj RSR sistema, u kontekstu di- kvantitativnu metodu za opisivanje kvali- skusije, je da ona predstavlja koncept za teta stense mase i za odabir odgovarajuće ocenu svake od komponenti koje su nave- podgrade na osnovu njihove klasifikacije o dene naniže, da bi se dobila vrednosti proceni stenske strukture (RSR). Većina RSR = A + B + C. istorijskih slučajeva, koji su korišćeni za 1. Parametar A, Geologija: Generalna ocena geološke strukture na osnovu: razvoj ovog sistema, su bili za relativno male podgrade tunela čeličnim setovima, a. Porekla stene (vulkanske, metamorfne i sedimentne). mada istorijski, ovaj sistem je bio prethod- nica betonskim podgradama. Uprkos ovim b. Čvrstoća stene (čvrste, srednje i ras- ograničenjima, vredno je ispitati RSR sis- padnute). tem u nekim detaljima obzirom da ukazuje c. Geološke strukture (masivna, blago na logiku uključenu u razvoj kvazi- poremećene/naborane, umereno pore- kvantitativne klasifikacije stenskog masiva. mećene/naborane, intenzivno pore- mećene/naborane).

Tabela 1. Ocena geološke strukture: Parametar A: Generalna oblast geologije

Osnovni tip stene Čvrsta Srednja Meka Raspadnuta Geološka struktura Vulkanska 1 2 3 4 Blago Umereno Intenzivno Metamorfna 1 2 3 4 Masivna poremećene poremećene poremećene ili nabrane ili nabrane ili nabrane Sedimentna 2 3 4 4 Tip 1 30 22 15 9 Tip 2 27 20 13 8 Tip 3 24 18 12 7 Tip 4 19 15 10 6

2. Parametar B, Geometrija: Uticaj diskon a. Sveukupni kvalitet na osnovu kombi- tinuiteta u odnosu na pravac pružanja nacije parametara A i B. tunela na osnovu: b. Uslovi spoja (dobri, srednji i loši). a. Razmaka spoja. c. Količina priliva vode (u galonima b. Orijentacija spoja (pravac i pad). po minuti po 1000 stopa tunela). c. Pravac linije tunela. 3. Parametar C: Uticaj priliva podzemnih voda i uslova spoja na osnovu:

Broj 1,2011. 66 RUDARSKI RADOVI

Tabela 2. Ocena stenske strukture: Parametar B: Raspored spojeva, pružanje i pravac Pravac ┴ na osu Pravac ║ na osu Pravac pružanja Pravac pružanja Suprotno na Prosečno rastojanje između Oba U pravcu pružanja U bilo kom pravcu spojeva pravac pružanja Pad istaknutih spojeva Pad istaknutih spojeva horizon- po verti- verti- verti- po padu horizontalno po padu talno padu kalno kalno kalno 1. Veoma bliski spoj, <2 in 9 11 13 10 12 9 9 7 2. Bliski spoj, 2-6 in 13 16 19 15 17 14 14 11 3. Umereni spoj, 6-12 in 23 24 28 19 22 23 23 19 4. Umereno do kockasto, 1-2 ft 30 32 36 25 28 30 28 24 5. Kockasto do masivno, 2-4 ft 36 38 40 33 35 36 24 28 6. Masivno, >4 ft 40 43 45 37 40 40 38 34 Tabela 3. Ocena stenske strukture: Parametar C: Podzemna voda, uslovi spoja

Zbir parametara A+B Očekivani priliv vode 13-44 45-75 gpm/1000 ft tunela Uslovi spoja Dobri Solidni Loši Dobri Solidni Loši Bez priliva 22 18 12 25 22 18 Slabi priliv, <200 gpm 19 15 9 23 19 14 Umereni priliv, 200-1000 gpm 15 22 7 21 16 12 Veliki priliv, >1000 gpm 10 8 6 18 14 10

Na primer, čvrsta metamorfna stena koja 3. Razmak između diskontinuiteta. je blago poremećena ili naborana ima ocenu 4. Stanje diskontinuiteta. A=22 (iz tabele 1). Stenska masa je umereno 5. Stanje podzemnih voda. sastavljena, sa spojevima koji su upravni na osu tunela koji se pruža pravcem istok- 6. Orientacija diskontinuiteta. zapad, i padom između 20˚ i 50˚. U primeni ovog sistema klasifikacije, Tabela 2 daje ocenu za B=24 za pravac stenska masa je podeljena na strukturne sa padom (definisan u nastavku). Vrednost oblast i svaka oblast se klasifikuje za A+B=46 i to znači da, za spojeve u regu- posebno. Granice strukturnih oblasti su larnim uslovima (blago degradirani i izmen- obično podudarne sa svojstvom, kao što je jeni) i umerenim prilivom vode između 200 rased ili promena vrste stena. U nekim i 1000 galona u minuti, tabela 3, daje ocenu slučajevima, značajne promene u diskon- za C=16. Otuda je konačna vrednost za tinuitetu ili karakteristikama, unutar iste ocenu structure stene RSR=A+B+C=62. stene, mogu da zahtevaju podelu stenskog masiva na veći broj manjih strukturnih 3. GEOMEHANIČKA oblasti. KLASIFIKACIJA Sistem klasifikacije stenske mase je Bienawski (1976) je objavio detalje o dat u tabeli 4, i on daje ocene za svaki od klasifikaciji stenske mase, nazvana Geo- šest parametara koji su navedeni. Ove mehanička klasifikacija sistema ocene ocene su sabrane da bi dale vrednost RMR. stenske mase (RMR). Tokom godina, ovaj Sledeći primer ilustruje korišćenje ovih sistem je sukcesivno obnavljan sa većim tabela da bi se došlo do vrednosti za RMR. brojem rezultata ispitivanja i Bienawski je Tunel bi trebalo da prođe kroz blago napravio značajne promene u oceni dode- oštećeni granit sa dominantnim spojem ljene različitim parametrima. Sledećih šest čiji je pad pod uglom od 60˚ u odnosu na parametara s koriste za klasifikaciju sten- pravac pružanja tunela. Indeks testiranja i ske mase korišćenjem sistema RMR: jezgrovanje dijamantskom bušilicom daje 1. Jednoosna pritisna čvrstoća stena. vrednosti indeksa za Point-load test od 8 2. Oznaka kvaliteta stene (RQD). MPa i prosečnu RQD vrednost od 70%.

Broj 1,2011. 67 RUDARSKI RADOVI

Neznatno grubi i degradirani spojevi sa mm. Uslovi pri izgradnji tunela su pred- razmakom < 1 mm, su razmaknuti na 300 viđeni kao vlažni.

Tabela 4. Sistem za ocenu stenskog masiva (po Bieniawskom 1989)

A. Klasifikacioni parametri i njihova ocena Parametar Opseg vrednosti Indeks Za ovaj mali opseg, pože- Čvrstoća čvrstoće >10 MPa 4-10 MPa 2-4 MPa 1-2 MPa ljno je uraditi test čvrstoće neporemećenog Point-load na pritisak 1. stenskog testa materijala Čvrstoća na 100-250 25-50 5-25 1-5 >250 MPa 50-100 MPa <1MPa pritisak MPa MPa MPa MPa Ocena 15 12 7 4 2 1 0

Kvalitet izbušenog jezgra RQD 90%-100% 75%-90% 50%-75% 25%-50% <25% 2. Ocena 20 17 13 8 3 Razmak diskontinuiteta >2 m 0.6-2 m 200-600 mm 60-200 mm <60 mm 3. Ocena 20 15 10 8 5 Blago gruba Blago gruba Klizna Veoma gruba površina površina površina ili Meka glina površina Odvojenost Odvojenost glina čija je debljine Nenastavljeno <1mm <1mm debljina >5mm ili Stanje diskontinuiteta Bez odvajanja 4. Zidovi stena na Zidovi stena na <5mm ili kontinualno Zidovi stena na koje koje su blago koje su znača- kontinualno odvajanje nisu uticale atmosfer- uticale atmos- jno uticale odvajanje od >5mm ilije ferilije atmosferilije 1-5mm Ocena 30 25 20 10 0

Priliv na 10m dužine tunela Nema <10 10-25 25-125 >125 (l/m) Podzemna 5. voda Pritisak vode na spoju/glavni 0 <0.1 0.1-0.2 0.2-0.5 >0.5 napon σ Opšti uslovi Potpuno suvo vlažno mokro kaplje teče Ocena 15 10 7 4 0

Vrednost RMR za dati primer je 59. Indok center 2006, pages 1-533, ISBN 86-7827-020-9 4. ZAKLJUČAK [3] M. Ljubojev, R. Popovic, D. Ignjatovic, Klasifikacija stenske mase je veoma Tunnel analysis in fault zones and the važan korak pri konstruisanju tunela ili pri effects of stress distribution on the su- bilo kom drugom, sličnom poslu, kao što su pport, Journal of Mining and Metallurgy, rudarski radovi (miniranje, definisanje sta- Section A: Mining 2009, Vol. 45, 2009, bilnosti kosina na površinskim kopovima, pages 49-57,ISBN 1450-5959 definisanje sile kopanja itd.), u građevinar- [4] M. Ljubojev, M. Avdic, D. Ignjatovic, stvu i sl. Ocena stenskog masiva po Bi- L. Đ. Ignjatovic, Influence from enawskom (RMR) je bio baziran na sluča- flotation tailings, field 2, on Krivelj jevima uzetim iz istorije građevinarstva. River tunnel stability, Mining works LITERATURA Journal, 2/2009, pages 21-28 [5] M. Ljubojev, D. Ignjatovic, V. Ljubojev, [1] N. R. Barton, R. Lien, J. Lunde, L. Đ. Ignjatović, D. Rakić, Engineering classification of rock Deformabilnost i nosivost nasutog masses for the design of tunnel support, materijala u neposrednoj blizini otvora Rock Mechanic 6(4), 189-239 okna na P. K. „Zagrađe“ – Kop – 2, [2] M. Ljubojev, R. Popovic, Basis of Rudarski radovi, br. 2/2010, str. 107-114 geomechanic, Copper Institute Bor,

Broj 1,2011. 68 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK: 551.49:622.26(045)=20

Dragan Ignjatović*, Milenko Ljubojev*, Lidija Đurđevac Ignjatović*, Jelena Petrović*

ROCK MASS CLASSIFICATION BEFORE THE TUNNEL CONSTRUCTION (PER WICKHAM AND BIENAWSKI)**

Abstract

Before any activity in the tunnel construction, it is necessary to determine the rock condition, through which will new tunnel be constructed. Rock mass classification scheme was developed for over than 100 years since Ritter (1879) at- tempted to formalize an empirical approach to tunnel design, in particular for determining support requirements. While the classification schemes are appropriate for their original application, a care has to be paid on their use the classification of rock mass or other engineering problems. Key words: rock mass classification, tunnel construction

1. INTRODUCTION

During the feasibility and preliminary their use does not (and cannot) replace design stages of a project, when very little some design procedures. However, the use detailed information are available on the of these design procedures require rela- rock mass and its stress and hydrological tively detailed information on in situ characteristics, the use of rock mass classifi- stresses, rock mass properties and planned cation scheme can be of considerable bene- excavation sequence, none of which may fit. Simply, this may involve using the clas- be available at an early stage in the pro- sification scheme as a check-list to ensure ject. As this information becomes avail- that all relevant information was considered. able, the use of the rock mass classifica- On the other side, one or more rock mass tion schemes should be updated and used classification schemes can be used to make a in conjunction with the specific s. view of composition and characteristics the 2. ROCK STRUCTURE rock mass to provide initial evaluation of RATING (RSR) support requirements, and to provide evalua- tions of t strength and deformation proper- Wickham et al (1972) described a quan- ties of the rock mass. titative method for description the quality of It is important to understand the limita- rock mass and selection the appropriate sup- tions of rock mass classification schemes port based on their Rock Structure Rating (Palmstrom and Broch, 2006) and that (RSR) classification. Most of the historical

* Mining and Metallurgy Institute Bor ** This paper is produced from the project no. 33021 which is funded by means of the Ministry of Education and Science of the Republic of Serbia

No 1, 2011. 69 MINING ENGINEERING cases, used in this system development, the context of this discussion, is that it were for relatively small tunnels supported presents a rating concept of each compo- by means of steel sets, although historically nents listed below as the numerical value this system was previously before concrete of RSR = A + B + C would be obtained. supports. In spite of these limitations, it is 1. Parameter A, Geology: General rating worth to test the RSR system in some details of geological structure, based on: since it demonstrates the logic involved in a. Rock type origin (igneous, meta- development the quasi-quantitative rock morphic, and sedimentary) mass classification system. b. Rock hardness (hard, medium, soft The significance of the RSR system, in and decomposed)

Table 1. Rock structure rating: Parameter A: General area geology

Basic Rock Type Hard Medium Soft Decomposited Geological Structure

Igneous 1 2 3 4 Slightly Moderately Intensively Folded Massive Folded or Folded or Metamorphic 1 2 3 4 or Faulted Faulted Sedimentary 2 3 4 4 Faulted

Type 1 30 22 15 9 Type 2 27 20 13 8 Type 3 24 18 12 7 Type 4 19 15 10 6

c. Geologic structure (massive, slightly 3. Parameter C: Effect of groundwater faulted/folded, moderately faulted/folded, inflow and joint conditions, based on: intensively faulted/folded). a. Overall rock mass quality based on 2. Parameter B, Geometry: Effect of combination of A and B parameters discontinuity pattern regarding to the di- b. Joint condition (good, fair, poor) rection of the tunnel drive, based on: c. Amount of water inflow (in gallons a. Joint spacing per minute per 1000 feet of tunnel) b. Joint orientation (strike and dip)

c. Direction of tunnel drive Table 2. Rock structure rating: Parameter B: Joint pattern, direction of drive

Strike ┴ to Axis Strike ║ to Axis Direction of drive Direction of drive

Average joint spacing Both With dip Against dip Either direction Dip of Prominent Joints Dip of Prominent Joints Dip- Dip- Dip- Flat Vertical Vertical Flat Vertical ping ping ping 1. Very closely jointed, <2in 9 11 13 10 12 9 9 7 2. Closely jointed, 2-6 in 13 16 19 15 17 14 14 11 3. Moderately jointed, 6-12 in 23 24 28 19 22 23 23 19 4. Moderate to blocky, 1-2 ft 30 32 36 25 28 30 28 24 5. Blocky to massive, 2-4 ft 36 38 40 33 35 36 24 28 6. Massive, >4 ft 40 43 45 37 40 40 38 34

No 1, 2011. 70 MINING ENGINEERING

Table 3. Rock structure rating: Parameter C: Groundwater, joint condition Sum of Parameters A+B Anticipated water inflow gpm/1000 ft of 13-44 45-75 tunnel Joint condition Good Fair Poor Good Fair Poor None 22 18 12 25 22 18 Slight, <200 gpm 19 15 9 23 19 14 Moderate, 200-1000 gpm 15 22 7 21 16 12 Heavy, >1000 gpm 10 8 6 18 14 10

For example, hard metamorphic rock 3. Spacing of discontinuities which is slightly folded or faulted has a 4. Condition of discontinuities rating of A=22 (from Table 1). The rock 5. Groundwater conditions mass is moderately joined, with joints 6. Orientation of discontinuities striking perpendicular to the tunnel axis In applying this classification system, which is driven east-west, and dipping the rock mass is divided into a number of between 20˚ and 50˚. structural regions and each region is clas- Table 2 gives the rating for B=24 for sified separately. The boundaries of the driving with dip (defined below). The structural regions are usually matched value of A+B=46 and this means that, for with the major structural feature such as joints of fair condition (slightly weathered fault or with change in the rock type. In and altered) and a moderate water inflow some cases, significant changes in discon- between 200 and 1000 gallons per minute. tinuity spacing or characteristics, within Table 3 gives the rating for C=16. Hence, the same rock type, may require division the final value of the rock structure rating of the rock mass into a number of small RSR=A+B+C=62. structural regions. The Rock Mass Rating system is pre- 3. GEOMECHANICS CLASSIFICATION sented in Table 4, giving the ratings for each Bieniawski (1976) published the details of the six parameters listed above. These of a rock mass classification called the Ge- ratings are summed to give the RMR value. omechanics Classification or the Rock The following example illustrates the use of Mass Rating (RMR) system. Over the these tables to obtain the RMR value. years, this system has been successively A tunnel has to be driven through slightly refined as more case records have been weathered granite with a dominant joint set examined and Bieniawski made significant dipping at 60o towards the drive direction. changes in the ratings assigned to different Testing index and logging of diamond drilled parameters. The following six parameters core give a typical Point-load strength index are used to classify a rock mass using the value of 8 MPa and average RQD value of RMR system: 70%. The slightly rough and slightly weath- 1. Uniaxial compressive strength of rock ered joints with a separation of < 1 mm, are material spaced at 300 mm. Tunneling conditions are 2. Rock Quality Designation (RQD) anticipated to be wet.

No 1, 2011. 71 MINING ENGINEERING

Table 4: Rock Mass Rating System (After Bieniawski 1989) A. Classification parameters and their ratings Parameter Range of values Point-load For this low range uniaxial strength >10 MPa 4-10 MPa 2-4 MPa 1-2 MPa compressive test is prefered Strength of intact index 1. rock material Uniaxial 100-250 50-100 25-50 5-25 1-5 comp. >250 MPa <1MPa MPa MPa MPa MPa MPa strength Range 15 12 7 4 2 1 0 Drill core Quality RQD 90%-100% 75%-90% 50%-75% 25%-50% <25% 2. Rating 20 17 13 8 3 Spacing of discontinuities >2m 0.6-2m 200-600mm 60-200mm <60mm 3. Rating 20 15 10 8 5 Slightly Slightly Slickensided Very rough rough rough surfaces or Soft gouge surfaces surface surface Gouge <5mm >5mm thick or Not continuous Separation Separation Condition of discontinuities thick or Separation 4. No separation <1mm <1mm Separation 1- >5mm continu- Unweathered Slightly Highly 5mm Continu- ous wall rock weathered weathered ous walls walls Rating 30 25 20 10 0 Inflow per 10m tunnel None <10 10-25 25-125 >125 length (l/m) Underground Joint water 5. water press/Major 0 <0.1 0.1-0.2 0.2-0.5 >0.5 principal σ General Completely dry Damp Wet Dripping Flowing conditions Rating 15 10 7 4 0

The RMR value for the given example is [2] M. Ljubojev, R. Popovic, Basis of present as follows: geomechanic, Copper Institute Bor, 4. CONCLUSION Indok center 2006, pages 1-533, ISBN 86-7827-020-9 Rock mass classification is very im- [3] M. Ljubojev, R. Popovic, D. Ignjatovic, portant step in the tunneling construction Tunnel analysis in fault zones and the or any other similar works, such as mining effects of stress distribution on the works (blasting, defining slope stability in support, Journal of Mining and Meta- the open pits, defining of excavation llurgy, Section A: Mining 2009, Vol. 45, force, etc), building construction etc. Rock 2009, pages 49-57,ISBN 1450-5959 Mass Rating by Bienawski (RMR) was [4] M. Ljubojev, M. Avdic, D. Ignjatovic, originally based upon case histories drawn L. Đ. Ignjatovic, Influence from flota- from the civil engineering. tion tailings, field 2, on Krivelj River This paper indicates that before any tunnel stability, Mining works Jour- activity in the construction, it is necessary nal, 2/2009, pages 21-28 to define the Rock mass classification as [5] M. Ljubojev, D. Ignjatovic, V. Ljubojev, the base for further investigations. L. Đ. Ignjatović, D. Rakić, Deformation REFERENCES and bearing capacity of burried material [1] N. R. Barton, R. Lien, J. Lunde, near the shaft opening at the open pit Engineering classification of rock mine „Zagrađe“ – Open Pit – 2, Mining masses for the design of tunnel support, Engineering, No. 2-2010, pp. 115-122 Rock Mech. 6(4), 189-239

No 1, 2011. 72 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:551.49:622.26(045)=861

Milenko Ljubojev*,Dragan Ignjatović*, Lidija Đurđevac Ignjatović*

PREDLOG POPREČNOG PRESEKA TUNELA KRIVELJSKE REKE**

Izvod

Novi tunel Kriveljske reke predstavlja kapitalni objekat od velikog ekološkog značaja kako za Bor i okolinu, tako i za deo crnomorskog sliva (reka Dunav). Tunel Kriveljske reke će biti izrađen u sredini koja je veoma nepovoljna za izradu i postojanost prostorije, kako tokom izrade, tako i za period korišćenja. Zato je potrebno detaljno uraditi ispitivanje stanja stenskog masiva i na osnovu tih podataka odrediti koji tip poprečnog preseka treba uzeti kao optimalno rešenje. Ključne reči: tunel Kriveljske reke, poprečni presek tunela

1. UVOD

Potrebu za izradom novog tunela terenska istražna bušenja sa ciljem Kriveljske reke, uslovilo je loše stanje determinisanja stenskog materijala. postojećeg kolektora Kriveljske reke. Nje- Sledeći istražni radovi će biti izvedeni: gova izrada bila bi delom kroz flotacijsko - istražno bušenje sa jezgrovanjem jalovište, a delom kroz stenski masiv. No- - detaljno inženjersko-geološko karti- vim tunelom, regulisao bi se tok Krivel- ranje izvođenog jezgra jske reke, iz razloga što dasadašnji tok - odabir reprezentativnih uzoraka sva- može biti prekinut rušenjem starog kolek- kog izdvojenog litološkog člana tora Kriveljske reke. - određivanje ispucalosti stenske mase i Po lokaciji trase tunela biće izvedena izdeljenosti dobijenog jezgra (RQD).

* Institut za rudarsvo i metalurgiju ** Ovaj rad je proistekao iz Projekta br. 33021 koji je finansiran sredstvima Ministarstva za pros- vetu i nauku Republike Srbije

Broj 1,2011. 73 RUDARSKI RADOVI

Sl. 1. Satelitski snimak flotacijskih jalovišta

2. IZRADA NOVOG TUNELA KRIVELJSKE REKE Predložena trasa novog tunela Krive- kroz flotacijsku jalovinu Polja 2, a ljske reke bila bi u dužini od oko 2530 m. delom po aluvijonu nekadašnjeg korita Tunel bi bio izrađen od kote K+246 (na Kriveljske reke. spoju sa Kriveljskom rekom van flotaci- jskog jalovišta), do K+272, po usponu od 3. OBLIK POPREČNOG PRESEKA 1% (do spoja sa starim tunelom). HIDROTEHNIČKIH TUNELA Izrada tunela bi bila po usponu, iz Oblik poprečnog preseka hidrotehni- razloga odvodnjavanja otkopnih radova. i čkih tunela zavisi od više činilaca, među bi bila podeljena u dve deonice: kojima se ističu: - I DEONICA- bila bi izrada tunela od njegovog budućeg izlaza, pored Kri- - statički uslovi rada obloge tunela veljske reke, po usponu od 1 %, do - hidraulički uslovi rada tunela i K+267, odnosno u dužini od oko - uslovi pod mojima će se tunel 2000 m (slika br.1). Izrada tunela je izrađivati. kroz slabu i veoma slabu stensku Od obloge hidrotehničkih tunela sredinu, sa stalnim prilivom vode. zahteva se da bude tako dimenzionisana - II DEONICA- bila bi izrada tunela da po zapremini bude najmanja a istovre- od kraja I deonice do spoja sa starim meno i da bez deformacija izdržava unu- tunelom. Dužina ove deonice bila bi trašnje i spoljašnje pritiske. Osim toga oko 500 m, odnosno, od K+267, do obloga hidrotehničkih tunela mora biti i K+272. Izrada ove deonice bila bi vodonepropusna.

Broj 1,2011. 74 RUDARSKI RADOVI

Sl. 2. Oblici slobodnih preseka hidrotehničkih tunela

Prema uslovima hidrauličkog rada ob- uslova. Ovo je i razlog što se sada kod pro- lik poprečnog preseka treba da obezbedi jektovanja ovakvih objekata veoma često najveći protok kod određenog pada i na- projektanti odlučuju na kružni oblik. jmanjeg poprečnog preseka. Ovim uslovima 3.1. Dimenzionisanje gravitacionih tunela najbolje udovoljavaju kružni, visokozas- vođeni i potkovičasti oblici (slika br.2). Već je naglašeno da kao najbolji oblici Vodeći računa o svim uticajnim činio- poprečnog preseka hidrotehničkih tunela cima, na izbor oblika poprečnog preseka su oblici koji imaju najmanji hidraulični hidrotehničkih tunela ipak preovlađuje us- otpor. Ovakav uslov najbolje zadovol- lov vezan za statički rad obloge tunela. S javaju kružni, visokozasvođeni i potkovi- obzirom na preimućstva koja ima kružni časti odlici. oblik, u vezi statičkih i hidrauličkih uslova, Vrednosti koeficijenata rapavosti η njegovi nedostaci vezani za izradu se kod gravitacionih tunela biće prikazane u nadoknađuju prednostima iz predhodna dva tabeli 1.

Tabela 1. Vrednosti koeficijenata hrapavosti η kod gravitacionih tunela Tip Karakteristika površine Vrednost za η Napomena br. dovoda srednje najveće najmanje 1. 2. 3. 4. 5. 6. Gravitacioni tuneli u neobeleženoj steni 1) Dati uslovi su individualni

a) Gravitacioni tuneli pod sred- zato se nave-

njim uslovima-zidovi izravnja- dene vrednosti 0,030 0,038 0,038 ni pomoću otklanjanja ispada daju samo radi 1. stene orjentacije

b) Gravitacioni tuneli pod ne- 2) Taloženje

povoljnim uslovima-veoma ne- nanosa sman- 0,040 0,045 - ravna površina stene, malo juje koefici- veće izbijanje prema projekt. jenat rapavosti profilu

Broj 1,2011. 75 RUDARSKI RADOVI

Gravitacioni tuneli u de- limično malterisanoj steni

a) Pri torketiranju ili malteri- 2. sanju stene, bez izrade žleba 0,030 0,022 - u donjem delu preseka b) Pri izradi žleba u donjem delu preseka i delimičnom 0,023 - 0,019 malterisanju Gravitacioni tuneli obloženi sa običnom betonskom ob- 1) Dati uslovi logom bez malterisanja i su individualni glačanja zato se nave-

dene vrednosti a) Pri glatkom betonu koji se daju samo radi dobija pomoću dobro iz- 0,014 0,015 0,013 orjentacije. rendisane oplate, bez ispada i 3. 2) Ako ima rupa mahovine (bez b) Pri rapavom betonu koji nanosa) koefi- nosi na sebi tragove oplate cijenat ra- (udubljenja, tragove 0,016 0,018 0,015 pavosti pove- vlakna)usled lošeg naleganja ćava se za dasaka oplate, i za tip 3-a 0,002 kada se na dnu oplate taloži pesak i šljunak Gravitacioni tunel sa obrađenom, omalterisanom ili uglačanom površinom betona

a) Po visokom kvalitetu ra- 4. dova sa površinom omal- 0,011 - 0,010 terisanom cementnim mal- terom i uglačanom b) Pri dobrom kvalitetu ra- dova površina je dobro ugla- 0,012 0,013 0,011 čana i izravnana, spojnice su uglačane Gravitacioni tuneli sa torketiranom površinom

a) Pri pažljivom čišćenju

četkom od čeličnih žica i 0,013 0,015 0,012 pažljivom glačanju

b) Pri čišćenju četkom od 5. čeličnih žica i sprečavanju 0,018 - 0,016 obrazovanja ,,rubova,, iz-

među torket-betona i malteri-

sane površine 0,019 0,023 - c) Običan torket-beton bez preduzimanja nekih specijal- nih mera

Broj 1,2011. 76 RUDARSKI RADOVI

Prema Pernatu, kod gravitacionih tun- Q = 1/n · ω · R0,7 · I0,5, ela, neophodno je da visina vode u tunelu bude nešto niža od visine samog tunela s gde su: obzirom na formiranje talasa, i treba da se n – koeficijent rapavosti prema kreće u granicama od: Gangije-Kuteru, (tabela 1) 1,7 · r ≤ t ≤ 1,85 · r ω – površina slobodnog preseka, gde su: pod vodom, m2, r – polovina najveće širine u proseku R – hidraulički radijus, t – visina punjenja tunela I – pad dna tunela. Na slici br. 3, prikazan je visokozas- Na primer, čvrsta metamorfna stena vođeni i potkovičasti oblik sa dimenzi- koja je blago poremećena ili naborana ima jama koje, prema Pernatu, najbolje udo- ocenu A=22 (iz Tabele 1). Stenska masa voljavaju hidrauličke zahteve i kojih se je umereno sastavljena, sa spojevima koji treba pridržavati. su upravni na osu tunela koji se pruža Propusna moć hidrotehničkog tunela pravcem istok-zapad, i padom između 20˚ može se proračunati po obrascu Forha- i 50˚. jmera:

Sl. 3. Optimalni oblici hidrotehničkih tunela (prema Pernatu)

Ovaj opšti obrazac za propusnu moć liko se poznaju ostale vrednosti u obrascu, hidrotehničkih tunela preradio je Pernat odredi poluširina tunela r, na osnovu koje specijalno za proračunavanje kapaciteta se može, koristeći sliku 3, izvršiti dimen- gravitacionih tunela i ovako prerađen zionisanje željenog profila. obrazac glasi: Q = P · 1/n · r2,7 · I0,5, 4. ZAKLJUČAK gde je: Shodno predhodnim stavovima, donosi P – koeficijenat koji zavisi od vrednosti se zaključak da je za izbor oblika popreč- odnosa t : r (odnos punjenja i po- nog preseka tunela Kriveljske reke pot- luširine tunela) – (slika 3) rebna detaljna analiza, da bi postojanost Ovaj obrazac omogućava da se, uko- ovog hodnika bila optimalna.

Broj 1,2011. 77 RUDARSKI RADOVI

LITERATURA

[1] Projekat 17004 MN [5] M. Ljubojev, Z. Stojanović, D. Mitić, [2] Elaborat o geološkim istraživanjima i D. Ignjatović, Predlog načina izrade fizičko-mehaničkim ispitivanjima stena novog tunela Kriveljske reke, trase tunela za izmeštanje ’’Kriveljske ’’Inovacije i razvoj’’, broj 1, Bor, 2009. reke’’, Institut za rudarstvo i [6] M. Ljubojev, D. Ignjatović, L. Đ. metalurgiju Bor, Bor, 2008. Ignjatović, S. Krstić, Z. Stojanović, [3] Milovan Antunović Kobliška, Opšti Ocena stabilnosti stena trase tunela rudarski radovi, Izdavačko preduzeće Kriveljske reke nastala upoređivanjem ’’Građevinska knjiga’’, Beograd, 1973. klasifikacija čvrstoće stene, ’’Bakar’’, [4] Prof. dr Petar Jovanović, Izrada broj 1, Bor, 2009. podzemnih prostorija velikog profila, [7] S. Čosić, K. Okanović, Modeliranje Izdavačko preduzeće ’’Građevinska naponsko-deformacijskog stanja nume- knjiga’’, Beograd, 1978. ričkim metodama kod širokočelnog otkopavanja, Rudarski radovi, br. 2- 2010, str. 53-72

Broj 1,2011. 78 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK: 551.49:622.26(045)=20

Milenko Ljubojev*, Dragan Ignjatović*, Lidija Đurđevac Ignjatović*

PROPOSAL OF CROSS SECTION FOR THE KRIVELJ RIVER TUNNEL**

Abstract

New Krivelj River tunnel represents the capital object of great ecological importance for Bor and its environment and also for a part of the Black Sea catchment (River Danube). The Krivelj River tunnel will be developed in an environment that is very unfavorable for development and persistence of the room, both during construction and period of usage. Therefore, it is necessary to carry out a detailed investigation of the rock mass condition and based on these data to determine which type of cross section should be taken as the optimum solution. Key words: Krivelj River tunnel, tunnel cross section.

1. INTRODUCTION

Necessity for creation the new Krivelj partly through the rock massif. The new River tunnel was caused by the poor con- tunnel will regulate the flow of the Krivelj dition of the existing Krivelj River collec- River, because the existing flow may be tor. Its development would be partly interrupted by destruction the old Krivelj through the flotation tailing dump, and River collector.

* Mining and Metallurgy Institute Bor ** This paper is produced from the project no. 33021 which is funded by means of the Ministry of Education and Science of the Republic of Serbia

No 1, 2011. 79 MINING ENGINEERING

Figure 1. Satellite image of flotation tailing dumps

Along the tunnel route, the field pros- total length of about 2000 m (Figure pecting drillings will be carried out with 1). Development of the tunnel is the aim of determination the rock material. through the weak rock environment, The following investigation works will with constant water inflow. be done: - II PHASE – will be from the end of - Prospecting drilling with coring, the first phase to the circuit section - Detailed engineering-geological core of the old tunnel. The length of these mapping, shares would be around 500 m, and - Selection of representative samples from K+267 to K+272. Construction of each isolated lithologic unit, of these shares would be through the - Determination of rock mass cracks flotation tailing dump, Field 2, and and dividity of the obtained core partly by the former river bed. (RQD). 3. CROSS-SECTION FORMS OF 2. CONSTRUCTION OF THE NEW HYDROTECHNICAL TUNNEL KRIVELJ RIVER TUNNEL A cross-section form of hydrotechnical The proposed new route for the Krivelj tunnel depends on several factors, among River tunnel would be in a length of about which are: 2530 m. Tunnel would be made from alti- - Static conditions of the tunnel cover, tude K +246 (in contact with the Krivelj - Hydraulic conditions of the tunnel, river out of the tailing dump) to +272 K, and per ascent of 1% (to the circuit with the - Conditions of the tunnel construction old tunnel). Hydrotechnical cover of the tunnel has Construction of the tunnel would be by to be such sized that it has the smallest ascent, and it is going to be divided into volume and, at the same time, the ability two parts: to support internal and external pressures - I PHASE - production would be from without deformations. Beside all this, it its future out, along the Krivelj river, has to be waterproof. with ascent of 1%, to K+267, in the

No 1, 2011. 80 MINING ENGINEERING

Figure 2. Forms of free sections of hydrotechnical tunnel

4. SIZING THE GRAVITATIONAL TUNNEL

According to the hydraulic conditions, It has been emphasized yet that the the form of cross section should provide the best forms of cross-section of the hydro- highest flow in a certain fall and the lowest technical tunnel are the forms that have cross section. High camera form, circular the smallest hydraulic resistance, such as and horse–shoe form are the best forms that circular, high camera and horse–shoe satisfy these conditions (Figure2). form. Taking care of all influential factors, the Values of roughness coefficient η, for choice of form the tunnel cross-section still gravitational tunnels, will be shown in overcomes the hydrotechnical condition Table1. related to the tunnel lining static work. value of 8 MPa and average RQD value of Given the priority that a circular form has, 70%. The slightly rough and slightly weath- the static and hydraulic conditions, the dis- ered joints with a separation of < 1 mm, are advantages related to compensate the advan- spaced at 300 mm. Tunneling conditions are tages of previous two conditions. anticipated to be wet.

Table 1. Value of the roughness coefficient η for gravitational tunnels

Type Value for η Characteristics of lead Note number secondary highest lowest 1 2 3 4 5 6 Gravitational tunnels in the 1) Conditions unmarked rock are given in- a) Gravitational tunnels dividual be- under conditions of me- cause the val- dium-leveled walls with 0.030 0.038 0.038 ues are given persistent removal of rocks only for orien- 1 b) Gravitational tunnels tation

under unfavorable condi- 2)Reduce tions; very uneven surface sediment of the rock, a little more 0.040 0.045 - deposition of outbreak from projected roughness profile coefficients

No 1, 2011. 81 MINING ENGINEERING

Gravitational tunnels in the partially mortared rock a) During gunite or mortar- ing of rock, without making 2 groove in the bottom of the 0.030 0.022 - section b) During groove creating in the bottom of the section 0.023 - 0.019 and partial rendering Gravitational tunnels fitted with the plain concrete 1) Conditions coverings without render- are given in- ing and polishing dividually because the a) Smooth concrete that values are comes with good planning of 0.014 0.015 0.013 given only for shuttering, without the persis- orientation. 3 tent and hole 2) If there is b) Roughness concrete that moss (no bears the traces of self shutter- drift) the ing (recess, trace fiber) due to roughness poor shuttering contact 0.016 0.018 0.015 coefficient boards, and type 3-a when increase for sand and gravel are settling on 0.002 the bottom of the shuttering Gravitational tunnel with the process, plastered or polished concrete surface a) By high quality works from the surface of plas- 4 tered cement mortar and 0.011 - 0.010 polished b) In the good quality work, the surface is well polished and flattened; connectors are polished 0.012 0.013 0.011 Gravitational tunnels with concrete lining area

a) During the careful clean-

ing with steel wire brush and careful polishing 0.013 0.015 0.012 b) During cleaning with 5 steel wire brush and pre- vention for creating 0.018 - 0.016 “edges” between the con- crete and gunite-mortaring

surface 0.019 0.023 - c) Gunite-concrete without any special measures

No 1, 2011. 82 MINING ENGINEERING

According to Pernat, for gravitational all necessary hydraulic requirements, ac- tunnels, it is necessary that the water level cording to Pernat. in the tunnel is a little bit lower than the Gap power of hydrotechnical tunnel tunnel height, considering the formation can be calculated by the Forhaymer form: of waves, and should be within the range Q = 1/n · ω · R0.7 · I0.5, of: where: 1.7 · r ≤ t ≤ 1.85 · r n – roughness coefficient according to where: Gangy - Kutter, (Table 1) r – half of the maximum width ω – area of free cross-section, under (average value) the water, m2, t – height of the tunnel filling. R – hydraulic radius, Figure 3 shows the high arched and I – fall of the tunnel bottom. horse–shoe form with the sizes that fulfill

Figure 3. - Optimum forms of the hydrotechnical tunnel (according to Pernat)

This general form for the transference using Figure 3, the sizing of wanted pro- of hydrotechnical tunnel was revised by file could be done. It is possible only Pernat specifically for calculation the ca- knowing the other values in the form. pacity of the gravitational tunnel: Q = P · 1/n · r2.7 · I0.5, 5. CONCLUSION where: Pursuant to the foregoing paragraphs, P – coefficient, depending on the values it can be concluded that the choice of ross- of t : r (ratio of charge and half width section forms for the Krivelj River tunnel of the tunnel) - (Figure 3) needs more detailed analysis, which will This form allows determining the half result in the optimum existence of this width of the tunnel r, based on which, corridor.

No 1, 2011. 83 MINING ENGINEERING

REFERENCES

[1] Project 17004 Ministry of Science (in [5] M. Ljubojev, Z. Stojanović, D. Mitić, Serbian) D. Ignjatović, Proposal of Construction [2] Project Report on geological Method the New Tunnel of the Krivelj explorations and physical - mechanical River, Innnovations and Development, testing of rocks for the tunnel route of No. 1, Bor, 2009 (in Serbian) relocation of the “Krivelj River“, [6] M. Ljubojev, D. Ignjatović, L. Dj. Mining and Metallurgy Institute Bor, Ignjatović, S. Krstić, Z. Stojanović, Bor, 2008 (in Serbian) Evaluation the Rock Stability of the [3] Milovan Antunović Kobliška, General Tunnel Route of the Krivelj River Mining Works, Publishing Company Obtained by Comparison the ’’Gradjevinska knjiga’’, Belgrade, 1973 Classification of the Rock Strength, (in Serbian) Copper, No. 1, Bor, 2009 (in Serbian) [4] Prof. Ph. D. Petar Jovanović, [7] S. Čosić, K. Okanović, Modeling of Development of the Large Profile stress-deformation state using the Underground Rooms, Publishing numerical nethods in the wide face Company’’Gradjevinska knjiga’’, mining, Mining Engineering, No. 2- Belgrade, 1978 (in Serbian) 2010, pp. 73-92

No 1, 2011. 84 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:622.271:681.51(045)=861

Alen Baraković* Ekrem Bektašević**, Izudin Sjerotanović**

ODREĐIVANJE FAKTORA SIGURNOSTI U STIJENSKOM MATERIJALU NA PRIMJERU BORSKOG LEŽIŠTA NUMERIČKOM METODOM „SWASE“***

Izvod

U ovom radu dat je jedan pristup problemu analize stabilnosti kosina u stijenskom materijalu primjenom metode računarskog modeliranja. Numeričke metode, modeliranje i računar postali su gotovo sinonim odnosno planiranje, izrada, razvoj i korištenje pojedinih objekata (površinski kopovi, kamenolomi, saobraćajnice itd.) mora se “posmatrati pod lupom računara”. Takođe je potrebno istaknuti da primjena računarske tehnike i odgovarajućih softvera u analizi stabilnosti mijenja i ulogu inženjera. Težište inženjerskog rada se premiješta sa dugotrajnog numeričkog rada na korektnu obradu osnovnih podataka, dobijenih geotehničkim istraživanjima terena, s ciljem određivanja mjerodavnih ulaznih podataka za softver. Takođe, potrebno je staviti akcenat na interpretaciju rezultata dobijenih uz pomoć računara i provjeri njihove saglasnosti sa ulaznim podacima. Na osnovu toga jasno je da adekvatno korišćenje računara zahtijeva vrlo složenu inženjersku analizu koja podrazumijeva poznavanje kako geotehničkog aspekta problema tako i potencijala softvera koji se koristi. Kao ishod takve analize postiže se da rezultati imaju jedan novi, viši kvalitet nego što je to ranije bio slučaj. Ključne riječi: stabilnost kosina, stijenski materijal, numeričke metode, proračun

1. UVOD

Svako pomjeranje u padinama i vrlo brzih procesa odronjavanja. Prirodni kosinama podrazumijeva da je došlo do nagibi padina su formirani tokom dugog prekoračenja čvrstoće materijala pod vremenskog perioda i prilagođeni stvarnoj uticajem smičućih napona, a ono se može čvrstoći smicanja stijenske mase. manifestovati na razne načine i u različitom Kod izrađenih objekata kao što su: intenzitetu, od gotovo neprimjetnog etaže na površinskim kopovima, usjeci, puzanja, sporijeg ili bržeg klizanja, pa do nasipi, kanali, propusti, putevi, željezničke

* BBM VAREŠ d.o.o. Vareš, BiH ** GRAMAT d.o.o. Gračanica, BiH *** Ovaj rad je proistekao iz magistarskog rada pod naslovom: „Modeliranje metoda stabilnosti kosina u stijenskom materijalu“, Tuzla 05.12.2003 godine, Rudarsko-geološko-građevinsk fakultet Tuzla

Broj 1,2011. 85 RUDARSKI RADOVI pruge i sl., često se dešava da se obruše Zbog toga je postavka numeričkog dijelovi kosine ili čak cjelokupne kosine. modela veoma kompleksna i to nije zadatak Takođe može doći do potpunog obusta- koji bi se mogao rutinski realizovati. vljanja proizvodnje na površinskim kopo- vima i kamenolomima kao i do obustavljanja 2. ČVRSTOĆA STIJENSKE MASE saobraćaja na saobraćajnicama. Stijenske mase posjeduju svojstvo da se Pri formiranju kosina površinskog kopa odupru dejstvu spoljnih sila. Ako se optere- nastaju deformacije stijenskog masiva oko ćenje postepeno uvećava u jednom trenutku obodnih dijelova kopa, kao posljedica na- dostići će graničnu vrijednost koju stijenska rušavanja prirodne ravnoteže. Zona uticaja masa može da prihvati, pružajući otpor bez rudarskih radova oko obodnih dijelova kopa uvećanih vidljivih deformacija. Smičuća uslovljena je prirodno-geološkim i rudarsko- čvrstoća predstavlja najveći smičući napon tehničkim uslovima eksploatacije. Ponovno koji se može nanijeti strukturi stijene u uravnotežavanje potkopanog stijenskog ma- određenom pravcu. Kada je dostignut na- siva može dovesti do pojave klizišta koje jveći mogući smičući napon, praćen plas- može ugroziti bezbjednost proizvodne meha- tičnim deformacijama, kaže se da je došlo nizacije i stabilnost kosina i etaža na kopu. do loma, pri čemu je mobilisana sva Projektovane kosine moraju zadovoljiti uslov smičuća čvrstoća stijenske mase. Tada stabilnosti koji garantuje sigurno i bezbjedno smičući naponi imaju tendenciju da pom- izvođenje rudarskih radova. U toku procesa jere dio mase u odnosu na ostalu masu sti- eksploatacije ležišta neki parametri (hidro- jene ukoliko je lom lokalizovan samo u geološki uslovi, pojave diskontinuiteta itd.) ravni smicanja tj. gdje se pojavljuje klizna mogu biti izmijenjeni, što može uzrokovati površina. smanjenje faktora sigurnosti na kritičnu vri- U zavisnosti od razmjere posmatranja sti- jednost (F≤1) i stvoriti uslove za pojavu jensku masu možemo tretirati kao: mono- klizišta. litnu, sa jednom familijom pukotina, sa dvije U procesu računarskog modeliranja familije pukotina, sa nekoliko familija pukot- stijena, javljaju se problemi vezani za ina i kao jako izlomljenu. Svi ovi tipski složenost stijenske mase (nehomogenost, modeli stijenskih masa u pogledu čvrstoće anizotropija, diskontinuiranost itd.). bitno se međusobno razlikuju.

Sl. 1. Uprošćeni prikaz uticaja razmjere pri izboru modela stijene

Broj 1,2011. 86 RUDARSKI RADOVI

U praksi često nailazimo na stijenske τf = c + σn tanϕ (2.) mase sa jasno izraženom jednom famili- Ovaj izraz se često naziva i Mohr – jom pukotina (škriljavosti, slojevitosti, Coulomb-ov zakon loma jer Mohr-ova klivaža). Za takav slučaj E. Hoek predlaže hipoteza podrazumijeva da smičuća izraz za određivanje čvrstoće na smicanje čvrstoća zavisi od normalnog napona, što u obliku: se u opštem obliku piše kao τf = f (σn), a Coulomb-ov zakon jednostavno kaže da je 2(c'i +σ '3⋅ tgϕ'i ) σ '1 = σ '3+ (1) f ( ), linearna funkcija normalnog napona, ()1− tgϕ' ⋅ tgβ sin 2β σn i dovoljno tačan opis veličina napona pri gdje je: lomu. Priroda ove aproksimacije, u odnosu c’i – prividna kohezija, na realnost, je prikazana na slici 2. Smičuća ϕ’i – prividni ugao trenja duž pukotina, čvrstoća se od kasnih dvadesetih godina β - nagib površine pukotine prema ovog vijeka opisuje empirijskim linearnim većem glavnom naponu, zakonom u funkciji efektivnih napona σ’1 – maksimalni efektivni glavni izrazom: napon pri lomu, τf = c` + (σn – u) tan ϕ` = σ’ – minimalni efektivni glavni napon 3 = c` + σn` tan ϕ` (3.) pri lomu. gdje se za parametre obično koriste 2.1. COULOMB – MOHR-ov sljedeći nazivi: (linearan) Zakon loma c` - kohezija za efektivne napone ili prividna kohezija, Prvi upotrebljiv zakon loma pripisuje se Coulomb-u, 1776 godine, koji definiše ϕ` - ugao trenja za efektivne napone ili smičuću čvrstoću i dat je izrazom: ugao smičuće otpornosti.

Sl. 2. Zavisnost smičuće čvrstoće od normalnog napona

Smičuća čvrstoća stijenskog materijala (σ1′ − σ3′ ) f se može takođe izraziti i preko glavnih τ = sin 2θ (4.) f 2 efektivnih napona σ1` i σ3` pri lomu u posmatranoj tački. Prava linija opisana (σ1′ +σ 3′ ) f (σ1′ −σ 3′ ) f σ ′ = + cos2θ (5.) gornjom jednačinom će tangirati Mohr- f 2 2 ove krugove efektivnih napona, kao što je gdje je θ teorijski ugao između ravni u prikazano na slici 3. kojoj djeluje maksimalni glavni napon i Koordinate tangentne tačke F (τf, σf`) ravni loma. su:

Broj 1,2011. 87 RUDARSKI RADOVI

Sl. 3. Mohr-ov dijagram napona loma

S obzirom na simetričnost Mohr-ovog (σ1′ −σ 3′ ) f dijagrama u odnosu na osu normalnih 2 napona, postoje dvije takve ravni koje sinϕ′ = (7) (σ1′ +σ 3′ ) f zaklapaju jednake uglove u odnosu na c′cosϕ′ + pravac najvećeg glavnog napona. Veličina 2 ugla se može odrediti iz geometrijskih tako da je razlika glavnih napona pri odnosa i uslova da zbir unutrašnjih uglova lomu: trougla ABF iznosi 180o. Ugao u tjemenu σ ' −σ ' f = σ ' +σ ' f sinϕ'+2c'cosϕ' (8) A ima veličinu ϕ`, u tjemenu B ugao je ( 1 3 ) ( 1 3 ) 180o - 2θ, a u tjemenu F ugao je 90o. Iz o o o 2.2. Analiza stabilnosti kosina u uslova da je ϕ` + 90 + (180 - 2θ) = 180 stijenskom materijalu metodom proizilazi da je: blokova θ = ± (45o + ϕ`/2) (6) Postoji više metoda proračuna stabil- Sa slike 3. može se dobiti veza između nosti kosina, a jedna od njih je metoda efektivnih glavnih napona i parametara čvrstoće: blokova koja je analizirana u ovom radu.

Sl. 4. Grafički prikaz metode blokova

Broj 1,2011. 88 RUDARSKI RADOVI

Sile za svaki blok, skom materijalu kao i u tlu može se anal- izirati i uticaj seizmičkih efekata bilo od Ni = {w1[cosφd − ru cosθi cos()φd −θi − zemljotresa ili uticaj miniranja. − Cs sinφ d ]+ cili []sin()φd −θi / Fs} / (9) / {}cos()φd −θi − []tgφi sin ()φd −θi / Fs 3. PRIMJER PRORAČUNA I ANALIZA METODOM “SWASE” P = (N sinθ −T cosθ + i i i i i (10) (METODA BLOKOVA) +r W cosθ +sinθ +C W ) / cosφ u i i i S d Za proračun i analizu stabilnosti kosine Faktor sigurnosti se određuje na os- u stijenskom materijalu upotrijebljen je novu rješavanja sistema nelinearnih jed- karakterističan poprečni profil (profil 2) načina, a broj tih jednačina je zavisan od koji prolazi kroz površinski kop “Bor”, a broja blokova sa kojim modeliramo klizno svi potrebni ulazni podaci (inženjersko- tijelo. Svaki blok sastoji se od dvije jed- geološke i fizičko-mehaničke karakteristike načine (Pi i Ni). Tako da se faktor sigur- stijenskog materijala) uvršteni su u pro- nosti metodom blokova može prikazati gramske pakete koji su specijalno modifik- slijedećom jednačinom: ovani za kvalitetno izvođenje navedene analize. Prilikom proračuna i analize N tgφ + N tgφ Fs = 1 1 2 2 = korišten je karakterističan profil koji W sin ß (11.) obuhvata tri vrste materijala odnosno tri litološka člana i to: sinθ2 tgφ1 +sinθ1 tgφ2 = - materijal 1 – silifikacija i ruda, sin ()θ1 +θ2 tg ß - materijal 2 – kaolinisani andezit, Zavisno od zahtjeva projektanta i - materijal 3 – piroklastiti. odgovarajućih propisa za kosine u stijen

Tabela 1. Prikaz parametara materijala korištenih u proračunu Vrsta stijene ϕo γ (kN/m3) c (kN/m2) Kaolinisani andezit 42,0 26,5 251,00 Hloritisani andezit i piroklastiti 42,4 26,5 300,00 Svjež andezit i konglomerati 43,3 26,5 350,00 Silifikacija i ruda 44,0 27,8 418,00

Proračun je izvršen sa programskim unosa podataka preko koordinata kako paketom “SWASE”. Za razliku od izvornog terena tako i pretpostavljnih kliznih ravni. koda datog u literaturi proračun je izvršen sa Takođe i izlazna lista se sastoji od modifikovanim programom, a modifikacije tekstualnog dijela, rezultata proračuna i su učinjene u cilju povećanja kvaliteta, grafičkog prikaza što omogućava daleko tačnosti, olakšanja kod unosa podataka kao i veći broj razmatranih varijanti u veoma poboljšanja grafičkog prikaza rezultata kratkom vremenu. Ako bi se izvršilo proračuna. Prvobitna šema toka programa poboljšanje programa uvođenjem sastojala se od unosa podataka od kojih se upravljanja “mišem” omogućio bi se većina unosi manuelno. Modifikovana daleko brži i lakši rad u analizi stabilnosti verzija programa koja je korištena u ovom kosina. Na slijedećoj slici prikazan je tok radu je sa mnogo jednostavnijim načinom proračuna metodom „SWASE“.

Broj 1,2011. 89 RUDARSKI RADOVI

Sl 5. Šema toka proračuna

Na slici 6., 7., i 8. prikazani su različite potencijalne klizne ravni. rezultati koji su dobijeni proračunom za tri

Sl. 6. Prikaz klizne ravni 1

Broj 1,2011. 90 RUDARSKI RADOVI

Sl. 7. Prikaz klizne ravni 2

Sl. 8. Prikaz klizne ravni 3

Izlazna lista proračuna: SET DSBM DSTP DSME LNS2 LNS RU SEIC GAMMA ANOUT 1 000 1.235 0.515 91.082 148.223 0.100 0.000 27.800 0.831 BW F 257.000 1.937

SET DSBM DSTP DSME LNS2 LNS RU SEIC GAMMA ANOUT 2 0.305 1.603 0.727 31.016 48.166 0.100 0.000 27.800 0.831 BW F 257.000 2.933

SET DSBM DSTP DSME LNS2 LNS RU SEIC GAMMA ANOUT 3 0.283 0.835 0.464 43.186 55.902 0.100 0.000 27.800 0.831 BW F 257.000 3.066

Broj 1,2011. 91 RUDARSKI RADOVI

4. ANALIZA REZULTATA PRORAČUNA U radu je korišten klasični metod od- podrazumijeva da su parametri miniranja nosno metoda blokova – "Swase", koja je prilagođeni vrsti stijenskog masiva i da su uzela u obzir fizičko mehaničke osobine završne kosine pravilno urađene. Sa ovim materijala, i to parametre smicanja, a koji programskim paketom prilikom analize su dobijeni laboratorijskim putem i re- stabilnosti kosina mogu se uzeti u obzir i dukovani na bazi klasifikacije stijenske uticaji seizmičkog efekta na stabilnost mase prema geomehaničkom sistemu. kosina a koji se javljaju prilikom izvođenja Proračun i analiza je vršena po blokovima. radova masovnog miniranja stijenskog Blokovi su modelirani na bazi inženjer- materijala kao i seizmički efekti koji nastaju sko-geoloških podataka a na osnovu rezul- kao posljedica zemljotresa. tata proračuna uočljivo je da se faktori sigurnosti kreću u granicama koje omogu- LITERATURA: ćavaju nesmetan rad na površinskom [1] S. Vujić; M. Berković; D. Kuzmanović; kopu. Proračun je rađen za projektovano P. Milanović; A. Sedmak; M. Mičić, stanje odnosno za ugao završne kosine 0 Primena MKE kod geostatičkih 53 . proračuna u rudarstvu, Univerzitet u Beogradu, 1990. 5. ZAKLJUČNA RAZMATRANJA [2] Yang H. Huang, Stability analysis of Projektovane nagibe radnih i završnih earth slopes, University of Kentucky, kosina treba posmatrati kao promjenljive 1983. parametre koji se kreću između dvije kra- [3] Undeground Excavations in Rock, jnosti – ono što je sigurno nije ekonomično i Hoek & E.T.Brown, Institution of obratno. Ovi se parametri u toku ek- Mining and Metallurgy, London, 1980 sploatacije prilagođavaju stvarnom stanju uslova stijenskog masiva. Ovakav pristup [4] R. Milanović, Stabilnost kosina zahtijeva da se u toku eksploatacije raspo- površinskih kopova u stenskim laže sa dovoljno kvantitativnih podataka, masivima, Institut za bakar Bor kako o stijenskom masivu, tako i o posl- [5] Slope Analysis, R.N.Chowdhury, jedicama pojedinih zahvata na kopu, u po- Developments in Geotechnical gledu stabilnosti. Pri ovome se engineering, vol 22, 1978.

Broj 1,2011. 92 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK: 622.271:681.51(045)=20

Alen Baraković*, Ekrem Bektašević**, Izudin Sjerotanović**

DETERMINATION OF SAFETY FACTOR IN THE ROCK MATERIALS ON EXAMPLE OF THE BOR DEPOSIT USING THE “SWASE” NUMERIC METHOD***

Abstract

In this paper, an approach is given for analysis the slope stability in rock materials using the computer modeling method. Numeric methods, modeling and computer became almost synonym, more exactly planning, preparation, development and use of certain structures (surface mines, quarries, roads, etc.) should be “observed under the magnification of computer”. Also, it is neces- sary to emphasize that the use of computerized technique and suitable software in stability analy- sis also changes the role of engineers. The center of engineering work is transferred from a long numeric work to correct the basic data processing, provided by geotechnical researches on the field, , with the aim of determination of proper entry data for software. Also, it is necessary to emphasize the role of interpretation the results obtained by computer and check up of their ad- justment with entry data. Based on this, it is clear that the computer use requires very complex engineering analysis that implies understanding the geotechnical aspects of problems and poten- tial of software that is used. As the result of such analysis, it is achieved that the results have a new higher quality in comparison to the previous procedures. Key words: slope stability, rock materials, numeric methods, calculation

1. INTRODUCTION

Every movement in the slopes and in- are formed during very long period of clinations implies that material strength time and adjusted to the realistic shear was overloaded under the influence of strength of rock masses. shear tensions, and that can be manifested At the constructed structures as the in different ways and different intensity, benches at the open pits, cuts and notches, from almost invisible creeping, slower or embankments, canals, culverts, roads, faster sliding, to very fast processes of railway tracks, and other, it often happens rock falling. Natural inclinations of slopes that the parts of slopes or even whole

* BBM VAREŠ d.o.o. Vareš, BiH ** GRAMAT d.o.o. Gračanica, BiH *** This paper is the result of Masters paper under title “Modeling of Slope Stability in Rock materials”, Tuzla 05 December 2003, Mining-Geology-Civil Engineering Faculty Tuzla

No 1, 2011. 93 MINING ENGINEERING slopes collapse. Also, production at the Due to this, the placement of numeric open pits and quarries can be completely model is very complex and that is not a stopped as well as the traffic can be task that could be realized as a routine. stopped on the roads. During formation of slopes at the open 2. STRENGTH OF THE ROCK MASS pit, deformations of rock massif are created Rock masses have a characteristic to re- around parts of excavations as the result of sist the influence of external forces. If the disturbance of natural balance. Zone of load is gradually increased, at one point of influence the mining works around edge time it will reach the limit value that rock parts of the open pit is conditioned by the masses is able to accept, giving the resis- natural-geological and mining-technical tance without increased visible deforma- conditions of exploitation. Newly created tions. Shear strength presents the highest balance of mined rock masses can result in shear tension that can be implied to the the landslide occurrence which can endan- rock structure in certain direction. When ger the safety of production mechanization the highest shear tension is reached, which and stability of slopes and benches at the is followed with plastic deformations, it can open pit. Designed slopes have to satisfy be said that the break has occurred, at what the stability conditions that guarantee se- point all shear strength of rock mass was cure and safe performance of mining opera- mobilized. Than shear tensions have ten- tions. During the exploitation process of dency to move a part of the mass in relation deposit, some of the parameters (hydro- to the other mass of the rock if break is geological conditions, occurrence of dis- localized only in the plane of shear, more continuities, etc.) can be changed, what can exactly, where sliding plane occurs. result in reduction of safety factor to the In relation to the scope of review, the critical value (F≤1) and create conditions rock mass can be treated as: monolithic, for landslide occurrence. with one family of cracks, two families of In the process of computer modeling cracks, several families of cracks and very the rocks, the problems, related to com- cracked. All those typical models of rock plexity of rock masses, occur (inhomoge- masses, in the aspect of strength, are dif- neity, anisotropy, discontinuity, etc.). ferent from each other.

Figure 1. Simplified presentation of ration impact in the selection of rock models

No 1, 2011. 94 MINING ENGINEERING

In practice, the rock masses are often τ = c + σ tanϕ (2.) found with clearly expressed one family f n of cracks (schistosity, stratification, cleav- This expression is often called the age). For that case E. Hoek proposes ex- Mohr – Coulomb law of break because the pression for determination of strength to Mohr hypothesis implies that shear shear in the expression: strength depends on normal tension, what in general case is written as τ f (σ ), and 2(c' +σ ' ⋅ tgϕ' ) f = n σ ' = σ ' + i 3 i (1) the Coulomb law simply indicates that f 1 3 ()1− tgϕ' ⋅ tgβ sin 2β i (σn) is, linear function of normal tension, where: sufficiently correct description of tensions c' – imaginary cohesion, at the occurrence of break. Nature of this i approximate, in relation to reality, is pre- ' ϕi – imaginary angle of friction along sent in Figure 2. Shear strength is de- the cracks, scribed empirically, since the twenties of β - inclination of crack surface towards last century, by the linear law in a function higher main tension, of effective tension by the expression: ' σ1 – maximum effective principal τf = c` + (σn – u) tan ϕ` = tension at break, = c` + σn` tan ϕ` (3.) ' σ 3 – minimum effective principal Where the following terms are usually tension at break. used for parameters: c` - cohesion for effective tensions or 2.1. THE COULOMB – MOHR imaginary cohesion, (linear) LAW OF BREAK ϕ` - angle of friction for effective tensions The first useable law of break is im- or angle of shear resistance. plied to Coulomb, in 1776, which defines the strength to shear and is given by the expression:

Figure 2. Dependence of shear strength on normal tension

Shear strength of rock material can Coordinates of tangent point F (τf, σf`) also be expressed through main effective are: tensions σ ` and σ ` that occur at break in 1 3 (σ1′ − σ3′ ) f the observed point. Straight line that is τ f = sin 2θ (4.) described in above formula will be a tan- 2 gent on the Mohr circles of effective ten- (σ1′ +σ 3′ ) f (σ1′ −σ 3′ ) f σ ′ = + cos2θ (5.) sions as it is present in Figure 3. f 2 2

No 1, 2011. 95 MINING ENGINEERING

Where θ is a theoretical angle between tension acts as well as the planes of break. planes in which the maximum principle

Figure 3. The Mohr diagram of break tension

Regarding the symmetry of the Mohr (σ1′ −σ 3′ ) f diagram in relation to the axe of normal 2 tensions, there are two such planes that sinϕ′ = (7) (σ1′ +σ 3′ ) f close same angles in relation to a direction c′cosϕ′ + of the highest principle tension. Size of 2 angle can be defined from geometric rela- so the difference of principle tensions at tions and condition that the sum of inner break is: angles of triangle ABF is 180o. Angle in ' ' ' ' (σ1 −σ3 )f = (σ1 +σ3 )f sinϕ'+2c'cosϕ' (8) point A has a value ϕ`, at point B angle is 180o - 2θ, and point F angle is 90o. From 2.2. Analysis of slope stability in the the condition that ϕ` + 90o + (180o - 2θ) = rock material using the method of 180o it results that: blocks o θ = ± (45 + ϕ`/2) (6) There are several methods of slope It can be concluded from Figure 3 that stability calculation in this paper and one the relation between principle effective of them is a method of blocks that is ana- tensions and strength parameters: lyzed in this paper.

Figure 4. Graphic presentation the method of blocks

No 1, 2011. 96 MINING ENGINEERING

Forces for each block, in the rock material as well as in the soil, the seismic effects of earthquake or blast- Ni = {w1[cosφd − ru cosθi cos()φd −θi − ing influence can be analyzed. − Cs sinφ d ]+ cili []sin()φd −θi / Fs} / (9) / {}cos()φd −θi − []tgφi sin ()φd −θi / Fs 3. AN EXAMPLE OF CALCULATION AND ANALAYSIS USING THE P = (N sinθ −T cosθ + i i i i i (10) “SWASE” METHOD +ru Wi cosθi +sinθi +CSW ) / cosφd (METHOD OF BLOCKS) Safety factor is determined based on For calculation and analysis the slope solving the system of nonlinear equations stability in rock materials, a characteristic and number of such equations depends on cross section (profile 2) is use, which number of blocks by which the sliding crosses the open ppit “Bor”, and all re- body was modeled. Each block is com- quired entering data (engineering geologi- posed of two equations (Pi and Ni). Such cal and physical-mechanical characteris- as the safety factor of block method can tics of rock materials) are taken into the be present by the following equation: program packages that are specifically modified for carrying out the given analy- N tgφ + N tgφ Fs = 1 1 2 2 = sis. In calculation and analysis, a charac- W sin ß (11.) teristic profile is used that takes three sinθ tgφ +sinθ tgφ types of materials, i.e. three lithological = 2 1 1 2 sin()θ +θ tg ß members, as follows: 1 2 material 1 – Silification and mineral, Depending on the requests of design- material 2 – Andesite kaolinized, ers and appropriate regulations for slopes material 3 – Pyroclastite.

Table 1. Review of parameters used in calculation Type of rock ϕo γ (kN/m3) c (kN/m2) Andesite kaolinized 42.0 26.5 251.00 Chloritinized andezite and pyroclastite 42.4 26.5 300.00 Fresh andesite and conglomerates 43.3 26.5 350.00 Silification and mineral 44.0 27.8 418,00

Calculation was done using the soft- easier way of data entry using coordinates ware package “SWASE”. As a difference both of the field and assumed sliding from the source code given in literature, planes. the calculation was done using the modi- Also, the output list is composed of fied software and modifications were done textual part, calculation results and to the aim of increase the quality, accu- graphic presentation what provides greater racy and easier way of data entry as well number of reviewed options in a very as the improvement of graphic presenta- short period of time. If the program im- tion of calculation results. The original provement will be done by introduction of scheme of program flow was composed of “mouse”, that would provide much faster data entries that were mostly entered and easier work in analysis of slope stabil- manually. The modified version of pro- ity. Following Figure presents a flow of gram, used in this paper, is with much calculation using the “SWASE“ method.

No 1, 2011. 97 MINING ENGINEERING

Figure 5. Scheme of calculation flow

Figures 6,7 and 8 presents the results sliding planes. provided by calculation of three different

Figure 6. Presentation of sliding plane 1

No 1, 2011. 98 MINING ENGINEERING

Figure 7. Presentation of sliding plane 2

Figure 8. Presentation of sliding plane 3 Output list of calculation:

SET DSBM DSTP DSME LNS2 LNS RU SEIC GAMMA ANOUT 1 000 1.235 0.515 91.082 148.223 0.100 0.000 27.800 0.831 BW F 257.000 1.937

SET DSBM DSTP DSME LNS2 LNS RU SEIC GAMMA ANOUT 2 0.305 1.603 0.727 31.016 48.166 0.100 0.000 27.800 0.831 BW F 257.000 2.933

SET DSBM DSTP DSME LNS2 LNS RU SEIC GAMMA ANOUT 3 0.283 0.835 0.464 43.186 55.902 0.100 0.000 27.800 0.831 BW F 257.000 3.066

No 1, 2011. 99 MINING ENGINEERING

4. ANALYSIS THE CALCULATION RESULTS In this paper, the classic method was blasting are adjusted to the type of rock used, in other words the method of blocks – masses and that final slopes are properly "Swase", that has taken into consideration constructed. Using this software at stability the physical-mechanical properties of mate- analysis of slopes, there could also be con- rial, that is parameters of shear, provided sidered influences of seismic effects on in laboratory and reduced based on classifi- stability of slopes that occur during opera- cation of rock masses in accordance with tions of massive blasting of rock materials the geomechanical system. Calculation and as well as seismic effects that occur as the analysis were done for each block. Blocks result of earthquakes. were modeled base on the engineering geo- logical data and, based on the calculation REFERENCES results, it is obvious that safety factors are in the range that provides undisturbed work [1] S. Vujić; M. Berković; D. Kuzmanović; at the open pit. Calculation was done for P. Milanović; A. Sedmak; M. Mičić, designed condition, more exactly for the Use of MKE for Geostatic Calculations final slope angle of 530. in Mining, University of Belgrade, 1990 (in Serbian) 5. CONCLUDING DISCUSSIONS [2] Yang H. Huang, Stability analysis of earth slopes, University of Kentucky, Designed inclination of working and fi- 1983. nal slopes should be reviewed as variable [3] Undeground Excavations in Rock, parameters that are in the range of two ex- Hoek & E.T.Brown, Institution of tremes – something that is safe is not eco- Mining and Metallurgy, London, 1980 nomical and vice versa. Those parameters are adjusted during exploitation to the real [4] R. Milanović, Stability of Slopes of the condition of rock massif. Such approach Surface Mines in the Rock Masses, requires that during exploitation, there is Copper Institute Bor (in Serbian) sufficient quantity of quantitative data both [5] Slope Analysis, R.N.Chowdhury, on a rock massif and the results of certain Developments in Geotechnical operations at the open pit, in respect of Engineering, Vol. 22, 1978. stability. This means that parameters of

No 1, 2011. 100 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK: 622.83(045)=861

Milenko Ljubojev*, Ratomir Popović*, Dragoslav Rakić**

RAZVOJ DINAMIČKIH POJAVA U STENSKOJ MASI***

Izvod

U radu je analiziran energetski bilans ugljenih naslaga, koji se sastoji od energije zarobljenog gasa u sloju, energije zarobljene u obrušenom materijalu i dela energije ostale u stenskoj masi. Ključne reči: energija gasa, energija u materijalu, energija u steni, energija rušenja stene, prirast kinetičke energije

UVOD

Dinamičke pojave predstavljaju trenutno i šupljinama stenske mase. Ovde se mora oslobađanje akumulirane mehaničke ener- naglasiti, da sve stene na određenoj dubini gije. Kod svih dinamičkih pojava, pome- poseduju znatnu energiju. Gorski udari se ranje stenske mase je brzinom do desetine javljaju samo u nekim stenama i pri speci- metara u sekundi. Ako su takvim pome- fičnim uslovima. Istraživanje tih uslova ranjima zahvaćeni veliki prostori stenskih omogućuje rudarskim inženjerima da masa, posledice takvog stanja mogu biti opasne i katastrofične situacije prevedu u katastrofalne. neopasne uslove, tj. primenom odgovaraju- Povezujući pomeranje stenske mase ćih metoda prognoze. reda desetine metara u sekundi sa zakonom U procesu dinamičkih pojava, energija o održanju energije, tako da pri γ = 20,0 raznih delova stenskog masiva menja se i [kN/m3] akumulirana energija iznosi oko međusobno se preraspoređuje. Ta izmena 105 [J/m3]. Iz navedenog proizilazi opšti energije se ne odvija proizvoljno i u stav, da kod svih dinamičkih pojava potpunosti je u saglasju sa zakonom o oslobađa se velika mehanička energija po održanju energije, tako da je suma promena jedinici zapremine. Ukupna energija se jednaka nuli. Pratiti u detalje put tih sastoji od energije elastičnih deformacija i promena je veoma otežano. Sa praktične energija pritiska gasa zarobljenog u porama (pragmatične) tačke gledišta, preobražaj

* Institut za rudarstvo i metalurgiju Bor ** Rudarski geološki fakultet Beograd *** Ovaj rad je proistekao iz Projekta br. 33021 i 36014 koji je finansiran sredstvima Ministar- stva za prosvetu i nauku Republike Srbije

Broj 1,2011. 101 RUDARSKI RADOVI energije u detalje nije nužan. Pri ovim Pri politropnom sa pokazateljem pojavama sasvim dovoljno je izučiti politropije χn , a pri širenju gasa V0 od integralne karakteristike prelaza od po- pritiska P do P0, izdvaja se sledeća četnog stanja ka stanju posle burnog energija rušenja. Pri tome je neophodno izjednačiti 1 stanje sistema do i posle gubitka stabilnosti. ⎡ 1− ⎤ PaVo ⎢ ⎛ Pa ⎞ χ ⎥ Takvo integralno upoređivanje omogućuje Wgo = 1− ⎜ ⎟ n (2) χ −1 ⎢ P ⎥ izučavanje energetskog bilansa. n ⎢ ⎝ ⎠ ⎥ Iz njega proizilazi ocena kinetičke ene*- ⎣ ⎦ rgije, neophodne za preduzimanje odgova- Pri adijabatskom procesu χn jednak rajućih mera po upozorenju, ogra-ničavajući je adijabati χ ; χ za metan iznosi 1,31. jačinu, a po mogućnosti i potpu-nom g g isključenju posledica od dinamičkih pojava. Pri izotermičkom širenju pri χn = 1 1. ENERGETSKI BILANS sledi: P Izdvojena energija se sastoji iz dela W = P V ⋅ ln go a o P energije širenja gasa Wg; dela zarobljene a energije u obrušenom materijalu W i dela M Razmatrajući vrednost energije W ' energije smeštene u steni −Δ ∋ . Navedeni f bilans energije se troši na: energiju rušenja slobodnog gasa Vf koji se sadrži u jedinici stene WR; prirast kinetičke energije zapremine materije, preračun na normalne delovima obrušenog materijala ΔK, uslove provodi se na sledeći način: gubitak dela energije koju apsorbuju Vn PaT bokovi stene u neposrednoj blizini = (3) V f PTa dinamičke pojave WB i mali deo energije, do 10[%], troši se na oblikovanje gde je: seizmičkih talasa WC, ostatak energije se - Vn, zapremina šupljine (pore). troši na obrazovanje udarnih vazdušnih Uzimajući u obzir izraz (2) sledi: talasa WV. Napred rečeno može se 1 predstaviti sledećom jednačinom: ⎡ 1− ⎤ PaW f ⎢ ⎛ V T ⎞ χ ⎥ W +W +()−Δ∋ =W +ΔK+W +W +W (1) W ' = 1− ⎜ n ⋅ a ⎟ n (4) g M R B C V f ⎢ ⎜ ⎟ ⎥ χn −1 ⎢ ⎝V f f ⎠ ⎥ Levi deo izraza (1) predstavlja izdvojenu ⎣⎢ ⎦⎥ energiju, a desni njenu apsorbciju. Umesto Vf u (4) moguće je uvrstiti 1.1. Energija gasa Wg razliku sadržaja gasa u jedinici zapremine Bilans te sumarne energije, neophodno materije Vg i zapremine apsorbovanog je uzeti u obzir pri pojavi gasno- gasa Vs, tj. Vg-Vs. Koristeći izraz (3) može dinamičkih izboja. U procesu izboja rad se napisati: 1 može izvršiti samo slobodni gas. Imajući ⎡ 1− ⎤ to u vidu i pri proračunu gasne energije ' PVn Ta ⎢ ⎛ Pa ⎞ χ ⎥ W f = ⋅ 1− ⎜ ⎟ n (5) W neophodno je saznanje o slobodnom χ −1 T ⎢ P ⎥ g n ⎢ ⎝ ⎠ ⎥ gasu Vf u jedinici zapremine stene, i ⎣ ⎦ srazmerno dopunskoj količini gasa, koja je Pri adijabatskom procesu: izdvojena, a zatim se širi pri desorbciji ⎡ 1 ⎤ izazvanu padom pritiska. Važno je P ⎛ Pa b ⎞ P 1− ' a s s ⎢ ⎛ a ⎞ χn ⎥ (6) W f = ⎜Vg − ⎟⎢1− ⎜ ⎟ ⎥ naglasiti da u stenama sa malom χn −1⎝ 1+ bsP ⎠ ⎝ P ⎠ sorbcionom sposobnošću, poslednji efekat ⎣⎢ ⎦⎥ se može zanemariti.

Broj 1,2011. 102 RUDARSKI RADOVI

- as i bs , konstante sorbcije, ' Ws određuju se eksperimentalno za ≈ Pa ⋅ P ⋅bs k ⋅ a svaki materijal, d s 3 3 3 3 as ≈ 25 − 70 []m / m za ugljeve, tu pri Pbs =1, kd = 0, as = 40 []m / m , vrednost Vs praktično dostiže pri 5 do 10 Pa = 0,1[MPa] , tada je minimalna izdvoje- [MPa]. Veličina bs za različite ugljeve se ' 6 3 na energija gasa Ws = 0,4⋅10 [J / m ]. menja od 0,2 do 3,0 MPa-1. Opšta energija gasa je: Pri izotermičkom širenju sledi: ' ' Wg = (W f +Ws )⋅Vp (9) ' ⎛ Pasbs ⎞ P W f = Pa ⎜Vg − ⎟ ln ⎜ 1+ b P ⎟ P ' ' ⎝ s ⎠ a - W f i Ws , određuju izrazi (6) i (8) Iz navedenih izraza očigledno je da pri - Vp , zapremina izbačenog obrušenog Vg < as i pri velikim pritiscima moguće je materijala. da deo u maloj zagradi teži nuli, tada se ' 1.2. Energija elastičnih deformacija istovremeno menja i energija W f Navedene obrušenog materijala WM jednačine ograničene su poroznošću materijala m. Tada minimalnu energiju W Energija elastičnih deformacija jedinice f zapremine materije pri malim određuje sledeći izraz: deformacijama izražava se na sledeći način: ⎡ 1 ⎤ −e Pm T P 1− ij1 ' a ⎢ ⎛ a ⎞ χn ⎥ (7) Ee = σij1 ⋅ dεeij1 (10) W f = ⋅ ⎢1− ⎜ ⎟ ⎥ ∫0 χn −1 T ⎝ P ⎠ ⎣⎢ ⎦⎥ gde je: Pri pritisku P = 2 [MPa] i poroznosti - σij1 , tenzor napona, m = 0,08, izdvojena minimalna energija - ε , povratna (elastična) tenzorska za metan iznosi: eij1 deformacija. ' 6 3 W f = 0,26 ⋅10 [J / m ] Izraz (10) pretpostavlja nelinearnu a pri P = 5 [MPa] i m = 0,08, minimalna zavisnost između napona i elastične ' 6 3 deformacije. energija je: W f = 0,78⋅10 [J / m ]. U slučaju linearne veze između σij1 i Za nesorbirajuće stene as = 0 i εeij1, tada je: Vn = m izraz (5) poprima oblik izraza (7). 1 Pri adijabatskom procesu i padu Ee = σij1 ⋅εeij1 2 pritiska od P do Pa sledi: Za izotropni materijal, zavisnost ⎡ 1 ⎤ P 1− d ' Pa ⋅ asbs ⎢ ⎛ Pa ⎞ χn ⎥ p (8) elastičnih deformacija od napona u Ws = ∫ kd ⎢1 − ⎜ ⎟ ⎥ χ n − 1 ⎝ P ⎠ ()1 + bs PT koordinatnom sistemu XOYZ je: Pa ⎣⎢ ⎦⎥ 1 ' εex = [σ x −ν (σ y + σ z )] Veličina Ws teži nuli pri bs = 0 i 1 E 1 1 1 bs = ∞ , tj. kako pri usporenom, tako i pri 1+ν εexy = σ xy vrlo brzom dostizanju granične sorbcije s 1 E 1 porastom pritiska gasa. Izraz (10), tj. energija jedinice zapremine Iz izraza (8) proizilazi: materije se može napisati u sledećem obliku:

Broj 1,2011. 103 RUDARSKI RADOVI

1 2 2 2 Za uslove ravnijske deformacije Ee = [σ +σ +σ − 2ν ⋅ 2E x1 y1 z1 raspodela napona do tačke maksimuma oslonačkog pritiska pri ξ ≤ a , ⋅()σ σ +σ σ +σ σ + (11) x1 y1 x1 z1 y1 z1 - a, rastojanje od čela radilišta do 2 2 2 maksimuma oslonačkog pritiska. + 2()1+ν ()σ xy +σ xz +σ yz ] 1 1 1 Energija elastične deformacije W - ν, koeficijent Poisson-a, M1 - E, modul elastičnosti obrušenog za površ širine 1 [m] određuje se sledećim materijala izrazom: Energija elastične deformacije W je: 1 M W = σ 2 ξ ⋅ h ⋅ M1 kub. WM = εe ⋅ dV , i sa uzimanjem u E ∫VM ⎡23 1 ξ ⎛ 3 ξ ⎞⎤ obzir izraza (10) dobije se: ⋅ − ν + ()1 − 2ν ⎜ + ⎟ (14) ⎢12 3 h 2 h ⎥ ε ⎣ ⎝ ⎠⎦ W = ⎛ ij1σ ⋅ dε ⎞⋅ dV M ∫∫V ⎜ 0 ij1 eij1 ⎟ M ⎝ ⎠ pri σ kub. = 7,5 []MPa ; ξ =1,0 []m ; Ako zapremina VM predstavlja deo 2h = 2,0 [m], ν = 0,4 ; E =103[]MPa , sloja s moćnošću 2h i sa površinom SM dobije se: tada je: J ⎛ h ⎞ W =114.000 ⎡ ⎤ WM = ⎜ Ee ⋅ dy⎟ ⋅ ds (12) M1 ⎢ ⎥ ∫∫SM ⎝ −h ⎠ ⎣m ⎦ Razmatrajući slučaj, kada se normalni U većim slučajevima pri određivanju naponi σ ,σ i σ malo menjaju duž energije u materijalu do rušenja x1 y1 z1 predstavlja imperativ izračunavanja njene moćnosti sloja, a smičući naponi σ xy1 zapremine koja je podvrgnuta intenzivnim ⎛ τ y ⎞ nepovratnim deformacijama, tj. deo sloja menja se linearno po y⎜σ xy = ⎟ , a koji je u granično naponskoj zoni. Pri ⎜ 1 h ⎟ ⎝ ⎠ ξ = a i korišćenjem (14) i (13) dobije se: σ yz = σ xz = 0 . σ 2 h5k 2 W = 0,96 kub. 1 f ()b ⋅ Korišćenjem izraza (12) i s uzimanjem M1 E a u obzir izraza (11), dobije se: ⎧23 1 ⋅ ⎨ − ν + 0,96()()1− 2ν fa b ⋅ h 2 2 2 ⎩12 3 WM = ∫ [σ +σ +σ − E S M x1 y1 z1 2 (15) k ⎡3 ⋅ 3 1 + 0,96 ⋅ − 2ν ()σ x σ y +σ x σ z +σ y σ z ] ⋅ 2 ⎣⎢2 1 1 1 1 1 1 σ kub. ⋅ h 2 1+ν 2 ⎤⎫ ⋅ds + ⋅ h ⋅τ ⋅ SM k1 ⎪ 3 E ⋅ 3 fa ()b ⎥⎬ σ 2 ⋅ h ⎥ Proračun energije u zapremini susedne kub. ⎦⎭⎪ prostorije duž dela G njene zapremine i Za približnu ocenu energije u površi ograničene površine na odstojanju ξ(G) od jedinične dužine moguće je usvojiti udaljenosti fa (b) ≈1 i tada je: h ξ ()G W = dG σ 2 +σ 2 +σ 2 − k 2 M ∫∫G 0 [ x y z 1 E 1 1 1 WM ≈ 0,91()1− 2ν ⋅ h (16) 1 E − 2ν σ σ +σ σ +σ σ ()x1 y1 x1 z1 y1 z1 ] Za podzemnu prostoriju dužine 2l = 200 2 1+ν [m], širine 2x0 = 100 [m], na dubini od 600 ⋅dξ + ⋅h ⋅τ 2 ⋅ S (13) 3 E M

Broj 1,2011. 104 RUDARSKI RADOVI

[m] u sloju moćnosti 2h = 2,0 [m]; ν = 0,4; Prethodni izraz spojen sa izrazima (14) E = 103 [MPa], pri tome je: i (16) koristi se za definisanje energetskog k =1,84⋅108[]N / m3/2 i bilansa, izraz (1). 1 Kako proizilazi iz navedenih izraza, W = 6 ⋅106 []J / m M1 energija WM raste s porastom čvrstoće i Puna energija sadržana u granično moćnosti sloja i s porastom koeficijenta naponskoj zoni sloja određuje se na intenziteta napona i sa smanjenjem modula sledeći način: elastičnosti. W = W ⋅ dG M ∫G M1

Sl. 1. Promena koeficijenta intenzivnosti napona i energije pri eksploataciji dela sloja sa rasponom jednak dva 2 k WM WM k -1: 1 ; -2: 1 ; 1 = 1 k ' W ' W ' k '2 1 M1 M1 1

1.2.1. Prirast energije sadržane u

stenskoj masi

Razmotrimo proizvoljnu zapreminu V’ izmene novu površinu S. Polazno stanje stenskog masiva sa prostorijama, sl. 2.a. odgovara sl. 2.a. Pomeranje, deformacije i Sada jedna od njih povećava svoju naponi su obeleženi indeksom jedan Ui1, zapreminu na VP, tako da nova zapremina εij1 i σij1. Novom stanju, sl. 2.b., stenskog masiva je V’’, sl. 2.b. Površinu odgovaraju priraštaji ΔUi, Δεij i Δσij, tako zapremine V’’ ćemo predstaviti u vidu da su nove komponente povezane na sume površina S2, zadržavajući bez sledeći način:

Sl. 2. Šema za određivanje prirasta energije - a, telo u početnom stanju - b, telo posle povećanja zapremine

Broj 1,2011. 105 RUDARSKI RADOVI

Koristeći izraz (17) i Gausa i Ui2 = Ui + ΔUi ⎫ 1 ⎪ Ostrogorskog i jednačina ravnoteže ima ε = ε + Δε (17) ij2 ij1 ij ⎬ sledeći oblik σ = σ + Δσ ⎪ ij2 ij1 ij ⎭ ∫∫SVΔUids + ''γΔUidV − 2e+S* Prirast energije − Δ ∋ preko površine S pri povećanju zapremine prostorije na − σ Δε dV = 0 (19) ∫V '' ij2 ij ΔV jednak je razlici između priraštaja rada ΔA spoljnih sila u zapremini V’’ i na Oduzimanjem levog dela izraza (19) površini S2e i priraštajem ΔU unutarnje od desnog izraza (18), dobija se energije zapremine V’’. ⎛ U i ⎞ − Δ ∋ = 2 Δσ ⋅dU dS − Iz napred navedenog proizilazi: ∫∫S ⎜ U ni i ⎟ 2e ⎝ i1 ⎠

⎛ Ui2 ⎞ ⎛ ε ij ⎞ ΔA = γ iΔUidV + ⎜ σ nidyi ⎟dS − 2 Δσ ⋅ dε dV − ∫∫∫VS'' U ∫∫V '' ⎜ ε ij ij ⎟ 2e ⎝ i1 ⎠ ⎝ ij1 ⎠

⎛ Sij2 ⎞ − σ ⋅ ΔU dS ΔU = σ dε dV ∫ ni1 i ∫∫⎜ ij ij ⎟ S* V ''⎝ Sij1 ⎠ gde je: Preobražaj zapreminskog integrala u površinski daje osnovni izraz prirasta - γ , odgovarajući vektor zapreminske i energije sile u elementarnoj zapremini ⎡ U ⎤ Tada je: − Δ ∋= i2 σ ⋅ dU dS (20) ∫∫S ⎢ U ni i ⎥ * ⎣ i1 ⎦ ⎛ U i ⎞ − Δ ∋= σ ⋅ dU dS + ∫∫S ⎜ U ni i ⎟ 2e ⎝ i1 ⎠ Izraz (20) ne uključuje izmenu unutarnje energije zapremine V . Ta + ∫ γ iΔUidV − (18) P V '' izmena predstavlja rad utrošen na rušenje ⎛ ε ij ⎞ − 2 σ ⋅ dε dV WR. ∫∫V ''⎜ ε ij ij ⎟ ⎝ ij1 ⎠

Sl. 3. Odnos energije elastične deformacije WM prema unutrašnjoj energiji −Δ ∋ pri dinamičkim pojavama u zoni graničnog stanja

Broj 1,2011. 106 RUDARSKI RADOVI

Brojčane vrednosti W1WM ⋅(−Δ ∋) za podlogu. Srednje vreme pada obrušenog sledeće parametre: odbačenog materijala je: 4 t = 2hg E = 2⋅10 []MPa ; ν = 0,25; σ kub = 10 []MPa r T H = 600 []m ; 2h = 2 []m ; ξ =1,0[m]. gde je: - gT , ubrzanje pri slobodnom padu Za raspon prostorije od 2X0 = 100 [m] . Pretpostavka je da je pomeranje posle 6 tada je − Δ ∋= 1,6⋅10 []J / m , što je skoro pada obrušenog materijala na podlogu 15 puta više od WM. U zaštićenoj zoni na znatno usporeno. −Δ ∋ jedinicu dužine prostorije ostvaruje Sr =ν r 2h ⋅ gT (23) ΔS 1 S v = r (24) se energija 5 ÷ 7 ⋅105[J / m2 ], a pod oslona- r 2hgT čkim stubom dostiže vrednost Prosečna vrednost kinetičke energije 2,7 ⋅106 [J / m2 ], tj. vrlo blisko ostvarenoj je: energiji gasa za sloj moćnosti od 1 [m], koji ν 2 sadrži gas pod pritiskom većim od 1 [MPa]. ΔK = ρ ⋅V r (25) 1 r 2 1.2.2. Energija utrošena na rušenje WR - ρ1 = gT ⋅γ , gustoća obrušenog Ovaj vid energetskog bilansa pri materijala gorskom udaru i izboju gasa učestvuje u Korišćenje izraza (24) i (25) efektno je intenzivnom drobljenju materijala pri samo posle gorskog udara. Maksimalna izboju. Energija utrošena na rušenje pri brzina Vmax i maksimalna udaljenost dinamičkim pojavama a pri aktivnom odbačenog materijala Srmax proizašli iz učešću i gasa određuje se na sledeći način: dinamičke pojave, određuju se preko WR = g ⋅ SR (21) potencijalne energije, koja prethodi kinetičkoj zanemarujući energetski - g, efektivna površinska energija, gubitak. - SR, sumarna površina čestica obrušenog materijala. WM + ()− Δ ∋ ν r max = 2 Za gorske udare, energija rušenja ρ1 ⋅Vr određena je sledećom zavisnošću: U prethodnom izrazu mora se odrediti WR = 2g0 ⋅ ΔS1 (22) (−Δ ∋) . Tada pri rušenju sloja moćnosti 2h, maksimalna brzina je: - 2g0 , apsorbovana energija po jedinici preseka obrušenog ⎛ d ∋ ⎞ 1 ν r max = − ⎜ ⎟⋅ materijala, ⎝ dS1 ⎠ ρ1 ⋅ h - ΔS1 , povećanje površine podine Koristeći sledeće izraze određuje podzemne prostorije. se vr max : Veličina 2g0 za ugljeve sklone gor- 2 d ∋ 1− v 2 skom udaru je od 0,31 do1,0 ⋅106 [J/m2]. − ≈ − k1 dS E1 2 1.2.3. Kinetička energija 1− v 2 − Δ ∋≈ ∫ k dS ΔS1 1 Pri aktuelnom gorskom udaru, E1 kinetička energija se određuje na bazi 1− v2 prosečne udaljenosti Sr odbačenog 1 vr max = k1 obrušenog materijala na horizontalnu E1 ⋅ ρ1 ⋅ h

Broj 1,2011. 107 RUDARSKI RADOVI

Pri k = 2⋅103 []N / m3 / 2 ; [4] SYDS.PENG, Ph. D., Coal Mine 1 Ground Control New York, 1990. 3 ρ1 =15 []kN / m ; 2h = 2 []m ; v = 0,25 ; [5] Henrik Filcek, Zdistaw Kteczek, Andrzej Zorychta Pogladi i rozviazania E = 2⋅104 []MPa , tada je 1 dotyczace tapan w kopalnih wegla ν max = 35 []m/ s , a koristeći izraz (23), kamienmego Krakow, 1984. maksimalna udaljenost odbačenog obrušenog [6] Milenko Ljubojev, Ratomir Popović, materijala je: Smax = 16 [m]. Mevludin Avdić, Lidija Đurđevac- Osnovna pretpostavka zasnovana je na Ignjatović, Vesna Ljubojev, Defining tome da pri izboju suma WB + WC + WV the legality of gray sandstone rock je vrlo mala u poređenju sa Wr i ΔK. strength testing in a complex state of Osnovni deo delujuće energije Wg + WM + stress Tehnics Tehnologies Education +()−Δ ∋ troši se na rušenje i predaju Management, Published by DRUNPP, kinetičku energiju obrušenim česticama. Sarajevo, Vol. 5, Number 3, 2010. Prirast kinetičke energije ΔK određuje ISSN 1840-1503 sledeći izraz: [7] Ratomir Popović, Milenko Ljubojev, ΔK ≈ W + (−Δ ∋)+W −W (26) Dragan Ignjatović, Lidija Đurđevac- g M r Ignjatović Geomeghanical laboratory Ako je desni deo izraza (26) manji od conditions of rock fracture Tehnics nule, tj. Wg + WM + (−Δ ∋) – Wr < 0, tada Tehnologies Education Management, raspoloživa energija nije dovoljna da Published by DRUNPP, Sarajevo, izazove rušenje i odbacivanje obrušenog Vol.5, Number 3, 2010. ISSN 1840- materijala. 1503 [8] R. Popović, M. Ljubojev, Osnove LITERATURA rušenja stena primenjenom mehani- [1] Proskurlkov N. M., Fomina V. D., zacijom pri eksploataciji čvrstih Rožkov V. K., Gazodinamičeskije mineralnih sirovina, Monografija, Bor, javljenija na Soligorskih kalijnih 2011. rudnikah Minsk, Polimja, 1974. [9] D. Petrović, Z. Damnjanović, D. [2] Petuhov I. M., Linjkov A. M., Đenadić, R. Pantović, V. Milić, Mehanika gornih udarov i vibrosov Primena modernih računarskih ure- Moskva, Njedra, 1983. đaja i alata za smanjenje akcidentnih [3] Rabota E. N., Isledovanije naprja- situacija u rudarskim sistemima, ženovo sostajanija masiva gornih Rudarski radovi, br. 2-2010, str. 29-34 parod i određivanja granične zone zašćišćenih od gornih udarov VNIMI, 1975.

Broj 1,2011. 108 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK:622.83(045)=20

Milenko Ljubojev*, Ratomir Popović*, Dragoslav Rakić**

DEVELOPMENT OF DYNAMIC PHENOMENA IN THE ROCK MASS***

Abstract This paper analyzes the energy balance of coal deposits, which consists of energy the trapped gas in the layer, the energy trapped in the collapsed material and a part of present energy in the rock mass. Key words: gas energy, material energy, rock energy, energy of rock destruction, kinetic en- ergy increase

INTRODUCTION

Dynamical phenomena present the in- pores and cavities of the rock mass. It stantaneous release of accumulated me- must be stressed here that all rocks at cer- chanical energy. In all dynamic phenom- tain depth have substantial energy. ena, movement of rock mass is with rate The rock bursts only occur in some up to tens of meters per second. If such rocks and under the specific conditions. movements affect large areas of rock Investigations of these conditions allow masses, the consequences of such a situa- the mining engineers to transform the tion can be disastrous. dangerous and catastrophic situations into Linking the movement of rock masse non-hazardous conditions, i.e. using the of order tens of meters per second with the appropriate methods of forecasting. law of energy conservation, so that at γ = In the process of dynamic phenomena, 20.0 [kN/m3], the stored energy is about the energy of various parts of rock mass is 105 [J/m3]. The general statement follows, changed and redistributed at each other. from the all mentioned, that in all dynamic This energy change does not take place phenomena, high mechanical energy per arbitrarily, and it is fully compliant with the unit volume is released. The total energy law of energy conservation, so that the sum consists of energy of elastic deformations of changes is zero. Detailed following the and energy of gas pressure trapped in way of these changes is very difficult.

* Mining and Metallurgy Institute Bor ** University of Belgrade, Faculty of Mining and Geology Serbia *** This paper is produced from the project no. 33021 and 36014 which is funded by means of the Ministry of Education and Science of the Republic of Serbia

No 1, 2011. 109 MINING ENGINEERING

From the practical (pragmatic) point of proportionally, supplementary amount of view, the transformation of energy into the gas, which is separated, and then expands details is not necessary. During these phe- at desorption induced by the pressure nomena, it is quite enough to study the in- drop. It is important to note that in the tegral characteristics of transition from the rocks with small sorption ability, the last initial state to state after a whirlwind of effect can be neglected. destruction. During this, it is necessary to In polytrope with the indicator of poly- equalize the system state before and after tropy χn , and at gas expansion V0 from loss of stability. Such integral comparison pressure P to P0, the following energy is allows the study of energy balance. extracted. The assessment of kinetic energy re- 1 sults from it, that is necessary for taking ⎡ 1− ⎤ PaVo ⎢ ⎛ Pa ⎞ χ ⎥ the appropriate actions upon notice, limit- Wgo = 1− ⎜ ⎟ n (2) χ −1 ⎢ P ⎥ ing the volume, and preferably the full n ⎝ ⎠ ⎣⎢ ⎦⎥ exclusion of consequences from dynamic In the adiabatic process χ is equal to phenomena. n the adiabatic χ ; χ ; for methane is 1. ENERGY BALANCE g g 1.31. Extracted energy consists of a part of gas During the isothermal expansion spreading energy Wg; a part of trapped χ = 1 follows enerfy in the collapsed material and WM and n P a part of energy stored in the rock - Δ ∋ . The W = P V ⋅ ln go a o P above given energy balance is spent on: a energy for rock collapse WR; increase of Considering the energy value W ' of kinetic energy from parts of collapsed f material ΔK, loss of a part of energy free gas Vf which contains in the volume absorbed by the rock hips in the vicinity of unit of material, a pre-calculation of nor- dynamical phenomena WB and a small part mal conditions is carried out as follows of the energy, up to 10 [%], is spent on a V P n = aT (3) formation of seismic waves WC, the rest of V f PTa the energy is spent on formation the impact air waves WV. The above outlined can be where: present by the following equation: - Vn, pore volume Taking into account the expression (2), Wg +WM +()−Δ∋ =WR +ΔK+WB +WC +WV (1) it follows 1 Left part of equation (1) presents the ⎡ 1− ⎤ PaW f ⎢ ⎛ V T ⎞ χ ⎥ extracted energy, and the right - its ab- W ' = 1− ⎜ n ⋅ a ⎟ n (4) f ⎢ ⎜ ⎟ ⎥ sorption. χn −1 ⎢ ⎝V f f ⎠ ⎥ ⎣⎢ ⎦⎥ 1.1. Gas energy Wg Instead of Vf in (4), it is possible to in- It is necessary to take into account the clude a difference of gas content in the balance of this summary energy during the volume unit of matter Vg and volume of occurrence of gas-dynamic discharge. In absorbed gas Vs, i.e. Vg-Vs. Using the ex- the process of discharge, work can be per- pression (3), it could be written formed only by free gas. Having this in 1 ⎡ 1− ⎤ mind and in calculation the gas energy ' PVn Ta ⎢ ⎛ Pa ⎞ χ ⎥ W f = ⋅ 1− ⎜ ⎟ n (5) Wg, it is necessary to know about the free χ −1 T ⎢ P ⎥ n ⎢ ⎝ ⎠ ⎥ gas Vf in the unit of rock volume and, ⎣ ⎦

No 1, 2011. 110 MINING ENGINEERING

In the adiabatic process: ' Value Ws tends to zero at bs = 0 and ⎡ 1 ⎤ P ⎛ Pa b ⎞ P 1− bs = ∞ , i.e. both slow and very fast reach- ' a s s ⎢ ⎛ a ⎞ χn ⎥ (6) W f = ⎜Vg − ⎟⎢1− ⎜ ⎟ ⎥ χn −1⎝ 1+ bsP ⎠ ⎝ P ⎠ ing the limit sorption with increase the gas ⎣⎢ ⎦⎥ pressure. From expression (8) it follows: - as and bs , sorption constants are ' determined experimentally for each Ws material ≈ Pa ⋅ P ⋅bs kd ⋅ as 3 3 as ≈ 25 − 70 []m / m for coal, this at Pb =1, k = 0, a = 40 []m3 / m3 , , value Vs practically attains at 5 to 10 s d s P = 0,1[MPa] , then the minimum ex- [MPa]. Value bs for different types of a ' 6 3 coal is changed from 0.2 to 3.0 MPa−1 . tracted gas energy Ws = 0,4⋅10 [J / m ] At isothermal expansion, it follows: General gas energy is: ' ' ' ⎛ Pasbs ⎞ P Wg = (W f +Ws )⋅Vp (9) W f = Pa ⎜Vg − ⎟ln ⎝ 1+ bs P ⎠ Pa ' ' - W f and Ws , determined by the From given expressions, it is obvious expressions (6) and (8) that at Vg < as and high pressures it is - Vp , volume of discharged caved possible that a part in a small bracket material ' tends to zero, and then the energy W f is 1.2. Energy of elastic deformations of also changed simultaneously. The above caved material WM equations are limited by the material po- Energy of elastic deformations of mat- rosity m. Then the minimum energy Wf is determined by the following expression ter volume unit at low deformations is expressed in the following way: 1 ⎡ 1− ⎤ Pm T ⎛ P ⎞ χ −e W ' = ⋅ a ⎢1− a n ⎥ (7) E = ij1σ ⋅ dε (10) f ⎢ ⎜ ⎟ ⎥ e ∫ ij1 eij1 χ n −1 T ⎝ P ⎠ 0 ⎣⎢ ⎦⎥ where: At pressure P = 2 [MPa] and porosity - σ ij1 , stress tensor m = 0.08, the extracted minimum energy for methane is: - εeij1 , return (elastic) deformation tensor Expression (10) assumes nonlinear de- W ' = 0,26 ⋅106 J / m3 f [ ] pendence between stress and elastic de- And at P = 5 [MPa] and m = 0.08, formation. ' 6 3 In a case of linear link between σ minimum energy is: W f = 0,78 ⋅10 [J / m ] ij1 and , then: For nonsorbted rocks as = 0 and εeij1 Vn = m expression (5) takes the form of 1 Ee = σij1 ⋅εeij1 expression (7). 2 At adiabatic process and pressure drop For isotropic material, the dependence from P to Pa, it follows: of elastic deformations on stress in the coordinate system XOYZ is: ⎡ 1 ⎤ P 1− d ' Pa ⋅ asbs ⎢ ⎛ Pa ⎞ χn ⎥ p (8) 1 Ws = ∫ kd ⎢1 − ⎜ ⎟ ⎥ ε = σ −ν σ + σ χ n −1 P ⎝ P ⎠ ()1 + bs PT ex1 [ x1 ( y1 z1 )] a ⎣⎢ ⎦⎥ E

No 1, 2011. 111 MINING ENGINEERING

1+ν h ξ (G) 2 2 2 εexy = σ xy WM = ∫∫dG [σ x +σ y +σ z − 1 E 1 E G 0 1 1 1

Expression (10), i.e. energy of matter − 2ν (σ x σ y +σ x σ z +σ y σ z )] volume unit can be written in the follow- 1 1 1 1 1 1 ing form: 2 1+ν 2 ⋅dξ + ⋅h ⋅τ ⋅ SM (13) 1 2 2 2 3 E Ee = [σ +σ +σ − 2ν ⋅ 2E x1 y1 z1 For conditions of flat deformation, stress distribution to the point of maxi- ⋅ σ σ +σ σ +σ σ + (11) ()x1 y1 x1 z1 y1 z1 mum pressure at ξ ≤ a - a, distance from the forehead of + 2()1+ν ()σ 2 +σ 2 +σ 2 ] xy1 xz1 yz1 operation site to the maximum - ν, the Poisson coefficient pressure Energy of elastic deformationW - E, elasticity module of caved material M1 Elastic deformation energy W is: zfor surfaces 1 [m] is determined by the M following expression W = ε ⋅ dV with exception into M ∫V e 1 M W = σ 2 ξ ⋅ h ⋅ account the expression (10), the following is M1 E kub. obtained: ⎡23 1 ξ 3 ξ ⎤ ⎛ εij1 ⎞ ⋅ − ν + 1 − 2ν ⎛ + ⎞ (14) WM = ⎜ σij1 ⋅ dεeij1 ⎟⋅ dV ⎢ ()⎜ ⎟⎥ ∫∫VM ⎝ 0 ⎠ ⎣12 3 h ⎝ 2 h ⎠⎦

If volume VM presents a part of layer with thickness 2h and surface SM, the fol- at σ kub. = 7,5 []MPa ; ξ =1,0 []m ; lowing is obtained: 2h = 2,0 [m], ν = 0,4 ; E =103[]MPa , ⎛ h ⎞ WM = ⎜ Ee ⋅ dy⎟ ⋅ ds (12) then, it is: ∫∫SM ⎝ −h ⎠ ⎡ J ⎤ WM = 114.000 Considering the case when the normal 1 ⎣⎢m ⎦⎥ stresses σ ,σ and σ are changed x1 y1 z1 In the majority cases in determining slightly along layer thickness, and trans- the energy in material to the caving pre- verse stresses σ it is changed linearly xy1 sents an imperative for calculation of its volume that undergone the intensive nore- ⎛ τ y ⎞ per y⎜σ = ⎟ , and σ = σ = 0 . turnable deformations, i.e. a part of layer ⎜ xy1 ⎟ yz xz ⎝ h ⎠ that is in the limit stress zone. At ξ = a Using the expression (12) and taking using (14) and (13) the following is ob- into account the expression (11), the fol- tained: lowing is got: 2 5 2 σ kub.h k1 h WM = 0,96 fa ()b ⋅ W = σ 2 +σ 2 +σ 2 − 1 E M ∫ [ x y z E S M 1 1 1 ⎧23 1 ⋅ ⎨ − ν + 0,96()()1− 2ν fa b ⋅ − 2ν σ σ +σ σ +σ σ ⋅ ⎩12 3 ()x1 y1 x1 z1 y1 z1 ] 2 (15) k ⎡3 2 1+ν ⋅ 3 1 + 0,96 ⋅ ⋅ds + ⋅ h ⋅τ ⋅ SM 2 ⎣⎢2 3 E σ kub. ⋅ h Energy calculation in a volume of next 2 ⎤⎫ k1 ⎪ room along part G of its volume and lim- ⋅ 3 fa ()b ⎥⎬ σ 2 ⋅ h ⎥ ited surface at distance ξ(G) kub. ⎦⎭⎪

No 1, 2011. 112 MINING ENGINEERING

For an approximate evaluation of sur- Full energy contained in the limit face energy in the unit length, fa (b) ≈1 stress zone is determined by the following can be adopted and then: way: 2 W = W ⋅ dG k1 M ∫G M1 WM ≈ 0,91()1− 2ν ⋅ h (16) 1 E Previous expression linked with the For an underground room, length 2l = expressions (14) and (16) is used to define 200 [m], width 2x0 = 100 [m], at depth of the energy balance, expression (1). 600 [m], in a layer of thickness 2h = 2.0 As follows from the above expres- 3 [m]; ν = 0.4; E = 10 [MPa], where it is: sions, WM energy increases with increase the strength and thickness of layer and 8 3/2 and k1 =1,84⋅10 []N / m with increase the coefficient of stress in- W = 6 ⋅106 []J / m tensity and decrease the elasticity module. M1

Figure 1. Change the intensity coefficient of stress and energy in exploitation a part of layer in the range equal two

2 k WM WM k -1: 1 ; -2: 1 ; 1 = 1 k ' W ' W ' k '2 1 M1 M1 1

1.2.1. Energy increase contained in the

rock mass

Consider an arbitrary volume V’ of the new surface S. Initial condition corre- rock massif with the rooms, Figure 2 a). sponding to Figure 2 a). Displacement, Now, one of them increases its volume at deformation and stress are marked by the V’, so the new volume of rock massif is index one Ui1, εij1 and σij1. To the new V’’, Figure 2 b). Surface of volume V’’ condition, Figure 2 b), corresponds incre- will be present in the form of sums of su- ments of ΔUi, Δεij and Δσij, so that new faces S2, keeping without changing the components are linked as follows:

No 1, 2011. 113 MINING ENGINEERING

Figure 2. Scheme for determining the energy increase - a) body in the initial condition - b) body after volume increase

Using the expression (17) and the Ui2 = Ui + ΔUi ⎫ 1 ⎪ Gaus and Ostrogorski, and equilibrium ε = ε + Δε (17) ij2 ij1 ij ⎬ equitation has the following form ⎪ σ ij2 = σ ij + Δσ ij 1 ⎭ ∫∫SVΔUids + ''γΔUidV − 2e+S* Energy increase − Δ ∋ over the surface S at the increase of room volume − σ Δε dV = 0 (19) ∫V '' ij2 ij in ΔV is equal to the difference between the growth of ΔA external forces in the Subtracting the left part of expression volume V’’ and on the surface S2e and (19) from the right expression (18), it is increase ΔU of internal volume energy got V’’. ⎛ U i ⎞ − Δ ∋ = 2 Δσ ⋅dU dS − ∫∫S ⎜ U ni i ⎟ From the above follows 2e ⎝ i1 ⎠ U ⎛ i2 ⎞ ⎛ ε ij ⎞ ΔA = γ iΔUidV + ⎜ σ nidyi ⎟dS − 2 Δσ ⋅ dε dV − ∫∫∫VS'' 2e ⎝ Ui1 ⎠ ∫∫V '' ⎜ ε ij ij ⎟ ⎝ ij1 ⎠ ⎛ Sij2 ⎞ ΔU = σ dε dV − σ ni ⋅ ΔUidS ∫∫⎜ ij ij ⎟ ∫S 1 V ''⎝ Sij1 ⎠ * where: Transformation of volume integral into the surface gives the basic expression of - γ corresponding vector of volume i energy increase force in the elementary volume U Then: ⎡ i2 ⎤ − Δ ∋= ⎢ σ ni ⋅ dUi ⎥dS (20) ∫∫S* Ui ⎛ U i ⎞ ⎣ 1 ⎦ − Δ ∋= σ ⋅ dU dS + ∫∫S ⎜ U ni i ⎟ 2e ⎝ i1 ⎠ Expression (20) does not include the internal energy change of volume V . This + γ ΔU dV − (18) P ∫V '' i i change represents the work spent on ⎛ ε ij ⎞ − 2 σ ⋅ dε dV demolition of WR. ∫∫V ''⎜ ε ij ij ⎟ ⎝ ij1 ⎠

No 1, 2011. 114 MINING ENGINEERING

Figure 3. The ratio of energy of elastic deformation WM according to the internal energy −Δ ∋ at the dynamic phenomena in the zone of limit conditions

Numeric values W1WM ⋅(−Δ ∋) ) for the WR = 2g0 ⋅ ΔS1 (22) following parameters: - 2g0 , absorbed energy per section 4 E = 2⋅10 []MPa ; ν = 0,25; σ kub = 10 []MPa unit of caved material H = 600 []m ; 2h = 2 []m ; ξ =1,0[m]. - ΔS1 , surface increase of underground room floor For the room range of 2X0 = 100 [m] . Value 2g0 for coal tends to the rock then − Δ ∋= 1,6⋅106 []J / m , what is almost burst is from 0.31 to 1,0⋅106 [J/m2]. 15 times higher than WM. In the protected −Δ ∋ zone per unit length of room , the 1.2.3. Kinetic energy ΔS1 In the current rock burst, the kinetic energy is realized 5 ÷ 7 ⋅105 []J / m2 and energy is based on the average distance Sr under the support pillar reaches a value of rejected caved material on a horizontal surface. The average time of fall the re- 6 2 2,7 ⋅10 []J / m , i.e. very close to the jected material is: realized gas energy for the layer thickness t = 2hg of 1 [m], which contains gas under pres- r T sure higher than 1 [MPa]. where: - gT , acceleration in free fall 1.2.2. Energy spent on demolition WR The assumption is that the movement This form of energy balance in the rock after the fall of caved material on the sur- burst and gas discharge participate in inten- face is significantly slowed down. sive crushing of material at discharge. The S =ν 2h ⋅ g (23) spent energy in the destruction at the dy- r r T namic phenomena and the active gas partici- Sr vr = (24) pation is determined as follows: 2hgT WR = g ⋅ SR (21) Average value of kinetic energy is: 2 - g, effective surface energy ν r ΔK = ρ1 ⋅Vr (25) - SR, summary surface of caved material 2 particles - ρ = g ⋅γ , density of caved material For the rock bursts, the demolition en- 1 T ergy is determined by the following de- Using the expressions (24) and (25) is pendence: effective only after rock burst. Maximum

No 1, 2011. 115 MINING ENGINEERING rate Vmax and maximum distance of re- sufficient to cause a demolition and rejec- jected material Srmax ,resulted from dy- tion of the caved material. namic appearance, are determined by the REFERENCES potential energy, which is preceded by the neglecting kinetic energy loss. [1] Proskurlkov N. M., Fomina V. D., Rožkov V. K. Gazodinamičeskije WM + ()− Δ ∋ ν r max = 2 javljenija na Soligorskih kalijnih ρ ⋅V 1 r rudnikah Minsk, Polimja, 1974. In the previous expression, it has to be [2] Petuhov I. M., Linjkov A. M. determined ()−Δ ∋ . The, during demolition Mehanika gornih udarov i vibrosov of the layer thickness 2h maximum rate is: Moskva, Njedra, 1983. [3] Rabota E. N. Isledovanije naprjaženovo ⎛ d ∋ ⎞ 1 ν r max = − ⎜ ⎟ ⋅ sostajanija masiva gornih parod i ⎝ dS1 ⎠ ρ1 ⋅ h određivanja granične zone zašćišćenih Using the following expressions, od gornih udarov VNIMI, 1975. vr max is determined: [4] SYDS.PENG, Ph. D. Coal Mine 2 Ground Control New York, 1990. d ∋ 1− v 2 [5] Henrik Filcek, Zdistaw Kteczek, − ≈ − k1 dS E1 Andrzej Zorychta Pogladi i rozviazania 2 dotyczace tapan w kopalnih wegla 1− v 2 − Δ ∋≈ ∫ k dS kamienmego Krakow, 198 ΔS1 1 E1 [6] M. Ljubojev, R. Popović, M. Avdić, 2 L. Dj. Ignjatović, V. Ljubojev, Defin- 1− v1 vr max = k1 ing the legality of gray sandstone rock E1 ⋅ ρ1 ⋅ h strength testing in a complex state of At k = 2⋅103 []N / m3 / 2 ; stress Tehnics Tehnologies Education 1 Management, Published by DRUNPP, 3 ρ1 =15 []kN / m ; 2h = 2 []m ; v = 0,25 ; Sarajevo, Vol.5, Number 3, 2010. ISSN 1840-1503 E = 2⋅104 MPa , then ν = 35 m/ s , 1 [] max [ ] [7] R. Popović, M. Ljubojev, D. Ignjatović, and using the expression (23), the maximum L. Dj. Ignjatović Geomeghanical labo- distance of rejected caved material is: ratory conditions of rock fracture Smax = 16 [m]. Tehnics Tehnologies Education Man- The basic assumption is based on the agement, Published by DRUNPP, Sara- fact that the discharge amount WB + WC + jevo, Vol.5, Number 3, 2010. ISSN WV is very small compared to Wr and 1840-1503 ΔK.The main part of the acting energy Wg + [8] R. Popović, M. Ljubojev, Basis of WM +()−Δ ∋ is spent on demolition and rock destruction by aplied mechani- transfer of kinetic energy to the collapsed zation in exploitation of solid mineral particles. raw materials Monograph, Bor, 2011. Increase of kinetic energy ΔK deter- [9] D. Petrović, Z. Damnjanović, D. mines the following expression: Đenadić, R. Pantović, V. Milić, Use of ΔK ≈ Wg + ()−Δ ∋ +WM −Wr (26) modern computer equipment and tools If the right part of the expression (26) to reduce the occurrence of accidents in the mining sistems, Mining is less tha zero, i.e. W + W + (−Δ ∋) – g M Engineering, No. 2-2010, pp. 35-40 Wr < 0, then the existing energy is not

No 1, 2011. 116 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:622.274.4(045)=861

Ljubinko Savić∗, Radiša Janković*∗, Srđa Kovačević**

OTKOPAVANJE SIGURNOSNIH STUBOVA U RUDNIKU ’’TREPČA’’ – STARI TRG

Izvod

U podzemnoj eksploataciji u rudniku ’’Trepča’’ – Stari Trg, uglavnom se primenjivala metoda krovnog otkopavanja sa zasipavanjem otkopnih prostora. U primarnoj fazi eksploatacije ostavljani su sigurnosni stubovi (dimenzija 10 x 10 m) u šahovskom poretku. Ostavljeno je više od 70 sigur- nosnih stubova. U sekundarnoj fazi eksploatacije planirano je otkopavanje sigurnosnih stubova u kojima se nalazi oko 15% neotkopanih rudnih masa od ukupnih rudnih rezervi. U ovom radu prikazan je izbor parametara bušačko minerskih radova i način eksploatacije jednog sigurnosnog stuba, koji će poslužiti kao primer za eksploataciju ostalih sigurnosnih stubova. Ključne reči: podzemna eksploatacija, sigurnosni stubovi, parametri.

UVOD

Ležište Trepča po svom lokalitetu pri- kontaktu centralna breča – škriljac – pada središnjem delu Vardarske tek- krečnjak, koje je u otvorenom delu ležišta tomagmatske zone, čija se istočna granica praćeno po dubini oko 1.100 m, gde mu se u ovom delu terena zapaža na liniji površina kreće od 4.000 do 7.000 m2. Gnjilane – Kačendol – Šatorica, a zapadna Najveći broj rudnih tela izgrađuju sul- na liniji – Rogozna i dalje ka fidni minerali a manji deo ležišta čine tzv. jugu gde se gubi pod tercijarnim basenom oligonitna rudna tela, izgrađena od Kosova. gvožđevito – magmatskih karbonata sa Ležište Trepča, sastoji se od niza cev- većim ili manjim sadržajem olovo – astih rudnih tela nepravilnog oblika sa cinkanih sulfida. površinama koje se kreću od nekoliko stot- Laboratorijskim ispitivanjem uzoraka, ina do 7000 m2. Eksploatacija se uglavnom uzorkovanih u jami Trepča – Stari Trg, obavljala primenom metode krovnog ot- utvrđene su sledeče fizičko – mehaničke kopavanja sa zasipavanjem otkopnog pros- karakteristike rude i pratećih stena, koje su tora. Centralno rudno telo formirano je na prikazane u tabeli 1.

∗ FTN Kosovska Mitrovica ∗∗ JPPK ’’Kosovo’’ Obilić

Broj 1,2011. 117 RUDARSKI RADOVI

Tabela 1. Fizičko – mehaničke karakteristike rude i pratećih stena

RUDA / γ1 γ2 σc σi c 3 3 f ν STENA [t/m ] [t/m ] MPa MPa MPa Sulfidi 4,26 3,70 78,0 5,9 7,80 12,3 0,19 Oligoniti 3,67 3,48 82,1 7,4 7,43 13,6 0,19 Krečnjak 2,86 2,80 49,5 5,0 5,27 8,8 0,17 Škriljac 2,83 2,76 44,1 6,6 4,45 8,6 0,17 Breča 3,00 2,90 60,9 6,4 6,08 10,9 0,17

TREPČANSKA METODA OTKOPAVANJA

Na slici 1. prikazana je Trepčanska metoda otkopavanja.

Slika 1. Trepčanska metoda otkopavanja

Visinska razlika između horizonata rudi zasipni uskopi do višeg horizonta. Sa iznosi 60 m. Na svakom horizontu u podin- nivoa višeg horizonta doprema se zasip koji skom delu ležišta izrađuje se izvozni hodnik, se razastire po otkopu. Pod krovom otkopa a na svakih 30 m rade se prečni hodnici do ostavlja se otvorena visina od 2 m radi venti- krovine rudnog tela. Kada se ovim prečnim lacije i komuniciranja u otkopu. Otkopava- hodnicima dobiju tačne konture rudnog tela, nje sledeće etaže počinje od sipke prema koje su na višem horizontu poznate od ranije krovinskom delu otkopa. određuje se položaj sigurnosnih stubova. Sa U jami rudnika Trepča – Stari Trg pri- nivoa horizonta počinje otkopavanje prve menjuju se i sledeće metode: Uskopno fron- etaže čija visina iznosi 5,5 m. Bušenje krat- talno otkopavanje i Magazinska metoda kih minskih bušotina se vrši bušaćim če- otkopavanja. kićem RK – 28 ili VK – 30. Utovar rude se Metoda uskopnog frontalnog otkopava- vrši direktno u vagonete sa CAVO utovar- nja uglavnom se primenjuje za mala rudna nom lopatom. Kada se otkopa ruda po celoj tela površine do 50 m2, sa uglom pada man- površini, delovi prečnog hodnika koji su bili jim od 40o, pri čemu prateće stene moraju u rudi izrađuju se u betonskoj oblozi, a biti čvrste. Otkopavanje rudnog tela odvija ujedno se rade i rudne i rudno – prolazne se, odozdo na gore, po usponu (padu), u dve sipke. Radi zasipavanja otkopa, izrađuju se u faze:

Broj 1,2011. 118 RUDARSKI RADOVI

− Prva faza se sastoji u podsecanju površina i čiji je raspon od podinskog do rudnog tela na nivou horizonta, i krovinskog dela veliki, kao privremeno − Druga faza čini otkopavanje rudnog sredstvo osiguranja otkopa u primarnoj tela do gornjeg horizonta uz prethodnu fazi eksploatacije, ostavjaju se sigurnosni pripremu objekata za prolaz ljudi, stubovi raspoređeni u šahovskom poretku, istakanje i transport rude i ventilaciju. dimenzija 10 x 10 m. Rastojanje između Razblaživanje kod ove metode je redova kreće se od 12 -16 m, a rastojanje neznatno, a iskorišćenje rude i intenzitet između stubova u redu 16 -20 m. Sa otkopavanja su znatno veći nego kod sigurnošću se može konstatovati da u Trepčanske metode. stubovima ostaje 15% rudne mase, koja će Magazinskom metodom otkopavanja se eksploatisati u sekundarnoj fazi ek- otkopan je veći broj manjih rudnih tela. sploatacije. Visina sigurnosnih stubova Do sada su primenjivane dve varijante ove kreće se od 10 - 70 m, u zavisnosti od metode otkopavanja: moćnosti rudnog tela. U ovim stubovima I varijanta: rudno telo se podseče na trenutno se nalaze rudne rezerve od oko nivo horizonta, a zatim prva etaža zasipe i 830.000 t, sa prosečnim sadržajem Pb – prelazi na magazinsko otkopavanje, 6,75%, Zn – 3,76% i Ag – 206 g/t. II varijanta: kada se sa postojeće Trep- Na osnovu tehničke dokumentacije čanske metode prelazi na magazinsko ot- rudnika ’’Trepča’’ na četiri lokacije nalaze kopavanje. se 70 sigurnosnih stubova, za koje su pro- Za rudna tela u rudniku Trepča, velikih računate rudne rezerve date u tabeli 2.

Tabela 2. Prikaz rudnih rezervi u stubovima

Srednji sadržaj metala u Rudne rezerve u Redni Lokacija Broj rudi stubovima broj stubova stubova [t] Pb Zn Ag [%] [%] [g/t] 1. Stari delovi 6 70.723 7.83 9.39 224 2. Severno krilo jame 4 15.910 10.57 2.28 225 3. Južno krilo jame 12 103.452 6.75 5.61 191 4. Centralno rudno telo 48 639.982 6.75 2.86 205 Ukupno: 70 830.076 6.75 3.76 206

OTKOPAVANJE SIGURNOSNIH

STUBOVA

Uzimajući u obzir dosadašnje iskustvo sličnih geološko – tehničkih uslova eksploa- pri otkopavanju sigurnosnih stubova i karak- tacije, nije se smatralo celishodnim obrađi- teristikama savremene bušaće opreme, raz- vanje parametara bušačko minerskih radova rađena je kombinovana uskopno magazinska svih sigurnosnih stubova pojedinačno, već je – metoda otkopavanja sa masovnim obaran- izabran jedan karakterističan stub (57/4), za jem rude horizonralnim minskim bušotinama koga su obrađeni parametri bušačko – min- u lepezastom rasporedu. erskih radova i koji će služiti kao osnova za Zbog velikog broja sigurnosnih stubova i eksploataciju ostalih sigurnosnih stubova.

Broj 1,2011. 119 RUDARSKI RADOVI

Slika 2. Situacioni plan sa lokacijom stuba 57/4

Po sredini sigurnosnog stuba prvo se višak rude se tovari, a drugi deo rude služi pristupa izradi uskopa dimenzija 2 x 2 m. kao podloga za naredno bušenje i Na nivou nižeg horizonta vrši se podse- miniranje. Sukcesivnim obaranjem rude i canje sigurnosnog stuba. Iz podsečenog utovarom viška zapremine, eksploatiše se dela počinje eksploatacija sigurnosnog sigurnosni stub sve do nivoa višeg hori- stuba, bušenjem i miniranjem horizontal- zonta. Po završetku otkopavanja sigurnos- nih minskih bušotina u lepezastom nog stuba, vrši se pražnjenje rude i nje- rasporedu u punom krugu po visini sigur- gova zapremina koju je zauzimao ostaje nosnog stuba. Time se omogućuje mas- prazna. Utvrđeno je da zasip i dalje ostaje ovno miniranje većeg broja pojaseva da stoji čvrsto i ne zarušava se u prazan miniranja, čime se reguliše željeni ka- prostor, što je veoma značajno za ot- pacitet eksploatacije. Nakon miniranja kopavanje narednih sigurnosnih stubova.

Slika 3. Vertikalni presek sigurnosnog stuba sa lepezom minskih bušotina

Broj 1,2011. 120 RUDARSKI RADOVI

IZBOR VRSTE EKSPLOZIVA

Prilikom izbora vrste eksploziva pot- zivne smeše koje se mehanizovanim postup- rebno je usaglasiti njegove eksplozivne ka- kom mogu puniti u minske bušotine. Na os- rakteristike sa fizičko – mehaničkim karak- novu izbora eksploziva i parametara mini- teristikama stenske mase u kojoj se vrši mi- ranja usvaja se eksplozivna smeša ANFO – niranje. U konkretnim uslovima na otkopu J1, iz proizvodnog programa DETONITA – izbor eksploziva se svodi na ANFO eksplo- Korporacije TRAYAL Kruševac.

Tabela 3. Karakteristike eksplozivne smeše ANFO – J1 Gustina [g/cm3] 0,95 – 1,1 Brzina detonacije [m/s] >2.000 Prenos detonacije kontakt Gasna zapremina [l/kg] 920 Toplota eksplozije [KJ/kg] 3.872 Osetljivost [g pentolita] 60 Kritični prečnik [mm] 30 Radna sposobnost [cm3] 380 Stabilnost 6 meseci Vodootpornost slaba Bilans kiseonika uravnotežen

PRORAČUN PARAMETARA MINIRANJA

Dužina minskih bušotina, koji će se σ c – jednoaksijalna pritisna čvrstoća koristiti za otkopavanje sigurnosnih rude (780 dN/cm2); stubova, iznosi 4 – 6 m, u zavisnosti od υ – koeficijent stešnjenosti mina (1); poprečnog preseka sigurnosnog stuba, a s – koeficijent sklopa stenske mase proračun parametara miniranja vršiće se (0,9 - 1,1); za prečnik minskih bušotina (d = 51 mm). γ – zapreminska masa rude (3,7 t/m3). 1. Specifična potrošnja eksploziva po Laresu: e – koeficijent relativne snage ek- sploziva; e q = q ⋅υ ⋅ s ⋅ ⋅ d ⋅ k = 0,55 [kg / m3] 1 480 kz e = = 1,26 A ili x q 0,55 [kg / m3] q = = = 0,15 [kg / m3] Ax – radna sposobnost eksploziva γ 3 ANFO – J1 (380 cm3); 3,7 [t / m ] gde je: kz – koeficijent zbijenosti eksploziv- q – koeficijent čvrstoće rude; nog punjenja (0,9); 1 d – koeficijent začepljenosti mina (1); σ c q1 = = 0,39 k – korekturni koeficijent zbijenosti 2000 eksplozivnog punjenja (1).

Broj 1,2011. 121 RUDARSKI RADOVI

2. Linija najmanjeg otpora se izračunava: amax = (1,5 ÷1,7)⋅W = 2,85 ÷3,23 [m]

k p 4. Masa rude čije se obaranje vrši jednom W = 33⋅d1 ⋅ =1,9 [m] lepezom bušotina: q ⋅kz Q = (Ps − Pu)⋅W ⋅γ = 675 [t] gde je: gde je: d – prečnik minske bušotine (51 mm); 1 Ps – površina poprečnog preseka kp – koeficijent popunjenosti minske sigurnosnog stuba (m2); bušotine (0,7); Pu – površina poprečnog preseka q – specifična potrošnja eksploziva 2 3 useka (m ); (kg/m ); W – linija najmanjeg otpora (m). kz – koeficijent zbližnjenja mina (1). 5. Ukupna količina eksploziva koja se 3. Rastojanje između bušotina u lepezi utroši za jedno miniranje lepeza bušot- iznosi: ina:

amin = (0,5 ÷ 0,7)⋅W = 0,95 ÷1,33 [m] Qe = Q ⋅q = 675⋅0,15 =101,25 [kg]

Slika 4. Prikaz minskih bušotina sa lepezastim rasporedom

Nakon izvršenog grafičkog rasporeda specifikacija koja je data u tabeli 4. minskih bušotina izvršena je i njihova

Broj 1,2011. 122 RUDARSKI RADOVI

Tabela 4. Specifikacija minskih bušotina

Broj Ugao Dužina Dužina punjenja Količina eksploziva bušotine [o] [m] [m] [kg] 1 0 4,0 3,5 6,4 2 27 4,5 2,6 4,8 3 45 5,6 5,1 9,4 4 63 4,5 2,6 4,8 5 90 4,0 3,5 6,4 6 117 4,5 2,6 4,8 7 135 5,6 5,1 9,4 8 153 4,5 2,6 4,8 9 180 4,0 3,5 6,4 10 207 4,5 2,6 4,8 11 225 5,6 5,1 9,4 12 243 4,5 2,6 4,8 13 270 4,0 3,5 6,4 14 297 4,5 2,6 4,8 15 315 5,6 5,1 9,4 16 333 4,5 2,6 4,8 Ukupno: 74,4 55,2 101,6

6. U cilju ravnomerne raspodele energije 7. Količina eksploziva za punjenje jedne eksploziva koristićemo razlićite koefici- minske bušotine: jente punjenja lepezastih bušotina koji 2 iznose: π ⋅ d qe = ⋅l p ⋅ ρ ⋅ kz[kg] − za minske bušotine 1, 5, 9 i 13 4 l p 3,5 8. Iniciranje minskih bušotina. k p = = = 0,88 lb 4 Na dno svake minske bušotine pot- − za minske bušotine 2, 4, 6, 8, 10, 12 i rebno je ubaciti po dva pojačivača ek- 14 splozije (bustera), mase od po 80 gr. i povezati ih detonirajućim štapinom. Kra- l p 2,6 k p = = = 0,58 jevi štapina treba da vire iz bušotine oko lb 4,5 0,5 m; radi povezivanja sa glavnim vodom − za minske bušotine 3, 7, 11 i 15 detonirajućeg štapina. Šema vezivanja i l p 5 iniciranja minskih punjenja prikazana je k p = = = 0,88 na slici 5. lb 5,6

Broj 1,2011. 123 RUDARSKI RADOVI

Slika 5. Šema vezivanja i iniciranja minskih bušotina

Nakon smeštaja bustera i detonira- karakterističan stub koji će služiti kao jućeg štapina prelazi se na punjenje osnova za eksploataciju ostalih stubova. ANFO eksplozivne smeše pomoću pneumatske punilice. LITERATURA Pošto se izvrši punjenje svih bušot- ina, vrši se povezivanje krajeva deton- [1] P. Jovanović, Dimenzionisanje irajućeg štapina sa glavnim vodom. jamskih prostorija, Beograd, 1983. Oba kraja glavnog voda detonirajućeg [2] B. Gluščević, Otvaranje i metode štapina spajaju se na jednom mestu i podzemnog otkopavanja rudnih tako se omogućuje prenos detonacije sa ležišta, Beograd, 1974. oba kraja. Za aktiviranje detonirajućeg [3] Lj. Savić, D. Đukanović, S. Krstić, štapina povezuju se dva električna Karakter odnosa između brzine detonatora radi sigurnijeg aktiviranja. bušenja i promene dužine bušotine, Provodnici elektrodetonatora vezuju se Podzemni radovi br. 12 (pp. 17-21) na glavni električni kabal koji prolazi RGF Beograd, 2003. dužinom uskopa do sigurnog mesta za [4] S. Trajković, V Nastić, S. Lutovac, paljenje minskih bušotina. Analiza postignutih rezultata pri ZAKLJUČAK izradi hodnika u rudniku “Rudnik“ bušačko-minerskim radovima, U radu je izvršen izbor i proračun pa- Podzemni radovi br. 12 (pp. 01-10) rametara bušačko minerskih radova za RGF Beograd, 2003. otkopavanje sigurnosnog stuba (57/4), u [5] P. Jovanović, D. Marković, S. rudniku ’’Trepča’’ – Stari Trg, gde se Trajković, N. Vidanović, Studija otkopavanje sigurnosnih stubova vrši procesa bušenja i miniranja na bušenjem i miniranjem horizontalnih otkopima i hodnicima rudnika minskih bušotina u lepezastom rasporedu. “Rudnik“ RGF Beograd, 1985. Nije se smatralo celishodnim određi- [6] Projektno tehnička dokumentacija vanje parametara za sve sigurnosne rudnika ’’Trepča’’, Institut Zvečan. stubove pojedinačno, već je izabran jedan

Broj 1,2011. 124 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK:622.274.4(045)=20

Ljubinko Savić∗, Radiša Janković*∗, Srđa Kovačević**

MINING OF SAFETY PILLARS IN THE ’’TREPCA’’ - STARI TRG MINE

Abstract

In the underground mining in the ''Trepca''- Stari Trg mine, the method of roof caving mining with back filling cavity was generally applied. In the primary stage of exploitation, the safety pil- lars (10 x 10 m) were left in a chess ranking. More than 70 safety pillars were left. Mining of the safety pillars, containing about 15% of non-mined ore masses of the total ore reserves, is planned in the secondary stage of mining operation. This paper presents a selection of parameters for drilling and blasting works and the mining method of safety pillar, which will serve as an example for mining the other security pillars. Key words: underground mining, safety pillars, parameters

INTRODUCTION

The Trepča deposit on its site belongs central breccia - shale - limestone, which to the middle part of the Vardar tectonic- is in the open part of deposit, followed by magmatic zone, whose eastern border in depth of about 1,100 m, where its area this part of the field is observed on the line ranges from 4,000 to 7,000 m2. Gnjilane - Kačendol - Šatorica, and the The largest number of ore bodies is western border on the line Novi Pazar - built of sulphide minerals and smaller part Rogozna and further to the south where it of deposit consists of so called oligonite loses under the Tertiary basin of Kosovo. ore bodies, built of ferrous - magmatic The Trepča deposit consists of a series carbonates with smaller or higher content the pipe ore bodies of irregular shape with of lead - zinc sulphides. surfaces that range from several hundred Laboratory testing of taken samples to 7,000 m2. Exploitation was mainly car- from the pit of mine Trepča - Stari Trg ried out using the method of roof caving have confirmed the following physical - mining with back filling cavity. Central mechanical characteristics of the ore and ore body was formed at the contact of the associated rocks, shown in Table. 1.

∗ FTN Kosovska Mitrovica ∗∗ JPPK ’’Kosovo’’ Obilić

No 1, 2011. 125 MINING ENGINEERING

Table 1. Physical - mechanical characteristics of ore and associated rocks

ORE / γ1 γ2 σc σi c f ν 3 3 ROCK [t/m ] [t/m ] MPa MPa MPa

Sulfides 4.26 3.70 78.0 5.9 7.80 12.3 0.19

Oligonites 3.67 3.48 82.1 7.4 7.43 13.6 0.19

Limestone 2.86 2.80 49.5 5.0 5.27 8.8 0.17 Shale 2.83 2.76 44.1 6.6 4.45 8.6 0.17 Breccia 3.00 2.90 60.9 6.4 6.08 10.9 0.17

THE TREPČA MINING METHOD

The Trepča mining method is shown in Figure 1.

Figure 1. The Trepča mining method

Height difference between the hori- the horizon level, the excavation of first zons is 60 m. At each horizon in the foot bench starts, whose height is 5.5 m. Drill- wall of deposit, a haulage drift is driven, ing of short blast holes is done using the and the crosscut roadways are driven at drilling hammer RK - 28 or VK – 30. every 30 feet to the roof of ore body. Loading of ore is carried out directly into When the crosscut drifts give the accurate wagons with CAVO loading shovel. When contours of the ore body, which are previ- the ore is mined around the whole length, ously known at higher horizon, the posi- the parts of crosscut drift, which were in tion of safety pillars is determined. From the ore, are made in concrete lining, and

No 1, 2011. 126 MINING ENGINEERING also the ore and ore - passing chutes. In The block caving method of mining order to backfill the stope, the stowing was used for excavation a large number of raises are made in the ore to higher horizon. small ore bodies. Until now, two options From higher level of horizon, the stowing of this mining method were used: is delivered and distributed over stope. Un- - I option: the ore body is cut at the der the hanging wall of stope, an open horizon level, and then the first height of 2 m is left for ventilation and bench is stowed and the block cav- communication in the stope. Excavation of ing is carried out, next bench begins from the chute towards - II option: when it is moved from the hanging wall of stope. the existing Trepča method to the In the pit of mine Trepča - Stari Trg, block caving method. the following methods are also applied: the raise frontal mining and block caving For the ore bodies in the mine Trepča method. of large areas and wide wide range from The method of raise frontal mining is the floor to roof, the safety pillars are left mainly applied for small ore bodies, area as a temporary means of stope ensuring in up to 50 m2, with the angle of fall less than the primary phase of exploitation, in a 40o, where the associated rocks have to be chess order, size 10 x 10 m. The distance solid. Excavation of ore body is carried out between the lines ranges from 12 -16 m, bottom-up per rise (fall), in two phases: and the distance between pillars is in the order from 16 - 20 m. It could be con- - The first phase consists of cutting cluded with certainity that 15% of ore the ore body at horizon level, and  mass is left in the pillars that will be ex- - The second phase consists of exca- ploited in the secondary phase of exploita- vation the ore body to the upper tion. Height of safety pillars varies from horizon with previous preparation 10 - 70 m, depending on the ore body of facilities for passage of people, thickness. These pillars currently include unloading and transport of ore and the ore reserves of approximately 830,000 ventilation. tons, with the average content of Pb – Dilution in this method is slightly, and re- 6.75%, Zn – 3.76% and Ag – 206 g/t. covery of ore and mining intensity are signifi- Based on the technical documentation cantly higher than in the Trepča method. of the mine “Trepča“, there are 70 safety pillars in four locations for which the ore reserves, given in Table 2, were calculated.

Table 2. Review of ore reserves in pillars Mean metal content in the Ore reserves in Order Location of the Number ore pillars No. pillars of pillars [t] Pb Zn Ag [%] [%] [g/t] 1 Old parts 6 70,723 7.83 9.39 224 2 North pit limb 4 15.910 10.57 2.28 225 3 South pit limb 12 103.452 6.75 5.61 191 4 Central ore body 48 639.982 6.75 2.86 205 Total: 70 830.076 6.75 3.76 206

No 1, 2011. 127 MINING ENGINEERING

MINING OF SAFETY PILLARS

Taking into account the previous experi- of exploitations, it was not considered as ence in mining the safety pillars and charac- appropriate the processing of parameters of teristics of modern drilling equipment, the drilling-blasting works for all safety pillars combined block caving method with mass individually, but a characteristic pillar blowing down the ore by the horizontal blast (57/4) was selected for which the parame- holes in the fan-shaped arrangement. ters of drilling – blasting works were proc- Due to a large number of safety pillars essed, and that will serve as the base for and similar geological-technical conditions exploitation the other pillars.

Figure 2. Site plan with the location of pillar 57/4

By middle of the safety pillar, the first used as the basis for subsequent drilling approach is a raise driving, size 2 x 2 m. and blasting. By successive blowing down At the level of lower horizon, the safety of ore and loading of excess capacity, the pillar is cut. Exploitation of a cut part of safety pillar is exploited down to the level safety pillar starts by drilling and blasting of higher horizon. Upon completion of the horizontal blast holes in the fan- excavation the safety pillar, the ore is shaped arrangement in the full circle per discharged and its volume is left empty. It height of safety pillar. This allows the was found that the stowing remains to mass blasting of a number of blasting stand firm and not caving in the empty belts, what regulates the desired capacity space, what is very important for the ex- of exploitation. After blasting, the excess cavation of next safety pillars. ore is loaded, and the second part of ore is

No 1, 2011. 128 MINING ENGINEERING

Figure 3. Vertical section of the security pillar with a fan of blast holes

SELECTION OF EXPLOSIVE TYPES

In the selection of explosive type, it is mixtures which can be charged into the required to harmonize its explosive char- boreholes by mechanized method. Based acteristics with physical - mechanical on the selection of explosives and blasting characteristics of rock mass where the parameters, the explosive mixture ANFO- blasting is carried out. In the specific J1 is adopted from the production program terms, the selection of exsplosive at the of DETONIT – TRAYAL Corporation, stope comes down to the ANFO explosive Kruševac.

Table 2. Characteristics of the blastig mixture ANFO – J1 Density [g/cm3] 0.95 – 1.1 Detonation rate [m/s] >2.000 Detonation transmission contact Gas volume [l/kg] 920 Blasting heat [KJ/kg] 3.872 Sensitivity [g pentolite] 60 Critical diameter [mm] 30 Working capacity [cm3] 380 Stability 6 months Waterproof poor Oxygen balance balanced

No 1, 2011. 129 MINING ENGINEERING

CALCULATION OF BLASTING PARAMETERS The length of blast holes, which will 2. The line of the least resistance is cal- be used for excavation the safety pillars, is culated: 4 - 6 m, depending on the cross section of safety pillar, and calculation of blasting k p parameters will be performed for the blast W = 33⋅ d1 ⋅ = 1.9 [m] q ⋅ kz hole diameter (d = 51mm). 1. Specific consumption of explosive per where: Lares: d1 – diameter of blast hole (51 mm); e 3 kp – charging coefficient of blast hole q = q1 ⋅υ ⋅ s ⋅ ⋅ d ⋅ k = 0.55 [kg / m ] or kz (0.7); q – specific consumption of explosive q 0.55 [kg / m3] q = = = 0.15 [kg / m3] (kg/m3); γ 3.7 [t / m3] kz – compactness coefficient of blasts where: (1).

q1– coefficient of ore strength; 3. Distance between blast holes in a fan is: σ c q1 = = 0.39 2000 amin = (0.5 ÷ 0.7) ⋅W = 0.95 ÷1.33[m] σ c – uniaxial compressive strength of ore (780 dN/cm2); amax = (1.5 ÷1.7) ⋅W = 2.85 ÷ 3.23[m] υ – coefficient of blast compactness (1); 4. Ore mass that is blown down by one s – coefficient of rock mass complex fan of the blast holes: (0.9 - 1.1); γ – volume mass of ore (3.7 t/m3); Q = (Ps − Pu) ⋅W ⋅γ = 675 [t] e – coefficient of relative strength of blasting agent; where: 480 Ps – cross-section area of safety pillar e = = 1.26 (m2); Ax Pu – cross-section area of cut (m2); Ax – working capacity of blasting W – leat resistance line (m). agent ANFO – J1 (380 cm3); 5. Total explosive quantity spent for one k – coefficient of explosive charge z blasting of blast hole fans: compactness (0.9); d – coefficient of blast stemming (1); Qe = Q ⋅ q = 675⋅0.15 = 101.25 [kg] k – correction coefficient of explosive charge compactness (1).

No 1, 2011. 130 MINING ENGINEERING

Figure 4. Review of blast holes with a fan-shaped arrangement

After the graphic layout of blast holes, also done. their specification, given in Table 3, was

No 1, 2011. 131 MINING ENGINEERING

Table 3. Specification of the blast holes

Blast hole Angle Length Charge length Explosive quantity No. [o] [m] [m] [kg] 1 0 4.0 3.5 6.4 2 27 4.5 2.6 4.8 3 45 5.6 5.1 9.4 4 63 4.5 2.6 4.8 5 90 4.0 3.5 6.4 6 117 4.5 2.6 4.8 7 135 5.6 5.1 9.4 8 153 4.5 2.6 4.8 9 180 4.0 3.5 6.4 10 207 4.5 2.6 4.8 11 225 5.6 5.1 9.4 12 243 4.5 2.6 4.8 13 270 4.0 3.5 6.4 14 297 4.5 2.6 4.8 15 315 5.6 5.1 9.4 16 333 4.5 2.6 4.8 Total: 74.4 55.2 101.6

6. For the purpose of equal distribution of Quantitative of explosive for charging one explosive energy, the different coeffi- blast hole: cients of charge the fan-shaped blast holes will be used and these are: π ⋅ d 2 q = ⋅ l ⋅ ρ ⋅ k [kg] − for blast holes 1, 5, 9 and 13 e p z 4 l p 3.5 k = = = 0.88 7. Ignition of blast holes: p l 4 b On the bottom of each blast hole, it is − for blast holes 2, 4, 6, 8, 10, 12 and necessary to insert two boosters of blast, 14 weight of 80 grams, and to connect them by detonating fuse. The ends of fuse l p 2.6 k p = = = 0.58 should be sticking out of the hole, about lb 4.5 0.5 m, for connection to the main line of − for blast holes 3, 7, 11 and 15 detonating fuse. Scheme of connection and ignition the explosive charges is l p 5 k = = = 0.88 shown in Figure 5. p l 5.6 b

No 1, 2011. 132 MINING ENGINEERING

Figure 5. Scheme of connection and ignition the explosive charges in the blast holes

After placement of boosters and deto- cable that runs along the length of slope to nating fuse, the charging of ANFO explo- the safe place for ignition the blast holes. sive mixtures is done using the pneumatic CONCLUSION filler. After after charging of all blast holes, This paper gives a selection and calcu- the connecting of end parts of detonating lation of parameters of drilling and blast- fuse is done with the main line. Both ends ing works for excavation the safety pillar of the main line of detonating fuse are (57/4), in the mine “Trepča“- Stari Trg, connected in one place and thus allows the where the excavation of safety pillars is transfer of detonation from both ends. To carried out by drilling and blasting the activate the detonating fuse, two electric horizontal blast holes in the fan-shaped detonators are connected due to the safe arrangement. activation. Conductors of electric detona- It was not considered as appropriate to tors are connected to the main electric establish the parameters for all safety

No 1, 2011. 133 MINING ENGINEERING pillars individually, but a characteristic [4] S. Trajković, V Nastić, S. Lutovac, pillar was selected to serve as the base for Analysis of Realized Results in Drift exploitation the other pillars. Driving in the Mine “Rudnik“ using the Drilling – Blasting Works, REFERENCES Underground Engineering No.12, (pgs.01-10), Faculty of Mining and [1] P. Jovanović, Dimensioning the Mining Geology Belgrade, 2003 (In Serbian) Workings, Belgrade, 1983 (In Serbian) [5] P. Jovanović, D. Marković, S. [2] B. Gluščević, Opening and Methods of Trajković, N. Vidanović, Study of Underground Mining the Ore Deposits, Drilling and Blasting Process at Stops Belgrade, 1974 (In Serbian) and Drifts of the Mine “Rudnik“, [3] Lj. Savić, D. Đukanović, S. Krstić, Faculty of Mining and Geology Character of Relation the Drilling Rate Belgrade, 1985 (In Serbian) and Change in Length, Underground [6] Project Technical Documentation of the Engineering No.12, (pgs. 17-21), Mine ”Trepča”, Institute of Zvečan (In Faculty of Mining and Geology Serbian) Belgrade, 2003 (In Serbian)

No 1, 2011. 134 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:551.49:622.26(045)=861

Milenko Ljubojev*,Dragan Ignjatović*, Lidija Đurđevac Ignjatović*, Vesna Ljubojev*

PRIPREME ZA ISTRAŽIVANJE TRASE TUNELA I SNIMANJE TERENA**

Izvod

Neophodnost za povećanje kapaciteta flotacijskog jalovišta i takođe povećanje vrha brana 1A, 2A i 3A do kote K+385m je dovela do izmeštanja Kriveljske reke pomoću dva tunela: postojeći i drugi, koji će biti lociran na desnoj obali flotacijskog jalovišta. Zbog toga je, pre bilo kakve aktiv- nosti, neophodno snimiti mesto gde će trasa novog tunela biti locirana. Ključne reči: trasa novog tunela, snimanje terena, ispitivanje trase tunela

1. UVOD

Za odlaganje flotacijske jalovine, Uzimajući u obzir da su brane projek- površinski kop “Veliki Krivelj” koristi tovane do kote K+350 m, uključujući i područje dobijeno pregrađivanjem doline činjenicu da je moguće deponovati flotaci- Kriveljske reke. jsku jalovinu samo do sredine 2008. Na početku rudarskih radova, godine, to je bilo neophodno obezbediti korišćena je površina u blizini flotacijskih podizanje nivoa brana do kote K+385 m. objekata za odlagalište. Flotacijsko ja- Zbog svega ovoga Kriveljska reka lovište je prošireno 1990. godine tako što (slika 1) mora biti premeštena i to sa: je uzet dodatni prostor u dolini Kriveljske - postojećim tunelom (zona polja reke, nizvodno od polja 1. 1); D = 3,0 [m] and L = 1.414 [m], Flotacijsko jalovište je omeđeno - novo izgrađeni tunel; D = 3,0 [m] branama 1A i 2A i projektovano je do kote and L = 2.400 [m], duž desne obale flo- K+375 m sa ukupnim kapacitetom od tacijskog jalovišta. 94,3·106 [m3]. Izgradnja novog tunela na desnoj obali Novo flotacijsko jalovište (polje 2) je flotacijskog jalovišta učiniće mogućim omeđeno branama 2A i 3A i projektovano povećanje nivoa polja 2, što će značajno je do kote K+350 m sa ukupnim kapacite- povećati skladišni kapacitet (okvirno 6 3 tom od 89,4·106 [m3]. 83,3·10 [m ]), slika 1.

* Institut za rudarsvo i metalurgiju ** Ovaj rad je proistekao iz Projekta br. 33021 koji je finansiran sredstvima Ministarstva za prosvetu i nauku Republike Srbije

Broj 1,2011. 135 RUDARSKI RADOVI

B-1

P R O J E K T O V A

T R A S A

T U N E L A

B-2

B-3 B-3

B-2

B-1

B-4 B-5

Sl. 1. Izgled terena i lokacija trase novog tunela Kriveljske reke

menja pravac is a kote 335 skreće ka 2. MORFOLOŠKE KARAKTERISTIKE istoku. TRASE TUNELA 3. HIDROLOŠKE KARAKTERISTIKE Morfolološki, teren je brdovit. Brdo Tilva Satuli se nalazi sa severozapadne Hidrološka analiza obuhvata slivno strane početka trase tunela (kota terena područje Kriveljske reke do njenog ušća u 464). tunel, zatim reku Saraka to njenog ušća sa Projektovana trasa tunela, od svoje Kriveljskom rekom, Borsku reku do tu- kote 385, se pruža niz padinu Tilva Satuli nela Borska reka flotacijsko jalovište i, prema jugoistoku, a zatim 7 do 10 metara konačno, neimenovani potok koji se uliva ispod flotacijskog jalovišta (polje 2), koje u tunel Borske reke. Navedena slivna je formirano u aluvionu Kriveljske reke u područja su prikazana u tabeli 1. dužini od 450 m. Na dužini id 1.820 m

Tabela 1. Površina Dužina Pad Pad Reka Profil 2 F [km ] L [km] Iur [‰] Imax [‰] Ulaz u Kriveljsku Saraka 16,38 9,7 43,3 48,5 reku Kriveljska reka Ulaz u ušće 95,71 18,6 13,4 34,1 Neimenovani Presek sa tunelom 2,3 3,15 59,7 69,8 potok borske reke Ulaz u tunel bor- Borska reka 12,6 6,6 39,4 62,9 ske reke

Broj 1,2011. 136 RUDARSKI RADOVI

F –poprečni presek sliva 5.3. Kompleks čvrste stene L – dužina rečnog toka Ovaj kompleks se sastoji od čvrstih, Iur – kontinualni rečni tok nepromenjenih stena, koje process dezin- Imax – maksimalni rečni tok. tegracije nije obuhvatio. Ovde će biti Jalovište je sastavljeno od sedimenata i opisane tri najzastupljenije celine: vulkanita iz perioda gornje krede, koji su Andeziti – Čvrsta stena, delimično hidrotermalno izmenjeni i koji se pojavljuju mineralizovana, svetlo zelena do crveno sporadično, i kvartalni sedimenata. braon boje. Pukotine su ispunjene glinom, i one dele stenu na blokove veličine oko 4. TEKTONSKA UZVIŠENJA 20 [cm]. Poroznost je ispucana, slabo raz- PODRUČJA vijena i u osnovi vodonepropusna. Postoji veliki broj gravitacionih i ok- Konglomerati i peščari – To su čvrste renutih raseda (longitudinalnih, dijagonal- stene, retko ispucale, a retke pukotine su nih i poprečnih). Dijagonalni i poprečni ispunjene glinenim vezivom. Ove pu- rasedi su mlađi i pretežno gravitacioni sa kotine formiraju blokove veličine 50 [cm]. različitim preskocima i manje horizontal- Poroznost je slabo razvijena. Stena je nim intervalima, i može se sa sigurnošću praktično vodonepropusna. reći das u nastali nakon rude. Peščari i laporci – Oni predstavljaju Dva osnovna pravca pružanja su SZ-JI osnovne litološke članove, u kojima se i SZ-S. mogu pojaviti: glinci, kongomerati, la- poroviti krečnjaci i peskoviti krečnjaci. 5. INŽENJERSKO-GEOLOŠKA Stene su čvrste, blago prekrivene ot- SVOJSTVA TERENA vorenim pukotinama. 5.1. Kompleks flotacjskog jalovišta 6. KONCEPCIJA I METODOLOGIJA Flotacijski mulj se sastoji od prašinas- ISTRAŽIVANJA tog materijala sa 5 do 50% frakcija manjih Cilj sledećeg koraka istraživanja je od 0,006 [mm] i od oko 25% frakcija definisanje inženejrsko-geološkog odnosa krupnijih od 0,2 [mm]. i geomehaničkih karakteristika stena na Ciklonizirani pesak je, po svom trasi tunela. Neophodno je rešiti sledeće sastavu, sitnozrni pesak sa najkrupnijom zadatke: frakcijom od 2 [mm], srednjezrnom frak- - utvrditi morfološke karakteristike cijom od 0,1 [mm] i oko 15% frakcije je terena, sitnije od 0,07 [mm]. - dati pregled geološkog sastava, 5.2. Kompleks površinski raspadnute - opisati lito-genetski sastav litoloških stene članova i kompleksa (strukturne i Kao is vi drugi kompleksi, i ovaj je ta- teksturne karakteristike), kođe sastavljen od tri litološke jedinice, u - definisati fizičko-mehaničke i zavisnosti od matične stene, i to su: ras- deformacione karakteristike stena za padnuti andeziti različitih varijeteta, kon- svaki inženjersko-geološki sloj. 3 glomerati i peščari (K 2), laporci, la- 6.1. Terenski rad poroviti krečnjaci, glinci, konglomerati i 2-3 Istražno bušenje je projektovano na 5 peskoviti krečnjaci (K 2). Raspadnuta stena je smeštena ispode istražnih bušotina duž trase tunela i dve deluvijumskih slojeva, ređe na vrhu tla i bušotine kroz flotacijsko jalovište (polje predstavlja prelaz prema čvrstoj, ne- 2), za određivanje debljine flotacijskog promenjenoj steni. jalovišta i takođe za određivanje kvaliteta

Broj 1,2011. 137 RUDARSKI RADOVI stene, koja je između flotacijske jalovine i [2] M. Ljubojev, Z. Stojanović, D. Mitić, projektovane trase tunela. D. Ignjatović, Mining-geological Detaljno inženjersko-geološko karti- conditions influence for selection the ranje jezgra bušotina mora biti odrađeno best location of Krivelj’s River tunnel, radi definisanja litoloških članova, struk- 41st International October Conference turnih i teksturnih karakteristika stena. on Mining and Metallurgy, Kladovo, Kao deo inženjersko-geološkog karti- Serbia, strana 73-80, 2009. ranja bušotina, svaki uzorak litoloških čla- [3] M. Ljubojev, Z. Stojanović, D. Mitić, L. nova mora biti odabran i poslat u labora- Đ. Ignajtović, D. Ignjatović, Cross toriju za dalja istraživanja. section form determination of new Uzorkovanje za fizočko-mehanička i Krivelj’s River tunnel, 41st deformaciona ispitivanja se moraju obaviti International October Conference on za svaku promenu litoloških članova, ili Mining and Metallurgy, Kladovo, na svakih 5 metara. Serbia, strana 225-230, 2009. [4] M. Ljubojev, M. Avdić, D. Ignjatović, 7. ZAKLJUČAK L. Đurđevac Ignjatović, Influence from flotation tailings, field 2, on Krivelj Zbog neophodnosti povećanja ka- River tunnel stability, Rudarski radovi, paciteta flotacijskog jalovišta, Kriveljska 2/2009, 2009., strana 21-28 reka mora biti izmeštena sa dva tunela. [5] R. Popović, L. Đurđevac Ignjatović, D. Zbog toga je, pre bilo kakve aktivnosti, Urošević, Consolidation and coefficient neophodno osmatrati mesto gde će trasa of permeability of flotation dumped novog tunela biti locirana. material, Rudarski radovi 2/2008, 2008., strana 25-30 LITERATURA

[1] R. Popović, M. Ljubojev, Elaborat o geološkim istraživanjima i fizičko- mehaničkim ispitivanjima stena trase tunela za izmeštanje ’’Kriveljske reke’’, Bor, 2007

Broj 1,2011. 138 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK: 551.49:622.26(045)=20

Milenko Ljubojev*, Dragan Ignjatović*, Lidija Đurđevac Ignjatović*, Vesna Ljubojev*

PREPARATIONS FOR INVESTIGATION THE TUNNEL AXIS AND FIELD SURVEYING**

Abstract

Necessity of increasing the capacity of flotation tailing dump, and also increasing the top of the dams 1A, 2A and 3A to the level of K+385 m has brought to the relocation of the Krivelj River by two tunnels: the existing one and the other one that will be located on the right bank of the flota- tion tailing dump. Therefore, before any activity, it is necessary to survey the place where the new tunnel axis will be located. Key words: new tunnel axes, field surveying, tunnel axes investigation

1. INTRODUCTION

For disposal of flotation tailing, the Considering that the dams were designed open pit mine “Veliki Krivelj” uses an area, to the level of K+350 m, including a fact got by partition of the Krivelj river valley. that it is possible to deposit the flotation In the beginning of the mining works, tailing dump only till the middle of 2008, the area near flotation facilities was used it is necessary to ensure an increase of the for tailing dump. Flotation tailing dump dam level up to K+385 m. was expanded in 1990 by taking an addi- Therefore, the Krivelj River (Figure 1) tional area of the Krivelj river valley, has to be relocated by: downstream from the Field 1. - Existing tunnel (zone of the Field 1); Flotation tailing dump is bordered with D = 3.0 [m] and L = 1,414 [m], dams 1A and 2A and designed to the - New constructed tunnel; D = 3.0 [m] level of K+375 m, and with total capacity and L = 2,400 [m], along the right 6 3 of 94.3·10 [m ]. bank of the flotation tailing dump. New flotation tailing dump (Field 2) is Construction of a new tunnel on the bordered with dams 2A and 3A and de- right bank of the flotation tailing dump signed to the level of K+350 m, and with will make possible the level increase in total capacity of 89.4·106 [m3].

* Mining and Metallurgy Institute Bor ** This paper is the result of the Project No. 33021, funded by the Ministry of Education and Science of the Republic of Serbia

No 1, 2011. 139 MINING ENGINEERING the Field 2, what will significantly in- 83.3·106 [m3]), Figure 1. crease the storage capacity (approximately

B-1

P R O JE K T O V A

T R A S A

T U N E L A

B-2

B-3 B-3

B-2

B-1

B-4

B-5

Figure 1. View of the field and location of the new tunnel axis of the Krivelj River

2. MORPHOLOGICAL 3. HYDROLOGICAL CHARACTERISTICS OF THE CHARACTERISTICS TUNNEL AXIS

Morphologically, the field is hilly. The Hydrological analysis covers the Tilva Satulli hill (pick elevation 464) is catchment area of the Krivelj River to its located on the north-west side from the mouth into the tunnel, then Saraka River beginning of tunnel axis to its mouth into the Krivelj River, Bor The designed tunnel axis, from its pick River up to tunnel the Bor River-flotation elevation 385, is outreached down the tailing dump and, finally, the unnamed slope of Tilva Satuli to the south-east, and stream that intakes into the tunnel of Bor then 7 to 10 meters under the flotation River. The mentioned catchment areas are tailing dump (Field 2), that was formed in present in Table 1. the alluvium of the Krivelj River in length of 450 meters. In length of 1.820 meters, it changes strike and from pick elevation 335 it turns to the east.

No 1, 2011. 140 MINING ENGINEERING

Table 1. Square Length Downfall Downfall River Profile measure L [km] I [‰] I [‰] F [km2] ur max Intake into the Krivelj Saraka 16.38 9.7 43.3 48.5 River Krivelj Intake into the mouth 95.71 18.6 13.4 34.1 River

Unnamed Cross section with the 2.3 3.15 59.7 69.8 stream Bor River tunnel

Entrance into the Bor Bor River 12.6 6.6 39.4 62.9 river tunnel F – cross section of the river basin L – river flow length Iur – continuous river flow Imax – maximum river flow.

The tailing dump consists of sediments middle grain of about 0.1 [mm] and about and vulcanite from the Upper Cretaceous 15% grains less than 0.07 [mm]. Period, which are hydrothermal altered, Complex of the surface disintegrated occurring sporadically there, and Quater- rock nary sediments. Like all other complexes, this complex 4. TECTONICAL ELEVATIONS OF also consists of three lithologic units, de- THE AREA pending on the basic rock, and those are: disintegrated andesite of different variety, There are numerous gravity and reverse conglomerates and sandstones (K32), faults (longitudinal, diagonal and cross marls, marl limestone, slates, conglomer- faults). Diagonal and cross faults are youn- ates and sand limestone (K2-32). ger and mostly gravity with various skips Disintegrated rock is situated under di- and less horizontal intervals, and it can be luvium layers, rarely on the top of the said for sure that they were formed after ore. ground and it presents a transition to the Two main directions of expanding are solid, unchanged rock. NW-SE and NW-N. Complex of the solid rock 5. ENGINEERING-GEOLOGICAL This complex consists of the solid, un- PROPERTIES OF THE FIELD changed rocks, which were not included in the disintegration process. Here, three the Complex of the flotation tailing dump most represented units will be described. Flotation sludge contains a dusty mate- Andesites – Solid hard rock, partially rial with 5 to 50% fractions less than mineralized, light-green to red-brown 0.006[mm] and about 25% fractions coarser color. Cracks are filled with clay, and they than 0.2 [mm]. are divided the rock on blocks, size about Cyclonic sand is, by its content, a fine 20 [cm]. Porosity is ruptured, poorly de- grain sand with largest grain of 2 [mm], veloped, and basically water tightness.

No 1, 2011. 141 MINING ENGINEERING

Conglomerates and sandstones – Those unit sample has to be selected and sent to the are solid rocks, rarely cracked, and possible laboratory for further testing. cracks are fulfilled with the clay binding Sampling for physical-mechanical and agent. Those cracks forms the blocks, size deformation testing have to be carried for 50 [cm]. Porosity is poorly developed. The each change of lithological unit, or at each 5 rock is practically water tightness. meters. Sandstones and marls – They present the basic lithologic units, where the followings 7. CONCLUSION can appear: slates, conglomerates, marl Due to the necessity of increasing the ca- limestone and sand limestone. The rocks are solid, slightly covered with open cracks. pacity of flotation tailing dump, the Krivelj River has to be relocated with two tunnels. Therefore, before any activity, it 6. CONCEPTION AND is necessary to observe the place where METHODOLOGY OF the new tunnel axis will be located. INVESTIGATION The next step of investigation is aimed REFERENCES to defining the engineering – geological relations and geomechanical characteris- [1] R. Popovic, M. Ljubojev, Project of Geological and Physical-Mechanical tics of rocks on the tunnel axis. It is neces- sary to solve the following - tasks: Investigations of Rocks from the - to determine the morphological char- Tunnel Axis for Relocation the Krivelj River, Bor, 2007 (in Serbian) acteristics of the ground, - to give a review of geological com- [2] M. Ljubojev, Z. Stojanovic, D. Mitic, position, D. Ignjatovic, Mining-Geological Conditions Influence for Selection the - to describe a litho-genetic composi- tion of lithologic units and complex best Location of the Krivelj River (structural and textural characteris- Tunnel, 41st International October Conference on Mining and Metallurgy, tics), - to define the physical – mechanical Kladovo, Serbia, pp. 73-80, 2009. and deformable characteristics of [3] M. Ljubojev, Z. Stojanovic, D. Mitic, L. Dj. Ignajtovic, D. Ignjatovic, Cross rocks for each engineering – geo- logical layer. Section for Determination the new Krivelj River tunnel, 41st International Field works October Conference on Mining and Metallurgy, Kladovo, Serbia, pp. 225- Prospecting drilling is designed with 5 230, 2009. prospecting drill holes along the tunnel [4] M. Ljubojev, M. Avdić, D. Ignjatović, axis and two drill holes through the flota- L. Djurđevac Ignjatović, Influence of tion tailing dump (Field 2), to determine a Flotation Tailings, Field 2, on the thickness of the flotation tailing dump and Stability of the Krivelj River Tunnel, also to determine the rock quality that is Mining Engineering, 2/2009, 2009, pp. between the flotation tailings and designed 21-28 tunnel axis. [5] R. Popović, L. Djurdjevac Ignjatović, Detailed engineering-geological map- D. Urošević, Consolidation and ping of drill hole cores has to be carried out Coefficient of Permeability of the to define the lithological units, structural and Flotation Dumped Material, Mining textural characteristics of the rock. Engineering, 2/2008, 2008, pp. 25-30 As a part of engineering-geological mapping of the drill holes, each lithologic

No 1, 2011. 142 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:622.73(045)=861

Dragan Milanović*, Zoran Marković**, Daniela Urosević*, Miroslav Ignjatović*

UNAPREĐENJE SISTEMA USITNJAVANJA RUDE U POSTROJENJU „VELIKI KRIVELJ“***

Izvod

Povećanje projektovanog kapaciteta trostepenog drobljenja i dvostepenog prosejavanja od 8,5 x 10 6 t na 10,6 x 10 6 t vlažne rude godišnje u pogonima flotacije Veliki Krivelj RTB-a Bor, sa g.g.k. gotovog proizvoda drobljenja od 100(%) -16 mm nižom od predhodne, projektovane g.g.k. od 100(%) -20 mm, je prema zahtevima trebalo obaviti sa raspoloživom opremom i po postojećoj tehnološkoj šemi pripreme mineralne sirovine. Detaljnom analizom rada i proizvoda drobljenja ovovg pogona registrovana su „uska grla“ u postojećem procesu drobljenja i prosejavanja i u skladu s’tim predložena su adekvatna tehnička rešenja za postizanje definisanog cilja: „Povećanje kapaciteta prerade vlažne rude na Q = 10,6 x 106 t/god sa g.g.k. od 16 mm“, uz što manja investiciona ulaganja sa postojećom opremom i po postojećoj tehnološkoj šemi prerade. U ovom radu biće prikazan deo analize rada pomenutog pogona sa predlogom tehničkih rešenja koja mogu dovesti do ostvarenja postavljenih uslova i postizanja kpaciteta pogona drobljenja i prosejavanja rudnika bakra „Veliki Krivelj“ od Q = 10,6 x 106 t vlažne rude godišnje sa g.g.k. od 100(%) - 16 mm. Ključne reči: Kapacitet, drobljenje, prosejavanje, proizvod

1. UVOD

Ležište rude „Veliki Krivelj“ nalazi se, površinskog kopa, izgrađena su drobilična vazdušnom linijom na oko 3 km severoza- postrojenja, flotacija i drugi prateći objekti, padno od Bora i na 0,5 km od najbližeg sela neophodni za eksploataciju i preradu, odnos- Krivelj, u slivu Kriveljske reke. U okviru no obogaćivanje rude flotacijskim postu- ležišta „Veliki Krivelj“ nalazi se površinski pkom. Ruda se transportuje od površinskog kop „Veliki Krivelj“ u kome je eksploatacija kopa do primarnog drobljenja kamionima, počela 1982 god. U neposrednoj blizini dok se jalovina transportuje kamionima i

* Institut za rudarstvo i metalurguju Bor ** Univerzitet u Beogradu, Tehnički fakultet u Boru *** Ovaj rad je proistekao iz Projekta TR 33023 koji je finansiran sredstvima Ministarstva za prosvetu i nauku Republike Srbije

Broj 1,2011. 143 RUDARSKI RADOVI kombinovanim sistemom kamioni-transpor- šemi prerade sa postojećom opremom, uz teri sa trakom. Nakon primarnog drobljenja, predviđena tehnička rešenja koja će ruda prolazi kroz prihvatni bunker, odakle se zadovoljiti postavljene uslove u pogledu transportnim trakama transportuje do postizanja traženog kapaciteta prerade i otvorenog sklada primarno izdrobljene rude. finoće gotovog proizvoda drobljenja. Na slici Sa sklada, ruda se zvezdastim dodavačima i 1. data je panorama „Velikiog Krivelja“ sa sistemom transportnih traka šalje u postro- objektima za preradu i obogaćivanje rude. jenje za sekundarno i tercijarno drobljenje sa prosejavanjem [4,3]. Rudnici bakra – Bor (u daljem tekstu RBB) su dogovorili sa Institutom za rudarstvo i metalurgiju Bor (IRM Bor) izradu tehničkog rešenja da bi se postigao kapacitet prerade rude ležišta „Veliki Krivelj“ od 10,6x106 tona vlažne rude godišnje. Sa time u vezi, neophodno je izvršiti proveru kapaciteta i stanja postojeće opreme i dati rešenja za postizanje definisanog kapaciteta prerade sa definitivnim proizvodom drobljenja g.g.k. 16 mm. Uz napomenu, da u svim pokušajima da Sl. 1. Panorama „Velikiog Krivelja“ sa se u industrijskoj praksi ostvari definisani objektima za preradu i obogaćivanje rude kapacitet od 10,6 x 106 rovne rude godišnje, POSTIZANJE KAPACITETA nisu dobijeni zadovoljavajući rezultati. (Q=10,6 x 106 t/god., g.g.k. 16 mm) Uprkos činjenici, da je pri tim pokušajima za finoću gotovog proizvoda drobljenja Preduslov, za ostvarenje definisanih zahtevano da ona iznosi g.g.k. 20 mm. To je u ciljeva, (Q=10,6 x 106 t/god. i g.g.k. 16 mm) odnosu na sada zahtevanu finoću gotovog je da sva raspoloživa oprema i objekti budu proizvoda drobljenja od g.g.k. 16 mm u ispravnom i funkcionalnom stanju, revita- predstavljalo daleko lakšu mogućnost. lizovana oprema, u meri u vremenskom Bondov radni indeks rude Velikog iskorišćenju u kojem je to neophodno za Krivelja se kreće u rasponu od 12-14 kWh/t, dostizanje predviđenog kapaciteta i kvaliteta pa za dalji rad usvajamo tvrdu rudu na prerađene rude. To vremensko iskorišćenje prelazu između srednje tvrdih i tvrdih ruda opreme i objekata očekuje se da bude sa vrednošću Bondovog Radnog indeksa od povećano u odnosu na predhodni režim rada 14 kWh/t odnosno, 15,43 kWh/sht. kada se radilo sa nižim kapacitetom prerade U procesu iznalaženja tehničkog rešenja (od 8,5 ili 10,6 x 106 t/god., i većom gornjom razmotrene su sve mogućnosti da se sa graničnom krupnoćom gotovog proizvoda postojećom tehnologijom prerade rude uz drobljenja od g.g.k. 20 mm). Sa usvojenim najminimalnije investicione zahvate u fazi koeficijentom vremenskog iskorišćenja po- sekundarnog i tercijalnog drobljenja. strojenja sekundarnog i tercijalnog drobljenja Primarno prosejavanje, sekudarno drobljenje, i prosejavanja od k=0,8 potrebni časovni tercijalno drobljenje u zatvorenom ciklusu sa kapacitet prerade rude će biti: Qh = 1512.56 sekundarnim prosejavanjem odgovori t/h vlažne rude. Za isti, izvršiće se neophodna zahtevima traženog kapaciteta prerade i verifikacija postrojenja sekundarnog i terci- tražene finoće gotovog proizvoda drobljenja, jalnog drobljenja i prosejavanja, kao i prikaz (Q=10,6 x 106 t/god. i g.g.k. 16 mm) [5,6]. šeme kretanja masa. Dakle, za ostvarenje Dakle, kriveljska ruda u sistemu sekundarnog većeg kapaciteta će biti potrebno pored i tercijernog drobljenja i prosejavanja terbalo ostalog, maksimalno korišćenje efektivnog bi da se prerađuje po postojećoj tehnološkoj vremenskog fonda rada agregata i povećanje

Broj 1,2011. 144 RUDARSKI RADOVI dopuštenog maksimalnog opterećenja pro- sastav proizvoda primarnog drobljenja preu- cesne opreme. Dalje se nećemo zadržavati na zet je iz kataloga proizvođača i predstavljen vremenskom iskorišćenju opreme i objekata u tabeli 1., a prema usvojenom izlaznom ali moramo konstatovati da u projekciji kona- otvoru primarne drobilice „Allis Chalmers“ čnog tehničkog rešenja raspoloživi fond 8’’x74’’ u otvorenom položaju od OSS vremenskog iskorišćenja je upotrebljen kao =139,7 mm, (51/2’’) i za srednje tvrde rude. jedan od bitnih činilaca tog tehničkog rešenja Tabela 1. Granulometrijski sastav izlaza iz [5]. Na slici 2., dat je prikaz postojeće primarne drobilice „Allis Chalmers“ 48x74’ tehhnološke šeme sa opremom i kretanjem Klasa krupnoće Izlaz OSS =139,7 mm, (51/2’’) masa sistema sekundarnog i tercijernog dro- d(mm) m(%) R(%) D(%) bljenja i prosejavanja rude u rudniku „Veliki Krivelj“, a za usvojeno tehničko rešenje. -203,20+190,5 1 1 100 Sa slike 2., vidi se, da je sistem -190,5+177,80 1,5 2,5 99 sekundarnog i tercijernog drobljenja i -177,80+165,10 1,5 4 97,5 prosejavanja tehnološki povezan sa siste- -165,10+152,40 2 6 96 mom primarnog drobljenja. Iz tih razloga sistem primarnog drobljenja treba da da -152,40+139,70 4 10 94 proizvod koji će najbolje odgovarati sistemu -139,70+127 5 15 90 sekundarnog i tercijernog drobljenja i prose- -127+114,30 7 22 85 javanja u smislu postizanja traženih uslova. Pri tome se i ovde podrazumeva da je sva -114,30+101,60 5,5 27,5 78 oprema u ispravnom i funkcionalnom stanju, -101,60+88,90 8,5 36 72,5 revitalizovana oprema, kako bi mogla da -88,90+76,20 8 44 64 zadovolji novoprojektovane trehnološke uslove [6]. A to su, da proizvod primarnog -76,20+63,50 8,5 52,5 56 drobljenja koji se prema tehnološkoj šemi -63,50+50,80 7,5 60 47,5 skladišti na otvorenom skladu S-1., bude -50,80+45 4,51 64,51 40 najfiniji mogući proizvod. On kasnije u si- stemu sekundarnog i tercijernog drobljenja i -45+38,10 4,49 69 35,49 prosejavanja dolazi prvo na dvoetažno sito -38,10+31,75 3,50 72,5 31 gde prosev druge sejne površine predstavlja -31,75+25,40 5 77,5 27,5 gotov proizvod drobljenja. Pa je učešće tog proizvoda što poželjnije u ulaznoj rudi koja -25,40+19,05 3,5 81 22,5 dolazi u sistem sekundarnog i tercijernog -19,05+16 2,14 83,14 19 drobljenja i prosejavanja. Zbog navedenih -16+12,70 1,86 85 16,86 čijenica neophodno je da se izvede takvo setovanje primarne drobilice koje će da sa -12,70+6,35 4 89 15 jedne strane zadovolji gore navedene uslove, 6,35+0 11 100 11 a sa druge strane da obezbedi zadovoljenje Predstavljeni granulometrijski sastav, kapaciteta i pouzdanost u radu. Granulo- proizvoda primarnog drobljenja je ulaz u po- gon sekundarnog i tercijalnog drobljenja i prosejavanja. Ulaz na primarno dvoetažno sito.

Broj 1,2011. 145 RUDARSKI RADOVI

Sl. 2. Šema kretanja masa u sekundarnom i tercijalnom drobljenju i prosejavanju

Broj 1,2011. 146 RUDARSKI RADOVI

Iz granulosastava se vidi, da ulazna ruda „Veliki Krivelj“ predviđene su dve (u u pogon sekundarnog i tercijalnog drobljenja predom periodu instalisane i potvrđene u i prosejavanja ima krupnoću od g.g.k. 100% radu) revitalizovane sekundarne drobilice -203 mm, a učešće klase krupnoće - 20 mm tipa: Allis Chalmers Hydrocone EHD, iznosi cca α-20= 20 %, dok je učešće klase veličine: 13’’ x 84’’, sa ecc: 2’’ (50,8 krupnoće –16 mm α-16= 16,86 %. Takođe se mm). Na slici 3., predstavljena je vidi, da je učešće krupnijih klasa krupnoće i navedena drobilica koja je instalisana u to: –63,5 mm α-63,5= 47,5 %, dok je to za zgradi sekundarnog drobljenja. klasu krupnoće -45 mm α-45= 35,49 %. Za tercijerno drobljenje u pogonu Za svu, a posebno za visoko opterećenu „Veliki Krivelj“ predviđene su tri (u opremu, gde se u ovakvom sistemu predhodnom periodu instalisane i potvrđene drobljenja, prvenstveno očekuje da to budu u radu) revitalizovane tercijerne drobilice tercijarne drobilice i sekundarna sita za tipa: Allis Chalmers Hydrocone EHD, prosejavanje gotovog proizvoda drobljenja, veličine: 3’’ x 84’’, sa ecc: 2’’ (50,8 mm), i biće izvršena verifikacija radi utvrđivanja jedna nova: „metso minerals“ „Nordberg“ stepena njihove kapacitativne mogućnosti i HP 500 Series Cone Crushers. opterećenosti. Na slici 4 i 5., predstavljene su Za sekundarno drobljenje u pogonu respektivno navedene drobilice.

Sl. 3. Sekundarne drobilice „Allis Chalmers“ HydroconeEHD,13’’x 84’’

Broj 1,2011. 147 RUDARSKI RADOVI

Sl. 4. Tercijarne drobilice „Allis Chalmers“ Hydrocone EHD, 3’’x 84’’

Neophodne podatke o granulometrij- skom sastavu proizvoda tercijalnog droblje- nja usvojićemo iz kataloga proizvođača „metso-minerals“, a za novokupljenu drobi- licu HP 500. Podrazumevajući da će nakon predviđene rekonstrukcije postojećih drobi- lica: „Allis Chalmers“ Hydrocone EHD, 3’’x 84’’ sa ecc: 2’’ (50,8 mm) one davati iste proizvode drobljanja kao i novokupljena drobilica. Pa prema tome i da će imati iste Sl. 5. Tercijerna drobilica „Nordberg“ HP granulometrijske sastave. Kataloški očeki- Series Cone Crushers, HP 500, „metso- vani granulometrijski sastav proizvoda minerals“ „Nordberg“, HP 500, „metso-minerals“ U tabeli 2., prikazan je očekivani granu- drobilice, brošura broj NO: 2051-04-07- lometrijski sastav sekundarno izdrobljene ru- CBL/Tampere-English, sa ekcentrom, ecc po de po Allis Chalmers-u, za usvojeni izlazni standardu proizvođača za ovaj tip drobi-lica, otvor sekundarne drobilice Hydrocone EHD, pri datom zatezanju drobilice CSS = 16 mm katalog broj B 223.025 E, veličine: 13x84’’ za srednje tvrde sirovine (Wi = 14 kWh/t; pri CSS = 1’’(25 mm) i ekcentru drobilice 15,43 kWh/sht), dat je u tabeli. 3. ecc= 11/4’’(32 mm) (maksimalno zatezanje Na osnovu predhodnih analiza rada drobilice), za srednje tvrde sirovine (Wi = 14 sistema sekundarnog i trecijernog dro- kWh/t; 15,43 kWh/sht). Iz koga se vidi, da bljenja i prosejavanja rudnika „Veliki ruda ima g.g.k. preko 45 mm, odnosno 100% Krivelj“, kada su u datom sistemu pored -50 mm, a učešće klase krupnoće - 20 mm drugačijeg setovanja datih drobilica bile iznosi oko α-20= 44 %, dok je učešće klase instalisane i drukčije mreže sita (ovde se to krupnoće cca α-16 = 36 %. prvenstveno odnosi na veličinu otvora sejne

Broj 1,2011. 148 RUDARSKI RADOVI površine sita, respektivno prema etaži sita, a Iz svega navedenog, a radi zadovoljenja x a=60x60 mm i a x b=20x40 mm) uvek je datih uslova za postizanje traženog kapaciteta konstatovana preopterećenost tercijalnog prerade sa traženom finoćom gotovog pro- drobljenja i sekundarnog prosejavanja, izvoda drobljenja, Q=10,6 x 106 t/god. i g.g.k. (sekundarnih sita sa smanjenom efikasno- 16 mm, pri izradi ovog tehničkog rešenja šću sejanja). [3,4] pripreme, uvešće se u odnosu na pređašnje, Takođe, pri takvoj raspodeli masa sa izmenjeni tehnološko tehnički parametri ovim veličinama mreža sita, javlja se prerade rude. U tom smislu, napomenuto je rasterećenost sekudarnog drobljenja izaziva- da se pod time podrazumeva značajna jući debalans masa u čitavom sistemu dro- rekonstrukcija tri tercijalnih drobilica tipa bljenja i prosejavanja. Allis Chalmers Hydrocone EHD, 3’’ x 84’’ sa Tabela 2. Kataloški granulometrijski sastav ecc: 2’’ (50,8 mm) (zame-na ekscentra proizvoda drobljenja sekundarne drobilice drobilica i zamena postojećih čeličnih obloga „Allis Chalmers“ Hydrocone EHD, t.j. uvođenje novog profila obloga drobilica i veličine:13’’ x 84’’, ecc=32 mm (11/4’’) sistema za automatsku regulaciju IC- Klasa (Intelligent control) 7000) i nabavka jedne Izlaz CSS =25,4 mm, (1’’) Krupnoće nove tercijerne drobilice tipa: „Nordberg“ HP Series Cone Crushers, HP 500, kompanije d (mm) m(%) R(%) D(%) „metso-minerals“. Rekonstruisne postojeće -50+40 8 8 100 drobilice Allis Chalmers EHD trebalo bi da -40+30 20 28 92 daju slične ili iste granulometrijske sastave -30+25 12 40 72 proizvoda drobljenja rude (kataloški granulo sastavi proizvoda drobljenja) kao i nova HP -25+20 16 56 60 500 drobilica. Zatim je neophodna i rekon- -20+16 8 64 44 strukcija sita, koja podrazumeva promenu -16+12 10 74 36 sejne površine sita tj. uvođenje sejne površine -12+10 4 78 26 sita sa drugačijim otvorima odnosno, -10+5 12 90 22 dimenzijama otvora mreže sita. (Umesto -5+0 10 100 10 postojećih mreža sita, sa dimenzijama pravougaonih otvora a x a = 60 x 60 mm i a x b = 20 x 40 mm, uvode se dimenzije Tabela 3. Kataloški granulometrijski sastav pravougaonih otvora mreže sita a x b=45 x 94 proizvoda drobljenja tercijarne drobilice mm i a x b=16 x 48 mm, respektivno prema „Nordberg“, HP 500, „metso-minerals“ odgovarajućim etažama sita). Sve ovo, uz Klasa Izlaz CSS =16 mm, (5/8’’) dato setovanje drobilica sa očekivanim Krupnoće M (%) R (%) D (%) proizvodima drobljenja istih (tab. 2 i 3.), kao i d (mm) uz finiji ulaz u sistem drobljenja i -25+20 10 10 100 prosejavanja, finiji proizvod primarne -20+16 12 22 90 drobilice (tab. 1), i uz rekonstruisane granulometrijske sastave, koji su sračunati za -16+12 16 38 78 pojedine neophodne proizvode, a koji zbog -12+10 9 47 62 preobimnosti ovovga rada neće biti prikazani, -10+5 23 70 53 omogućilo je da se dobije bilans masa koji je -5+0 30 100 30 već predstavljen u ovom radu (sl. 2).

Broj 1,2011. 149 RUDARSKI RADOVI

Na ovaj način, postiže se ravnomerniji Tabela 4. Granulo sastav definitivnog balans kretanja masa u pogonu. Izvršena proizvoda drobljenja i prosejavanja je preraspodela masa i dodatno se opte- Klasa Definitivni proizvod drobljenja i rećuju sekundarne drobilice uz povećanje krupnoće prosejavanja dopuštenog maksimalnog opterećenja d(mm) m(%) R(%) D(%) tercijalnih drobilica. Deo mase koji je -16+12 21,12 21,12 100 ranije odlazio na tercijerno drobljenje sada -12+10 10,94 32,06 78,88 odlazi na sekundarno drobljenje. Time se -10+5 30,06 62,12 67,94 omogućuje rad sekundarnog prosejavanja -5+0 37,88 100 37,88 u granicama maksimalnih tehnoloških mogućnosti a radi ostvarenja datih potreba UTICAJ NA BILANS MASA u ovom zatvorenom sistemu tercijalno drobljenje-sekundarno prosejavanje. Sada raspolažemo podacima koji mogu Sada se može predstaviti očekivani granu- kvalitativno i kvantitativno da predstave lometrijski sastav definitivnog proizvoda dro- efekte usvojenog rešenja, za postizanje bljenja koji je dat u tabeli 4., iz kojih se vidi zadatih vrednosti kapaciteta i finoće da očekivani definitivni proizvod drobljenja proizvoda. ispunjava zahtev u pogledu granulometrije. Tabela 5. Uporedni prikaz sadržaja karakterističnih klasa krupnoće i kapaciteta na odgovaraujćim pozicijama u sistemu drobljenja i prosejavanja, a prema veličinama otvora sejnih površinama sita Granulosastav ulaza u sistem drobljenja, na primarno sito

α+45mm α+60mm +45 Sadržaj klase krupnoće Sadržaj klase krupnoće α mm +60 64,51(%) α mm 55,20(%)

Ulaz na Odsev Prosev Ulaz na Odsev Proizvod sekundarnog prim.sito II etažu I etaže II etaže drobljenja Proizvod II etaže prim.sita prim.sita prim.sita Q prim.sita Q Q 1 Q ’ Q = Q 3 5 2 2 5 Q4

# γm 45 e (t/h) e (t/h)

ć 1512,56 499,23 1013,33 281,02 218,21 (-203,2+ 45) mm

eš # č 1013,33 U 16 mm

# γm 45 e (%)

ć 100 33 67 18,58 14,42 (-203,2+ 45) mm

eš # č 67 U 16 mm

# γm 60 e (t/h) e (t/h)

ć 1512,56 630,19 882,37 371,32 258,87 (-203,2+ 60) mm

eš # č 882,37 U 20 mm # γm 60 e (%)

ć 100 41,66 58,34 24,55 17,11 (-203,2+ 60) mm

eš # č 58,34 U 20 mm

Broj 1,2011. 150 RUDARSKI RADOVI

Definitivni proizvod Ulaz na sek. Odsev Prosev Ulaz u Proizvod Proizvod sito sek.sita terc.drob terc.drob drobljenja Q = Q + Q Q sek.sita Q8 Q = Q + Q Q = Q 6 10 5 7 9 3 7 10 9 Q11= Q8+ Q4 # 45 e (t/h) e (t/h)

ć 2349,36 1055,01 1294,35 1336,03 1336,03 1512,56

eš # č

U 16 mm # 45 e (%)

ć 155,33 69,75 85,58 88,33 88,33 100

eš # č U 16 mm # e

ć ) 60 eš

t/h 1965,11 711,42 1253,69 1082,74 1082,74 1512,56 č

( # U 20 mm # 60 e (%)

ć 129,96 47,07 82,89 71,62 71,62 100

eš # č

U 20 mm

Ti podaci su predstavljeni u tabeli 5., i prenosi na masenu raspodelu γm(%) = odnose se na prikaz obračunske klase kru- 1013,33 t/h odnosno, γm(%) = 882,37 t/h, pnoće α+xx mm(%), masene raspodele kara- odseva I etaže primarnog sita klasa kteristične klase krupnoće, γm (%) i kapa- krupnoće: (-203+60)mm i (-203+45) mm citeta sita i drobilica, Q1-Q11 (t/h) za usvo- respektivno u predhodnom odnosno, u ovde jeno rešenje tj. za usvojenu vrednost otvora usvojenom rešenju. sejnih površina primarnog i sekundarnog Konačno, u daljem prikazu ove tabele sita. 5., a na osnovu podataka iz šeme kretanja Ranije je konstatoano, da se postojeći masa, vidi se promena kapaciteta na debalans masa „usko grlo“ masene raspo- sekundarnom drobljenju - kvantitativna dele u datoj tehnološkoj liniji može otkloniti promena u bilansu masa. promenom veličina sejnih površina prima- To je dovelo, uz promene veličine otvora rnog sita. donje prosevne površine primarnog Na taj način postiže se ravnomernija dvoetažnog sita i sekundarnog jednoetažnog opterećenost svih drobiličnih agregata i sita i doterivanje tercijalnog proizvoda bolje iskorišćenje raspoloživog kapaciteta drobljenja datim setovanjem drobilice do tj. mogućnosti istih. postizanja traženog kapaciteta sistema U prvom redu ove tabele, predstavljen je drobljenja od Q=10,6 x 106 t /god i potrebne uporedni prikaz sadržaja karakteristične finoće proizvoda od g.g.k. 100 % (-16) mm. klase krupnoće u granulosastavu ulaza u sistem drobljenja, na primarno sito. Samo po 4. VERIFIKACIJA KAPACITETA osnovu granulometrijskog sastava vidi se evidentna razlika masenog sadržaja kada je Usled postizanja dopuštenog maksima- u pitanju klasa krupnoće, (-g.g.k.+60) mm ili lnog opterećenja procesne opreme neopho- kalsa, (–g.g.k.+45) mm. Ovo se direktno dno je za svu, a posebno za tu visoko

Broj 1,2011. 151 RUDARSKI RADOVI opterećenu opremu, (gde se prema datoj broj NO: 2051-04-07-CBL/ Tampere- šemi kretanja masa očekuje da to budu English,), kapacitet u granicama od tercijarne drobilice i sekundarna sita za minimalni Qkatmin= 280 t/h odnosno, prosejavanje gotovog proizvoda drob- maksimalni od Qkatmax = 350 t/h suve rude. ljenja), izvrši verifikacija radi utvrđivanja Dve sekundarne drobilice, prema šemi stepena njihove kapacitativne mogućnosti i kretanja masa treba da savladaju časovni opterećenosti u ovakvom sistemu drob- kapacitet sekundarnog drobljenja od ljenja i prema ovakvoj raspodeli kretanja Qhsec = 1013,33 t/h odnosno, = 506,66 t/h masa. [1,2] vlažne rude tj. Qhsec=483,86 t/h suve rude, Provera kapaciteta sita je izvršena po po jednoj drobilici. Kako je potreban metodi Mehanobr a na osnovu podataka kapacitet sekundarnog drobljenja po jednoj koji su sadržani u šemi kretanja masa. drobilici, manji od kataloškog kapaciteta, Propusna moć sejnih površine sita je u Qhsec=483,86 t/h < Qkat=540 t/h suve granicama tehnoloških mogućnosti ostva- rude, za predviđeno podešavanje CSS=25,4 renja zadatih potreba. Iz tih razloga mm (1") drobilice u potpunosti zadovolja- tehnološki proces prosejavanja se mora vaju novonastale potrebe. konstantno održavati na zadatom projekto- Tri tercijarne drobilice, Allis Chalmers vanom nivou. U protivnom, može doći do HYDROCONE EHD, 3’’ x 84’’ i jedna poremećaja rada sita. nova Nordberg HP 500 CONE CRU- Dalja provera kapaciteta postojeće SHERS kompanije „metso-minerals“ treba, opreme u sekundarnom i tercijernom prema istoj šemi kretanja masa, da savla- drobljenju pokazala je da, većina opreme daju časovni kapacitet tercijernog dro- uglavnom može zadovoljiti predviđene bljanja od Qhterc = 1336,03 t/h, t.j. po je- kapacitete i nove tehnološke uslove. dnoj tercijernoj drobilici: Qh=334 t/h vlaže Ostvarenje konstantnog projektovanog rude, odnosno Qh= 318,97 t/h suve rude. kapaciteta od Q=1512,56 t/h, zavisiće Tražena rekonstrukcija ovih drobilica, isključivo od drobilica u radu tj. od njihovog može dovesti do značanije promene parcijalno ostvarivog kapaciteta. Za kapaciteta ovih uređaja. Kapacitet svake propisane tehnološke uslove rada, pri kojima konusne drobilice za srednje i sitno je predviđeno da sekundarne drobilice ove drobljenje izveden po osnovu teoreme veličine, Allis-Chalmers Hydrocone crusher „Guldena“ za zapreminu prstena radnog EHD 13“ x 84“ (330,20 x 2133,6 mm) budu prostora drobilice. Nakon tražene rekonstru- podešene na CSS=25,4 mm (1"), imajući kcije naših drobilica možemo predpostaviti tada kapacitet (Prema katalogu proizvođača, da će u kompaniji „metso-minerals“ pri firme Allis Chalmers, broj B 223025 E,) od rekonstrukciji zadržati stare kataloške kapa- Qkat=540 t/h suve rude, a da tercijerne citete ovih drobilica. To se, obzirom na drobilice Allis Chalmers HYDROCONE - teoretske izraze za optimalni broj obrtaja EHD, 3’’ x 84’’ (76,2 x 2133,6 mm) budu ekscentrične čaure n0 i kapaciteta drobilice podešene na CSS = 16 mm (5/8"), imajući Q, može ostvariti preko određivanja pri tome ka-pacitet (Prema katalogu, Allis karakterističnih ključnih vrednosti tehničkih Chalmers, kataloški broj 17 B 5239), od parametara koji direktno utiču na kapacitet kat = 471,64 t/h (520 sht/h) suve rude drobilice (promena profila zaštitnih obloga odnosno, da tercijerna drobilica Nordberg tj. zapremine prstena, radnog prostora dro- HP 500 CONE CRUSHERS kompanije bilice, ekscentritet drobilica, broj obrtaja „metso-minerals“ ima, (prema kataloškim ekscentrične čaure itd.) a da se pri tome poda-cima firme metso-minerals, brošura dobije potrebni kapacitet i određeni

Broj 1,2011. 152 RUDARSKI RADOVI granulo-metrijski sastav proizvoda • Da sva setovanja drobilica budu drobljenja. postavljena prema navodima u ovom Kako je potreban časovni kapacitet radu kako bi se dobijali granulo- tercijernog drobljenja po jednoj drobilici metrijski sastavi proizvoda drobljenja i manji od maksimalnog kataloškog kapaciteta prosejavanja kao ovde prikazani. Qh = 318,97 t/h < Qhkataloši =471,64 t/h suve • Da se zameni jedna dotrajala tercijerna rude ovog tipa drobilice. Zaključujemo da drobilica sa novom HP 500 „metso- Allis Chalmers HYDROCONE EHD minerals” drobilicom. drobilice odgovaraju novonastalim potrebama • Da se rekonstrukcija postojećih drobljenja, tj. zadovoljavaju definisane tercijernih drobilica Allis Chalmers kapacitete. HYDROCONE EHD, 3’’ x 84’’ Isto se dešava i sa tercijernom izvede po navodima iz ovoga rada tako drobilicom HP 500. Kao u predhodnom da one zadovolje u pogledu potrebnog slučaju, potreban je isti časovni kapacitet kapaciteta i granulometrije proizvoda tercijerne drobilice Qh= 318,97 t/h suve drobljenja. rude, i isti je takođe, manji od • Da se uvode dimenzije pravougaonih maksimalnog kataloškog kapaciteta ovog otvora mreže sita a x b = 45 x 94 mm i tipa drobilice, (Nordberg HP 500 CONE a x b = 16 x 48 mm, respektivno prema CRUSHER), Qh = 318,97 t/h < Qkatmax = odgovarajućim sitima i etažama sita. 350 t/h suve rude pa i ta drobilica Jedino pod takvim uslovima moguće je odgovara novoprojektovanim uslovima zadovoljiti postizanje kapaciteta definitivnog rada. proizvoda drobljenja od Q = 10,6 x 106 t godišnje sa g.g.k. 16 mm čiji је očekivani ZAKLJUČAK granulometrijski sastav definitivnog pro- Da bi se postigao kapacitet prerade izvoda drobljenja dat u tablici 4. Izvesna rude ležišta „Veliki Krivelj“ od 10,6x106 potvrda ovih navoda je izvršena verifikacija tona vlažne rude godišnje sa g.g.k. 16 mm, kapaciteta svih uređaja u sistmu drobljenja i kriveljska ruda u sistemu sekundarnog i prosejavanja rudnika „Veliki Krivelj“ na tercijernog drobljenja i prosejavanja terba osnovu koje je konstatovano da u ovakvoj da se prerađuje po postojećoj tehnološkoj koncepciji prerade data oprema može šemi prerade sa postojećom opremom, uz kapacitativno da zadovolji ovakvim predviđeno tehnička rešenje koja će rešenjem novopostavljene uslove. zadovoljiti postavljene uslove. Ono je 5. LITERATURA ostvareno kroz nekoliko napadnih tačaka i to: [1] „Tehnološke osnove projektovanja • Da se vremensko iskorišćenje rada postrojenja za pripremu mineralnih opreme i agregata podigne na viši sirovina“, Rudarski Institut Beograd, neophodni nivo. 1999. • Da sva raspoloživa oprema i objekti [2] N. Magdalinović, „Usitnjavanje i budu u ispravnom i funkcionalnom Klasiranje,“ Beograd, 1999. stanju, revitalizovana oprema. [3] „DRP Rekonstrukcija flotacije Veliki • Da proizvod primarnog drobljenja Krivelj u cilju povećanja kapaciteta bude najfiniji mogući proizvod prerade na 10,6 x 106 t rovne rude primarnog drobljenja. godišnje“ – RI Beograd, 1995.

Broj 1,2011. 153 RUDARSKI RADOVI

[4] „Dopunski rudarski projekat [6] „Studija opravdanosti investiranja u povećanja godišnje prerade rude u proizvodnji kocentrata bakra na flotaciji Veliki Krivelj na 10,6 mil.t površinskom kopu i flotaciji „Veliki rovne rude.“ Tehnološki projekat – Krivelj“ – RTB Bor,“ Beograd, 2010. Institut za Bakar Bor,1997. Geo-in International Beograd. [5] „Predlog tehničko-tehnološkog reše- nja za smanjenje g.g.k. proizvoda dro- bljenja rude V.Krivelj u cilju sma- njenja troškova usitnjavanja i poveća- nja kapaciteta prerade rude“. Institut za bakar Bor - Rudarski Institut Beograd, januar 1993.

Broj 1,2011. 154 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK: 622.73(045)=20

Dragan Milanović*, Zoran Marković**, Daniela Urosević*, Miroslav Ignjatović*

SYSTEM IMPROVEMENT OF ORE COMMINUTING IN VELIKI KRIVELJ PLANT***

Abstract

Increasing the design capacity of three-stage crushing and two-stage sieving from 8.5 x 106 t to 10.6 x 106 t of wet ore annually in the Flotation Plant Veliki Krivelj of RTB Bor with the upper size limit of final crushing product of 100 (%) - 16 mm lower than the previous one, the designed upper size limit of 100 (%) - 20 mm, according to investor demands should have to be done with the avail- able equipment and existing technological scheme of mineral processing. By detailed analyzing the operation and crushing product of this plant, the bottlenecks in the existing processes of crushing and sieving were registered and, in accordance with them, the adequate solutions for achieving the de- fined objective were proposed: “Increase the capacity of wet ore processing to Q = 10.6 x 106 t/annually with the upper size limit of 16 mm”, with as low as possible the investments, that is with the existing equipment and according to the existing technological scheme of processing. This paper presents a part of operation analysis of the aforementioned plant with a proposal of technical solutions that can lead to the realization of set conditions and achieving the capacity of crushing and sieving plant in the copper mine Veliki Krivelj Q = 10.6 x 106 t of wet ore annually with the upper size limit of 100(%) – 16 mm. Key words: capacity, crushing, sieving, product.

1. INTRODUCTION

The ore deposit Veliki Krivelj is about 3 in 1982. In the immediate vicinity of the km northwest of Bora and at 0.5 km from the open pit, the crushing plant, flotation and nearest village Krivelj, by the air line, in the other associated facilities were constructed, river basin of the Krivelj River. The open pit necessary for exploitation and processing, Veliki Krivelj is located within the deposit that is ore dressing by the flotation process. Veliki Krivelj where the exploitation began Ore is transported from the open pit to the

* Mining and Metallurgy Institute [email protected] ** University of Belgrade, Technical Faculty in Bor *** This paper is the result of the Project No.33023, funded by the Ministry of Education and- Science of the Republic Serbia.

No 1, 2011. 155 MINING ENGINEERING primary crushing by trucks, while the waste crushing, (Q = 10.6 x 106 t/year g.g.k and is transported by trucks and combined 16 mm) [5,6]. So, the Krivelj ore in the system of trucks - belt conveyors. After system of secondary and tertiary crushing primary crushing, ore passes through the and sieving would be processed by the reception bin, where it is transported by existing technological scheme of conveyor belts to the open yard of the processing with existing equipment, the primary crushed ore. From the open yard, technical solutions designed to meet the set the ore is sent by the star feeders and belt requirements in terms of achieving the conveyor system to the plant for secondary required processing capacity and crushing and tertiary crushing with screening [4,3]. fineness of finished product. Figure 1 is a Copper Mines – Bor (hereinafter panorama of Veliki Krivelj with facilities referred to RBB) agreed with the Mining for ore processing and enrichment. and Metallurgy Institute Bor (MMI Bor) to develop a technical solution to achieve a capacity of ore processing from the ore deposit Veliki Krivelj of 10.6 x 106 t of wet ore per year. Regarding to this, it is necessary to check the capacity and condition of existing equipment and provide solutions for achieving the defined processing capacity with the final productof crushing g.g.k.16 mm. Noting that in all attempts to achieve in industrial practice the defined capacity of 10.6 x 106 t of run-of-mine ore per year, the satisfactory results were not obtained. Figure 1. Panorama of Veliki Krivelj with Despite the fact, that in these attempts to facilities for ore processing and enrichment finess of the final product crushing was requested that it is g.g.k. 20mm. This is, compared to the present 2. ACHIEVING THE CAPACITY required fineness of the finished product (Q=10,6 x 106 t/year g.g.k. 16 mm) from the crushing g.g.k. 16 mm, represented a far easier option. A prerequisite for achievement the 6 The Bond work index of ore from Veliki defined goals, (Q = 10.6 x 10 t / year g.g.k. Krivelj ranges from 12-14 kWh /t and, for and 16 mm) is that all available equipment further work, the hard ore is adopted at the and facilities are in good and functional junction between medium hard and hard ore condition, revitalized equipment, to the with the value of the Bond work index of 14 extent that the utilization of time in which kWh/t, that is kWh/sht. the necessary to achieve the planned In the process of finding technical capacity and quality of processed ore. This solutions considered all options to the time of use the equipment and facilities is existing technology for ore processing expected to be increased from the previous with minimum investment procedures in mode when dealing with low processing 6 the stage of secondary and tertiary capacity (from 8.5 or 10.6 x 10 t/year, and a crushing. (Primary screening, secondary higher upper limit of the finished product crushing, tertiary crushing in a closed size from the crushing g.g.k. 20 mm). With cycle with a secondary sieving) meet the the adopted coefficient of time utilization needs of required processing capacity and facilities of secondary and tertiary crushing required fineness of the finished product and sieving of k = 0.8, the required horly

No 1, 2011. 156 MINING ENGINEERING capacit for ore processing will be: sieving. Due to the given facts, it is Qh = 1512.56 t/h wet ore. For the same, the necessary to carry out such setting of the verification of plant secondary and tertiary primary crusher that will satisfy, on one crushing and screening will be carried out, side, the above conditions and, on the as well as a view of scheme of mass other side, to ensure the satisfaction of movement. Therefore, to achieve a higher capacity and reliability in operation. The capacity, among other things, the grain size distribution of the primary maximum use of the effective time of crushing product is taken from the equipment, working conditions and catalogue of the manufacturer and increasing the allowable maximum loads of presented in Table 1 according to the equipment will be required. Furthermore, adopted outlet of the primary crusher Allis we will not dwell on the time utilization of Chalmers 48’’x74’’ in an open position of equipment and facilities, but it must be OSS = 139.7 mm (51/2’’) and for the noted that the projection of the final medium hard ore. technical solution the utilization of Table 1. Grain size distribution of the available fund time was used as one of the outlet from the primary crusher important factors of this technical solution Allis Chalmers 48x74’’ [5]. Figure 2, gives an overview of the existing technological scheme with Size range Outlet OSS =139.7 mm. (51/2’’) equipment and movement of a mass of d(mm) m(%) R(%) D(%) system for secondary and tertiary ore -203.20+190.5 1 1 100 crushing and sieving in the mine Veliki -190.5+177.80 1.5 2.5 99 Krivelj for the adopted technical solution. -177.80+165.10 1.5 4 97.5 It is seen from Figure 2 that the system -165.10+152.40 2 6 96 of secondary and tertiary crushing and -152.40+139.70 4 10 94 sieving is technologically connected to the -139.70+127 5 15 90 primary crushing system. For these -127+114.30 7 22 85 reasons, the primary crushing system has -114.30+101.60 5.5 27.5 78 to give a product that will best suit to the -101.60+88.90 8.5 36 72.5 system of secondary and tertiary crushing -88.90+76.20 8 44 64 and sieving in terms of achieving the -76.20+63.50 8.5 52.5 56 required conditions. There, it means that -63.50+50.80 7.5 60 47.5 all equipment is in good and functional -50.80+45 4.51 64.51 40 condition, the revitalized equipment, in -45+38.10 4.49 69 35.49 order to meet the new designed -38.10+31.75 3.50 72.5 31 technological conditions [6]. And those -31.75+25.40 5 77.5 27.5 -25.40+19.05 3.5 81 22.5 are that the product of primary crushing, -19.05+16 2.14 83.14 19 which is, according to the technological -16+12.70 1.86 85 16.86 scheme, stored in the open line S-1, as the -12.70+6.35 4 89 15 finest possible product. It, later in the 6.35+0 11 100 11 system of secondary and tertiary crushing and sieving, comes first on two-level The presented grain size distribution of screen where where the sieving product of the primary crushing product is inlet into the second sieving presents the finished to the secondary and tertiary crushing and crushing product. So, the share of this sieving plant. product as desirable as possible in the inlet Inlet to the primary two-level sieve. ore that coming into the system of secondary and tertiary crushing and

No 1, 2011. 157 MINING ENGINEERING

Figure 2. Scheme of mass movement in the secondary and tertiary crushing and sieving

No 1, 2011. 158 MINING ENGINEERING

It is seen from the grain size For secondary crushing in the plant distribution that the input ore, in the plant Veliki Krivelj, two (in the previous of secondary and tertiary crushing and period, installed and validated in sieving, has a size class of g.g.k. 100% ooperation) revitalized secondary crusher -203 mm, and a participation of size class type: Allis Chalmers Hydrocone EHD, of -20 mm is approximately α-20= 20%, size: 13’’ x 84’’ with ECC: 2’’ (50.8 mm) while the participation of size class of -16 are provided. Figure 3 presents the above mm is α-16= 16.86 %. It is also seen that mentioned crusher which is installed in the participation of larger size classes is as the building of the secondary crushing. follows: -63.5 mm α-63,5= 47.5 %, while itis For tertiary crushing in the plant Veliki for the -45 mm size class α-45= 35.49 %. Krivelj, three (in the previous period, For all and especially for highly loaded installed and validated in operation) equipment, which is in such system of revitalized tertiary crusher type: Allis crushing, it is primarily expected to be the Chalmers Hydrocone EHD, size: 13’’ x tertiary crushers and secondary screens for 84’’with ECC: 2’’ (50.8 mm) are provided sieving the final product of crushing, and and a new ”metso-minerals“ „Nordberg“ verification will be conducted to HP 500 Series Cone Crushers. Figures 4 determine the extent of their capabilities and 5, respectively, present the above and capacitive load. crushers.

Figure 3. Secondary crushers „Allis Chalmers“ Hydrocone EHD, 13’’x 84’’

No 1, 2011. 159 MINING ENGINEERING

Figure 4. Tertiary crushers „Allis Chalmers“ Hydrocone EHD, 3’’x 84’’

13x84’’ at CSS = 1’’ (25 mm) and eccenter of crusher ECC = 11/4’’ (32 mm) (maximum tightening of a crusher), for the medium hard raw materials (Wi = 14 kWh / t, 15.43 kWh / sht). From it is seen that ore has g.g.k. over 45 mm, or 100%-50mm, and a size class participation - 20 mm is about α-20= 44 %, while the participation of size class is approximately α-16 = 36%. Necessary information about the granulometric composition of the product of tertiary crushing are adopted from the catalogue of the „metso-minerals“, and the Figure 5. Tertiary crusher „Nordberg“ HP newly purchased HP 400 crusher. Series Cone Crushers, HP 500, Assuming that after the planned „metso-minerals“ reconstruction of the existing crusher: Table 2 presents the expected particle „Allis Chalmers“ Hydrocone EHD, 3’’x size distribution of secondary crushed ore 84’’ sa ecc: 2’’ (50.8 mm) they will give per Allis Chalmers, for the adopted the same products as the newly purchased secondary crusher outlet Hydrocone EHD, crusher. And therefore, they will also have catalogue number B 223 025 E, size: the same particle size distribution. The

No 1, 2011. 160 MINING ENGINEERING expected particle size distribution of pro- Table 3. Grain size distribution of the ducts from catalogues of the „Nordberg“, crushed product of the tertiary crusher HP 500, „metso-minerals“ crusher, number „Nordberg“, HP 500, „metso-minerals“ of brochures No.: 2051-04-07- per catalogue CBL/Tampere-English with eccenter, ecc Size class Outlet CSS =16 mm, (5/8’’) according to the Standard of manufacturer d (mm) for this type of crusher, at a given tensile of a M (%) R (%) D (%) crusher CSS = 16 mm for the medium hard -25+20 10 10 100 raw materials (Wi = 14 kWh/t, 15.43 -20+16 12 22 90 kWh/sht), is given in Table 3. -16+12 16 38 78 Based on previous analysis of -12+10 9 47 62 opeartion the system of secondary and -10+5 23 70 53 tertiary crushing and sieving of the mine -5+0 30 100 30 Veliki Krivelj, when in a given system in the addition of different settings of From the foregoing, and to meet the crushers, different network of screens given conditions to achieve the required were installed (here is primarily related to processing capacity with the required fineness of the finished product crushing, Q the size of surface mesh, respectively to 6 the sieve level, axa = 60x60 mm and axb = 10.6 x 10 t/year g.g.k. and 16 mm, in = 20x40 mm), overloading was always development of this technical solution detected of tertiary crushing and preparation, it will be introduced in relation secondary screening, (secondary mesh to the former, the changed technological and sieve with reduced efficiency) [3,4] technical parameters of ore processing. In Also, during such mass distribution this sense, it is noted that under this implies a with the mesh sizes, there is deloading of significant reconstruction of the three tertiary secondary crushing causing imbalance in crushers type Allis Chalmers Hydrocone the entire system of crushing and sieving. EHD, 3’’x84’’ sa ecc: 2’’ (50.8 mm) (replacement of eccenter and replacement of Table 2. Grain size distribution of the existing steel linings, that the introduction of crushed product of the secondary a new profile and lining of crushers and IC crusher „Allis Chalmers“ Hydrocone system of automatic control (Intelligent EHD, size:13’’x84’’, ecc=32 mm Control) 7000) and acquisition of a new (11/4’’) per catalogue tertiary crushers type „Nordberg“ HP Series Size class Outlet CSS =25.4 mm, (1’’) Cone Crushers, HP 500, company „metso- d (mm) m(%) R(%) D(%) minerals“. Reconstructed existing crushers -50+40 8 8 100 type Allis Chalmers EHD should give similar -40+30 20 28 92 or the same particle size distribution, -30+25 12 40 72 crushing ore product (grain size distribution -25+20 16 56 60 of grushing product per catalogues) as well -20+16 8 64 44 as the new HP 500 crusher. Then the -16+12 10 74 36 -12+10 4 78 26 necessary and reconstruction of screens, -10+5 12 90 22 which implies a change in surface mesh -5+0 10 100 10 screens that introduce mesh surface sieves

No 1, 2011. 161 MINING ENGINEERING with different openings, i.e., the dimensions the secondary crushing. This allows the of the hole mesh sieve. (Instead of the operation of secondary sieving in the existing nets of screens, with dimensions of limits of maximum technological rectangular openings axa = 60 x 60 mm and capabilities to achieve the given needs in iaxb=20x40 mm, introducing the this closed system, tertiary crushing- dimensions of the rectangular hole mesh secondary screening. sieve axb = 45x94 mm and axb=16x48 mm, It can now be expected to present the respectively, by adequate levels of the final product particle size distribution of screen). All this, with a given setting with an crushing, which is given in Table 4, which expected crushing crushing of the same show that the expected final product meet products (Tables 2 and 3), and the finer the the crushing demand in terms of entrance to the system of crushing and granulometry. sieving, finer primary crusher product (table Table 4. Grain size distribution of the 1), and the reconstructed particle size crushing and sieving final product distribution, which calculated for certain Final product of crushing and Size class essential products that due to the sieving overvolume of this paper will not be d(mm) m(%) R(%) D(%) displayed, made it possible to obtain mass -16+12 21.12 21.12 100 balance that has already been presented in -12+10 10.94 32.06 78.88 this paper (Figure 2). -10+5 30.06 62.12 67.94 In this way, more even balance of -5+0 37.88 100 37.88 movement the masses in the site is obtained. Redistribution of the mass was performed and further burden the 3. THE EFFECT ON THE secondary crusher to increase the allowed MASS BALANCE maximum allowed loading of tertiary We have now the data that can present crushers. A part of mass that previously qualitatively and quantitatively the effects went to the tertiary crushing, now goes to of tadopted design to achieve the given values of capacity and product fineness.

Table 5. Comparative review of the contents of typical class sizes and capacity at the suitable positions in the system of crushing and sieving and according to the mash size of sieving surfaces Grain size distribution of input into the crushing system on the primary sieve

α+45mm Grain size content α+60mm Grain size content α+45mm 64.51(%) α+60mm 55.20(%)

Inlet on II Undersize Oversize Product of Inlet on primary screen Undersize of level of of I level of II level secondary Product II level primary screen Q2= screen crushing Q1 screen Q3 screen Q2’ Q5 Q4 Q5

# γm 45 (-203.2+ 45) 1512.56 499.23 1013.33 281.02 218.21 # mm

Partic. (t/h) 16 mm 1013.33

# γm 45 (-203.2+ 45) 100 33 67 18.58 14.42 # mm

Prtic. (%) 16 mm 67

No 1, 2011. 162 MINING ENGINEERING

# γm 60 (-203.2+ 60) 1512.56 630.19 882.37 371.32 258.87 # mm 20 mm 882.37 Partic. (t/h)

# γm 60 (-203.2+ 60) 100 41.66 58.34 24.55 17.11 # mm

Partic.(%) 20 mm 58.34 Inlet Final Oversize Undersize Proizvod tert.crushing crushing Product Inlet on sec.screen Q6= Q10+ Q5 sec.screen sec.screen terc.drob Q9= product Q7 Q8 Q10= Q9 Q3+ Q7 Q11= Q8+ Q4 # 45 2349.36 1055.01 1294.35 1336.03 1336.03 1512.56 #

Partic.(t/h) 16 mm

# 45 155.33 69.75 85.58 88.33 88.33 100 #

Partic. (%) 16 mm

# 60 1965.11 711.42 1253.69 1082.74 1082.74 1512.56 #

Partic.(t/h) 20 mm

# 60 129.96 47.07 82.89 71.62 71.62 100 #

Partic. (%) 20 mm

Those data are presented in Table 5 size class in the grain size distribution of the and related to the review of account size input in the crushing system on the primary class α+xx (%) of mass distribution of the screen. Only based on the grain size characteristic size class γm (%) and distribution, an evident difference is seen capacity of screens and crushers. Q1-Q11 between the mass content when it is a size (t/h) for the adopted solution, that is the class (-g.g.k. +60) mm or size class adopted value of sieving areas openings of (–g.g.k.+45) mm. This is directly transferred the primary and secondary screens. to the mass distribution γm (%) = 1013.33 Earlier, it was stated that the existing t/h respectively γm (%) = 882.37 t/h of sieve mass imbalance, the „bottleneck“ of the oversize from the first stage of the primary mass distribution in a given technological screen size class: (-203+60) mm (- 203+45) line, can be eliminated By the change of mm respectively in the previous, i.e. the size the screening areas of the primary adopted solution here. screen. Finally, in further view of thisTable 5., In this way, the balanced loading of all and based on data from the mass movement crushing aggregates is achieved and better scheme, itis seen the change in the use of the available capacity, i.e, the secondary crushing capacity - quantitative possibility of the same. change in the mass balance. The first line of this Table prsents a This led, with changing the mesh size comparative view of content the specific of the lower surface screening area of the

No 1, 2011. 163 MINING ENGINEERING primary two-stage screen and the Chalmers number B 223 025 E) of Qkat = secondary one-stage scree, and adjustment 540 t/h dry ore. and the tertiary crusher the and tertiary crushing product by the Allis Chalmers HYDROCONE - EHD. given setting of crusher to achieve the 3’’x84’’ (76.2x2133.6 mm) are set to required capacity of the crushing system of CSS=16 mm (5/8"), having a capacity dur- Q = 10.6 x 106 t/year and the required ing this (according to the catalogue Allis product fineness of g.g.k. 100 % (-16) mm. Chalmers. No. 17 B 5239) of Qkat = 471.64 t/h (520 sht/h) dry ore, that is terti- 4. VERIFICATION OF THE ary crusher Nordberg HP 500 CONE CAPACITY CRUSHERS company Metso-Minerals has Due to achieve the permitted maxi- (according to the catalogues data No. NO: mum load process equipment, it is neces- 2051-04-07-CBL/Tampere-English) capac- sary for all, and especially for the highly ity within the limits of minimum loaded equipment (where according to the Qkatmin= 280 t/h, that is the maximum of mass movement scgeme it is expected to Qkatmax = 350 t/h dry ore. be the tertiary crushers and secondary Two secondary crushers, according to screens for sieving the final product of the scheme mass movement, have to over- crushing), to perform a verification in come the hourly capacity of secondary order to determine a degree of their capa- crushing of Qhsec = 1013.33 t/h, bilities and loads in a such system of i.e./2=506.66 t/h wet ore, that is crushing and according to such distribu- Qhsec=483.86 t/h dry ore per one crusher. As tion of mass movements [1,2]. the required capacity of the secondary crush- Checking the capacity of screens was ing per one crusher is less than the cata- carried out according to the Mehanobr logue capacity Qhsec=483.86 t/h < method and based on data contained in the Qkat=540 t/h dry ore, it completely meets scheme of mass movement. Throughput the newly arisen needs for the planned ad- capacity of surface mesh is in the range of justment CSS=25.4 mm (1") of crusher. technological possibilities for achieving Three tertiary crushers Allis Chalmers the given requirements. For these reasons. HYDROCONE EHD. 3’’x84’’ and a the technological process of screening new Nordberg HP 500 CONE CRUSH- must be constantly maintained at the given ERS company „metso-minerals“ should, designed levels. Otherwise, there may be according to the same scheme of mass disturbances of screens. movement to cope with hourly capacity of Further checking the capacity of exist- the tertiary crushing Qhterc = 1336.03 t/h, ing equipment in the secondary and tertiary i.e. per one tertiary crusher: Qh=334 t/h crushing showed that most of the equip- wet ore and Qh= 318.97 t/h dry ore. ment can meet the most anticipated new The required reconstruction of these technological capabilities and requirements crushers can lead to an important change of in general. The realization of constant de- capacity of these devices. Capacity of each sign capacity of Q=1512.56 t/h, will de- cone crusher for medium and fine crushing pend exclusively on the crushers in opera- was derived based on the theorem of Gulden tion, that is their partially achievable capac- for the ring volume of working space of ity. For specified technological conditions, crusher. After required reconstruction of our in which it is provided that the secondary crushers, it can be assumed that the company crushers of this size, Allis-Chalmers Hy- „metso-minerals“ will retain, in the recon- drocone crusher EHD 13“ x 84“ (330.20 x struction, the old catalogue capacities of these 2133.6 mm) are set to CSS=25.4 mm (1"), crushers. That is, regarded to the theoretical then having the capacity (according to the expressions for optimum r. p. m. of eccentric catalogue of manufacturer company Allis bushings n0 and crusher capacity Q, can be-

No 1, 2011. 164 MINING ENGINEERING achieved by determination the characteristic • That all the available equipment and values of key technical parameters that di- facilities are in good and functional rectly affect the capacity of crusher (profile condition, revitalized equipment. change of protective linings, that is the ring • That the primary crushing product is volume, Working space of crusher, eccentric the finest possible product of of crushers, r.p.m. of eccentric bushing, primary crushing. etc.), and that, during this, the required ca- • That all the settings of crusher are set pacity and the certain grain size distribution according to the given statements in of crushing product are obtained. this paper to get the particle size As the required hour capacity of tertiary distribution of crushing and sieving crushing per one crusher is less than maxi- product as shown here. mum catalogue capacity Qh = 318.97 • To replace the worn tertiary crusher t/h

No 1, 2011. 165 MINING ENGINEERING

[5] Proposal of Technical – Technological [6] Feasibility Study on Investments into Solution for Decrease the g.g.k. of the the Copper Concentrate Production at Ore Crushing Product from the Veliki the Open Pit and Flotation Plant Veliki Krivelj to the aim of Decrease the Costs Krivelj, RTB Bor, Belgrade, March of Comminuting and Increase the 2010, Geo-in International Belgrade (in Capacity of Ore processing, Copper Serbian) Institute Bor – Mining Institute Belgrade, January 1993, (in Serbian)

No 1, 2011. 166 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:622.261.2(045)=861

Duško Đukanović,* Miodrag Denić,** Dušan Dragojević,*

BRZINA IZRADE PODZEMNIH PROSTORIJA, KAO USLOV UVOĐENJA MEHANIZOVANE IZRADE PODZEMNIH PROSTORIJA U RUDNICIMA JP PEU RESAVICA

Izvod

U rudnicima JP PEU Resavica, podzemne prostorije se trenutno izrađuju bušačko-minerskim radovima. Postojeći način izrade, podzemnih prostorija, ne zadovoljava po pitanju brzine i trošk- ova izrade. Ostvarene brzine izrade podzemnih prostorija, primenom bušačko-minerskih radova su veoma male. U rudnicima JP PEU, prevashodno u rudnicima „Lubnica“, „Soko“ i „Rembas“, projektovano je otvaranje novih otkopnih polja i jama, pri čemu je ukupna dužina projektovanih prostorija oko 26.000 m. U koliko bi se projektovane prostorije radile samo bušačko-minerskim radovima, došlo bi do značajnog zakašnjenja u otvaranju novih proizvodnih kapaciteta, a samim tim i do ne ispunjavanja zadatog cilja-povećanja proizvodnje uglja. Iz ovog razloga razmatra se mogućnost uvođenja mehanizovane izrade podzemnih prostorija, u okviru ovog rada razmatrana je brzina izrade podzemnih prostorija, kao jedan od uslova uvođenja mehanizovane izrade podzemnih prostorija u rudnicima JP PEU Resavica. Ključne reči: brzina izrade podzemne prostorije, rudnik, mašina, ugalj.

UVOD

Podzemne prostorije u rudnicima JP U cilju povećanja proizvodnje uglja i PEU, se trenutno izrađuju bušačko-miner- otvaranja novih jama i otkopnih polja, skim radovima. neophodno je razmotriti primenu produk- Klasičan način izrade podzemnih pros- tivnijeg načina izrade podzemnih pros- torija ne omogućava zadovoljavajući učinak, torija, tj. primenu mašina za izradu jer se tehnološke operacije bušenja, miniranja podzemnih prostorija. i utovara izvode ručno i zahtevaju nedopus- Čak i bez detaljne analize se može kon- tivo velike utroške vremena. S obzirom na statovati da bi uvođenje mehanizovane ovu činjenicu, kao i na ranije velike zaostatke izrade, značajno unapredilo postupak iz- na otvaranju i pripremi novih podzemnih pro- rade podzemnih prostorija u rudnicima JP izvodnih kapaciteta, postojeći način njihove PEU, pogotovo u smislu povećanja brzine pripreme vodi stagnaciji razrade jama i ne izrade i unapređenja sigurnosti i bezbed- omogućava povećanje proizvodnje uglja. nosti radnika.

* JP za PEU, Biro za projektovanje i razvoj Beograd ** JP PEU Resavica, Sektor za investicije, projektovanje i tehnološki razvoj

Broj 1,2011. 167 RUDARSKI RADOVI

ODREĐIVANJE MINIMALNE

BRZINE IZRADE PODZEMNIH

PROSTORIJA

U okviru ovog rada određena je brzina U ovom radu razmatrana je mogućnost izrade podzemnih prostorija, pri kojoj su primene mašina za izradu podzemnih pros- troškovi izrade isti kod obe tehnologije, tj. torija u rudnicima Lubnica, Soko, Rembas određena je minimalna brzina izrade (jama Strmosten i jama Ravna Reka IV podzemne prostorije, koja se mora ost- blok). Za svaki rudnik, odabrane su karakter- variti kod primene mehanizovane izrade. istične radne sredine, oblici i površine po- prečnog preseka prostorija (tabela 1.).

Tabela 1. Karakteristične radne sredine, oblici i površine poprečnog preseka prostorija Čvrstoća Svetli Iskopni Radna Oblik Rudnik na pritisak profil profil sredina prostorije (MPa) (m²) (m²) Lubnica Jalovina ≈10 Lučni 10,6 12 Jalovina ≈52 Lučni 14,5 16,5 Soko Ugalj ≈22 Kružni 9,6 11,4 Rembas Jalovina ≈40 Kružni 9,6 11,4 Strmosten Rembas Jalovina ≈66 Kružni 9,6 11,4 R. Reka IV Ugalj ≈8 Kružni 9,6 11,4

U cilju određivanja minimalne brzine nički za obe tehnologije. izrade, tj. brzine izrade podzemne pros- U cilju poređenja tehnologija izrade torije pri kojoj su troškovi izrade isti kod podzemnih prostorija bušačko-minerskim obe tehnologije, ustanovljena je određena radom i mašinama, a na osnovu ustanovlje- metodologija proračuna troškova izrade. ne metodologije proračuna troškova izrade, Proračunom troškova izrade obuhvaćeni su određeni su troškovi izrade u zavisnosti od samo direktni troškovi izrade podzemne brzine izrade, za odabrane anlizirane radne prostorije, a koji se sastoje iz sledećih vrsta sredine. Kod određivanja troškova izrade troškova: troškovi radne snage, troškova mašinama uzeta je nabavna vrednost mašine normativnog materijala, troškova energije i od 700.000 EUR. troškova sredstava za rad (opreme). Na osnovu izvršenih proračuna troškovi Kako cilj ovog rada nije da se odrede izrade u zavisnosti od brzine izrade, za ukupni troškovi izrade prostorije, već da se svaku analiziranu radnu sredinu, sačinjen je dodredi minimalna brzina izrade podzem- dijagram (slika 1.) zavisnosti troškova i nih prostorija mašina u našim rudnicima, brzine izrade podzemnih prostorija, sa kojeg kod proračuna direktnih troškova izrade je očitana vrednost brzine izrade podzemne prostorija, nisu proračunavati oni troškovi prostorije pri kojoj su troškovi izrade isti kod koji su zajednički i kod tehnologije izrade obe tehnologije (tabela 2.). Na slici broj 1. prostorija bušačko-minerskim radovima. dat je dijagram zavisnost troškova i brzine To se prvenstveno misli na troškove izrade podzemne prostorije tehnologijom podgradnog materijala, provetravanja i bušačko-minerskog rada i mašinom u radnoj drugih normativnih troškova koji su zajed sredini 4.

Broj 1,2011. 168 RUDARSKI RADOVI

400

350

300

250 Maš ina 200 BMR EUR/m 150

100

50

0 0246810 m/dan

Sl. 1. Zavisnost troškova i brzine izrade podzemne prostorije tehnologijom BMR i mašinom u radnoj sredini 4

Tabela 2. Vrednost brzine izrade podzemne prostorije pri kojoj su troškovi izrade isti kod obe tehnologije Čvrstoća Radna Rudnik na pritisak Brzina izrade (m/dan) sredina (MPa) Lubnica Jalovina ≈10 7,4 Jalovina ≈52 5,2 Soko Ugalj ≈22 7,0 Rembas - Strmosten Jalovina ≈40 6,0 Jalovina ≈66 5,3 Rembas - R. Reka IV Ugalj ≈8 7,6

Na osnovu navedenih podataka o pot- podzemne prostorije za analizirane rud- rebnoj brzini izrade podzemnih prostorija nike (slika 2.), kao i analitička zavisnost (tabela 2.), sačinjen je dijagram zavisnosti (obrazac 1.). čvrstoće radne sredine i brzine izrade

10

8

6

4 (m/dan)

2

0 0 20406080 (MPa)

Sl. 2. Grafički prikaz zavisnosti čvrstoće radne sredine i brzine izrade podzemne prostorije

Zavisnost čvrstoće radne sredine i Sa dijagrama prikazanog na slici broj 1., brzine izrade podzemne prostorije, data je se vidi da se sa povećanjem čvrstoće stenske i obrascem: mase, smanjuje i minimalna brzina izrade podzemne prostorije, a obrazac (1) nam omo- V = 0,0004σ 2 − 0,0731σ + 8,1897 (1) gućava da na osnovu čvrstoće radne sredine, 2 ()R = 0,9687 odredimo minimalnu brzinu (m/dan), sa velikom preciznošću.

Broj 1,2011. 169 RUDARSKI RADOVI

ZAKLJUČAK

I ako je opšete poznato da se primenom Komitet za podzemnu eksploataciju mehanizovane izrade postižu veće brzine mineralnih sirovina, Bor, str. 81-88. izrade, u ovom radu smo odredili brzinu 2005. izrade koja se mora ostvariti kod primene [7] Đukanović D.; Possibilities for appli- mehanizovane izrade podzemnih prostorija cation of contemporary technologies u uslovima rudnika JP PEU. Na osnovu production of shafts premises in coal izvršene analize može se reći da je potrebna mines in Serbia, 39th International minimalna brzina izrade prostorija October conference on mining and mašinom 6,85 m/dan. metallurgy, 07 - 10. October, Soko- , University of Belgrade, Tehnical LITERATURA Faculty Bor and Copper institute Bor, [1] Vidanović N, Đukanović D., Serbia, str. 39-43; 2007. Dragosavljević Z.; Inovation of techno- [8] Đukanović D., Denić M., Dragojević logy of construction of underground D.; Modernizacion of tehnological mininig workings by use drilling and process of the construction of shaft blasting methods of work, Technics premises in coal mines of Serbia, Technologies Education Management, Internacional Mining Forum 2009 – TTEM, Vol. 5, No.4, pp. 861–866; 2010. Deep Mining Challenges – I Polish- [2] Đukanović D., Đukanović D. Savić Lj.; Serbian forum, 18-21. February, Analiza ostvarenih tehničkih parametara Krakow, str. 69-72; 2009. pri izradi podzemnih prostorija u rudni- [9] Đukanović D.; Studija opravdanosti cima uglja u Srbiji, Podzemni radovi 13, mehanizovane izrade rudarskih prosto- str. 17-22, RGF, Beograd, 2004. rija u rudnicima JP PEU; Biro za [3] Đukanović D.; Model optimizacije projektovanje i razvoj, Beograd, 75 tehno-ekonomskih pokazatelja pri izradi strana, 2010. podzemnih prostorija u rudnicima uglja [10] Milisavljević V., Đukanović D.; Present Srbije, Doktorska disertacija, RGF, situation and perspective of roadways Beograd, 2005. development in underground coal [4] Đukanović D.; Tehnologija izrade mines in Serbia, Technicka Diagno- jamskih prostorija kombinovanim maši- stika, str. 253-257, TU, Ostrava, 2005. nama sa osvrtom na mogućnost prime- [11] Tokalić R., Trajković S., Đukanović D.; ne u rudnicima uglja Srbije. Savez ener- Analiza postignutih učinaka na izradi getičara, Beograd, 143 strane; 2005. podzemnih prostorija u rudnicima uglja [5] Đukanović D., Đukanović D.; Analiza u Srbiji, Podzemni radovi 11, str. 33-38, zavisnosti ostvarenih troškova i brzine RGF, Beograd, 2002. izrade podzemnih prostorija u [12] Trajković S., Đukanović D., Lutovac S.; rudnicima uglja u Srbiji, Rudarski analysis of technical parameters impact radovi 01/2005, str. 51-55, Komitet za at advance rate of roadway development podzemnu eksploataciju mineralnih in Serbian coal mines, 2nd Balkan Min- sirovina, Bor, 2005. ing Congress, (BALKANMINE 2007), [6] Đukanović D.; Istraživanje strukture 10. do 13. 09., Beograd, Academy of troškova pri izradi podzemnih prostorija Engineering Sciences of Serbia and u rudnicima uglja u Srbiji, (Investigation Faculty of Mining and Geology of the costs structure in development the University Belgrade, 143-148; 2007. underground rooms in the coal mines in Serbia), Rudarski radovi 02/2005,

Broj 1,2011. 170 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622 UDK: 622.261.2(045)=20

Duško Đukanović,* Miodrag Denić,** Dušan Dragojević,*

DRIVAGE RATE OF UNDERGROUND ROOMS, AS A CONDITION OF INTRODUCTION THE MECHANIZED DRIVAGE OF UNDERGROUND ROOMS IN THE JP PEU RESAVICA MINES

Abstract In the JP PEU Resavica Mines, the underground rooms are currently driven by the drilling- blasting works. The current way of drivage the underground rooms does not meet the rate and costs of drivage. The realized drivage rates by the use of drilling-blasting works are very small. In the JP PEU Mines, primarily in the mines "Lubnica", "Soko" and "Rembas”, opening of new min- ing fields and pits was designed, where the total length of designed rooms is about 26,000 m. If the designed rooms would be driven by the drilling-blasting works, a significant delay in opening the new production capacities will be, and therefore the designed increase of coal production would not be met. Due to this reason, there is possibility for introduction the mechanized drivage of un- derground rooms. This work gives a consideration on drivage rate of underground rooms as one of the conditions for introduction the mechanized drivage of underground rooms in the JP PEU Resavica Mines. Key words: drivage rate, underground room, mine, machine, coal

INTRODUCTION Underground rooms in the JP PEU it is necessary to consider the use of more Mines are currently driven on by the drill- productive way of drivage the under- ing-blasting works. The classical way of ground rooms, i.e. the use of machines for drivage does not provide the satisfactory drivage the underground rooms. effect because the technological operations Even without a detailed analysis, it can of drilling, blasting and loading are per- be concluded that the introduction of formed manually and require unacceptably mechanized drivage would significantly large time consumptions. Regarding to this improve the drivage process in the JP PEU fact and previously large backlogs in the Mines, especially in terms of increasing opening and preparation of the new under- the drivage rate and improvement of secu- ground production capacities, the existing rity and safety of workers. method of their preparation leads to a stag- The drivage rate of underground rooms nation of development the pits and prevents was determined within this work with the the increase of coal production. same costs in both technologies, i.e. mini- In order to increase the coal production mum drivage rate was determined that has to and opening of new pits and mining fields, be realized by the use of mechanized drivage.

* PC for Underground Exploitation Resavica, Bureau for Design and Development, Belgrade ** PC for Underground Exploitation Resavica, Sector for Investments, Designing and Technological Development

No 1, 2011. 171 MINING ENGINEERING

DETERMINING THE MINIMUM

DRIVAGE RATE OF UNDER-

GROUND ROOMS

The use of machines for drivage of un- The characteristics of working environment, derground rooms was considered in this work forms and cross-sectional areas of rooms in the mines Lubnica, Soko, Rembas were selected for each mine (Table 1). (Strmosten pit and Ravna Reka IV block pit).

Table 1. Typical working environment, forms and cross-sectional areas of rooms Bright Compressive Working en- Room cross- Excavation Mine strength vironment shape section profile (m²) (MPa) (m²) Lubnica Waste rock ≈10 Arched 10.6 12 Waste rock ≈52 Arched 14.5 16.5 Soko Coal ≈22 Circular 9.6 11.4 Rembas Waste rock ≈40 Circular 9.6 11.4 Strmosten Rembas Waste rock ≈66 Circular 9.6 11.4 R. Reka IV Coal ≈8 Circular 9.6 11.4

In order to determine the minimum of drivage the underground rooms using drivage rate, i.e. the rate of development the the drilling-blasting operations and ma- underground room with the same costs in chines, and based on the established both technologies, a specific methodology methodology of calculation the costs of for calculation the production costs was es- production, the costs of production were tablished. The production costs include only determined depending on the rate of de- direct production costs of drivage and which velopment for selected analyzed working consist of the following types of costs: labor environment. In determining the costs of costs, costs of normative material, energy machines, the purchase price of the ma- costs and equipment costs. chine of 700,000 EUR was taken. Since the objective of this study is not Based on the realized calculation of to determine the overall costs for drivage, the production costs depending on the rate but to determine minimum drivage rate of of development, a diagram was made underground rooms using the machines in (Figure 1) for each analyzed working en- our mines, and in calculation the direct vironment depending on the costs and costs of drivage, those costs that are drivage rate, from which the rate of devel- common were not calculated also for opment was reads where the costs of technology of drivage using the drilling- drivage are the same in both technologies blasting operations. This primarily refers (Table 2). Figure 1 gives a diagram of to the costs of supporting material, venti- dependence the costs and drivage rate of lation and other normative costs that are underground rooms using the technology not common to both technologies. of drilling-blasting and machine in the In order to compare the technologies working environment 4.

No 1, 2011. 172 MINING ENGINEERING

Figure 1. Dependence of costs and drivage rate using the technology of drilling - blasting and machine in the working environment 4

Table 2. Value of drivage rate of underground space with the same production costs for both technologies Working envi- Compressive Speed development Mine ronment strength (MPa) (m/day) Lubnica Waste rock ≈10 7.4 Waste rock ≈52 5.2 Soko Coal ≈22 7.0 Rembas Waste rock ≈40 6.0 Strmosten Rembas Waste rock ≈66 5.3 R. Reka IV Coal ≈8 7.6

Based on data on the required drivage rate environment and drivage rate was made for of underground rooms (Table 2), a diagram of the analyzed of mines (Figure 2), as well as dependence the strength of working the analytical dependence (Form 1).

Figure 2. Graphical presentation of dependence the strength of working environment and drivage rate Dependence the strength of working It is seen from diagram in Figure 1 that environment and drivage rate is given by with increasing the strength of rock mass, the following form: minimum drivage rate is decreased, and the form (1) enables to determine minimum rate V = 0.0004σ² – 0.0731 σ + 8.1897 (m/day) with high precision based on the (R² = 0.9687)...... (1) strength of working environment.

No 1, 2011. 173 MINING ENGINEERING

CONCLUSION underground rooms in the coal mines in Serbia), Rudarski radovi 02/2005, Even it is commonly known that the Komitet za podzemnu eksploataciju use of mechanized production results into mineralnih sirovina, Bor, str. 81-88. higher drivage rates, this paper gives a 2005. determination of drivage rate that has to [7] Đukanović D.; Possibilities for appli- be achieved using the mechanized produc- cation of contemporary technologies tion of underground rooms in the condi- production of shafts premises in coal tions of the JP PEU Mine. Based on the mines in Serbia, 39th International realized analysis, it can be said that the October conference on mining and required minimum drivage rate using the metallurgy, 07 - 10. October, Soko- machine is 6.85 m/day. banja, University of Belgrade, Tehnical Faculty Bor and Copper institute Bor, REFERENCES Serbia, str. 39-43; 2007. [8] Đukanović D., Denić M., Dragojević [1] Vidanović N, Đukanović D., Drago- D.; Modernizacion of tehnological savljević Z.; Inovation of technology of process of the construction of shaft construction of underground mininig premises in coal mines of Serbia, workings by use drilling and blasting Internacional Mining Forum 2009 – methods of work, Technics Techno- Deep Mining Challenges – I Polish- logies Education Management, TTEM, Serbian forum, 18-21. February, Vol. 5, No.4, pp. 861–866; 2010. Krakow, str. 69-72; 2009. [2] Đukanović D., Đukanović D. Savić Lj.; [9] Đukanović D.; Studija opravdanosti Analiza ostvarenih tehničkih parametara mehanizovane izrade rudarskih prosto- pri izradi podzemnih prostorija u rudni- rija u rudnicima JP PEU; Biro za cima uglja u Srbiji, Podzemni radovi 13, projektovanje i razvoj, Beograd, 75 str. 17-22, RGF, Beograd, 2004. strana, 2010. [3] Đukanović D.; Model optimizacije [10] Milisavljević V., Đukanović D.; Present tehno-ekonomskih pokazatelja pri izradi situation and perspective of roadways podzemnih prostorija u rudnicima uglja development in underground coal mines Srbije, Doktorska disertacija, RGF, in Serbia, Technicka Diagno-stika, str. Beograd, 2005. 253-257, TU, Ostrava, 2005. [4] Đukanović D.; Tehnologija izrade [11] Tokalić R., Trajković S., Đukanović D.; jamskih prostorija kombinovanim maši- Analiza postignutih učinaka na izradi nama sa osvrtom na mogućnost prime- podzemnih prostorija u rudnicima uglja ne u rudnicima uglja Srbije. Savez ener- u Srbiji, Podzemni radovi 11, str. 33-38, getičara, Beograd, 143 strane; 2005. RGF, Beograd, 2002. [5] Đukanović D., Đukanović D.; Analiza [12] Trajković S., Đukanović D., Lutovac S.; zavisnosti ostvarenih troškova i brzine analysis of technical parameters impact izrade podzemnih prostorija u rudni- at advance rate of roadway development cima uglja u Srbiji, Rudarski radovi in Serbian coal mines, 2nd Balkan Min- 01/2005, str. 51-55, Komitet za ing Congress, (BALKANMINE 2007), podzemnu eksploataciju mineralnih 10. do 13. 09., Beograd, Academy of sirovina, Bor, 2005. Engineering Sciences of Serbia and [6] Đukanović D.; Istraživanje strukture tro- Faculty of Mining and Geology škova pri izradi podzemnih prostorija u University Belgrade, 143-148; 2007. rudnicima uglja u Srbiji, (Investigation

of the costs structure in development the

No 1, 2011. 174 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:551.49:622.79:504.06(045)=861

Slađana Krstić*, Goran Marinković**, Vesna Ljubojev*

TUNEL ZA IZMEŠTANJE KRIVELJSKE REKE – TRAJNO REŠENJE RIZIKA MOGUĆIH KRITIČNIH ASPEKATA***

Izvod

Jalovišta su jedan od glavnih problema stanja životne sredine u okviru RTB kompleksa Bor. Kao prioriteti po urgentnosti za rešavanje problema stanja životne sredine, u vrhu se nalazi izrada tunela za izmeštanje kriveljske reke, čime se trajno rešava rizik od mogućih kritičnih aspekata kolektora koji se nalazi ispod jalovišta Velikog Krivelja. Ovim radom sagledane činjenice ukazuju potrebu pri izradi tunela za izmeštanje kriveljske reke čime se eliminiše rizik ekološke katastrofe. Prikazane su geotehničke, petrološke i hidrogeološke karakteristike stena rudnika Veliki Krivelj. Tunelom se trajno rešava jedan od rizika životne sredine reke Timok i šire, jer Timok pripada slivnom području Dunava i Crnog mora. Ključne reči: Jalovišta, hidrogeološke karakteristike stena, problema stanja životne sredine, tunel.

UVOD

Borski rudarski kompleks (RTB) se koja teče u svom prirodnom basenu do ot- nalazi uglavnom na pretežno brežuljkastom i vorene jame Veliki Krivelj. brdovitom području sa nadmorskom visinom Zbog rudarskih radova koji su se od- od 400-600 m. Bor je smešten u dolini isto- vijali tokom poslednjeg stoleća, mor- imene reke na nadmorskoj visini od 360 m. fologija se znatno izmenila u odnosu na Severozapadno od Bora u brdovitom pre- prvobitno stanje. Područje Bora ima us- delu formirano je razvođe Kriveljskog potoka. meren pravac podzemnih vodotokova na Reke Cerovo na istoku i Valja Mare na jugo- reku Timok (slika 1), koja pripada slivnom zapadu, spajanjem, na udaljenosti od oko 2 području Dunava i Crnog mora. km jugoistočno od rudnika Cerovo i isto to- Hidrološka situacija u slivnom području liko od sela Mali Krivelj daju Kriveljsku reku, reke Timok je složena zbog mnogih mesta

* Institut za rudarstvo i metalurgiju Bor ** Geološki institut Srbije, Beograd *** Ovaj rad je proistekao iz Projekta 33021, koji je finansiran srestvima Ministarstva prosvete i nauke Republike Srbije.

Broj 1,2011. 175 RUDARSKI RADOVI gde se izliva otpadna voda iz RTB kom- Rudarska aktivnost je proteklih godina pleksa zajedno sa sanitarnom otpadnom veoma uticale na prirodni tok Borske reke, vodom iz grada Bora i više sela. Ceo RTB koja je prvobitno tekla sa severozapada na kompleks utiče na vodotokove, jer osim jugoistok i dalje do Bora, i koja je skrenuta taloženja rastvorenih čvrstih materija kod cevovodom sagrađenim severno od borske rudnika Cerovo, u metalurškom kompleksu otvorene jame, sada utiče u devijaciju Kri- se ne obavlja prečišćavanje otpadnih voda. veljske reke ispred podzemnog kolektora Kriveljski potok južno od rudnika i jalovišta koji je postavljen ispod jalovišta Veliki Veliki Krivelj je kiselast i sadrži povišeni Krivelj. Južno od jalovišta “RTH”, pri- nivo rastvorenih čvrstih materija, gvožđa, rodni rečni basen ne prima nikakvu rečnu bakra i cinka. vodu, ali voda odvodi taj tok u Kriveljsku Borska reka i Kriveljska reka su krajnje reku jugoistočno od mesta . Tako je destinacije otoka i otpadnih voda od procesa tok Kriveljske reke izmenjen u odnosu na flotacije koji se obavlja u Velikom Krivelju i prvobitni tok i to kod otvorene jame Ve- voda iz topionice i rafinerije i neprečišćenih likog Krivelja gde sada oivičava jamu, i gradskih otpadnih voda. Zbog toga je krajnje kod jalovišta Veliki Krivelj gde je skrenut zagadjena i degradirana površinska voda u u podzemni kolektor koji prolazi ispod (pH, rastvorene čvrste materije, bakar i istočnog jalovišta. gvožđe).

Sl. 1. Basen reke Timok

Broj 1,2011. 176 RUDARSKI RADOVI

Zagađenost Borske reke se jasno vidi Rgotina, Vražogrnci i mnogim selima u između Bora i Slatine i rečne obale imaju dolini reke Veliki Timok. naslage jalovine od prethodnih incidenata na borskom jalovištu. Borska voda je još HIDROGEOLOGIJA KRIVELJSKE uvek kisela i sadrži povišeni nivo - REKE vorenih čvrstih materija i koncentracije bakra i na udaljenosti od 10 km od meta- Vodopropustljivost područja Velikog lurškog kompleksa. Krivelja je uslovljena karakteristikama Kvalitet zemljišta je ispitivan u Srbiji i hornblenda andezitskih aglomerata i kon- smatra se da je rudarenjem u Boru glomerata koji imaju malu propustljivost. (metalična i nemetalična eksploatacija) Hidrogeološke karakteristike područja uništeno zemljište površine 1.110 ha, što ležišta Veliki Krivelj (V. Dragišić) detaljno je glavno učešće u toj raspodeli na nivou su istraživane (slika 2). Na slici je prikazan Srbije. Procenjena na oko 60,6% od ukup- izvor vode što ukazuje na prvobitni nivo nog poljoprivrednog zemljišta. Kao glavni vode i priliv podzemnih voda iz karstnog uzroci uništavanja zemljišta su rudarstvo i vodonosnog sloja do sloja koji je prisutan u metalurgija, rudni kopovi, deponije za naprslim stenama koje sadrže naslage odlaganje jalovine i flotacijske jalovine. bakra. Ova cirkulacija podzemne vode se Eksploatacija (metala i nemetala) je povećavala formiranjem otvorene jame degradirala poljoprivrednu, obradivu zem- koja je eliminisala škriljce (desni gornji deo lju u Boru, Slatini, Oštrelju, Krivelju, slike) koji su delili vulkanske i flišne sedi- Bučju i Donjoj beloj reci. Ispuštanje ot- mentne vodonosne slojeve. Podzemna voda padnih voda iz postrojenja za flotaciju i se sada gravitacijom vodi od peščara jalovišta su degradirali zemlju u industrij- flišnog sedimenta (vodonosni sloj 4) do skoj zoni katastarskih opština Slatina, naprsle tvrde stene (vodonosni sloj 3).

Sl. 2. Poprečni presek hidrogeološkog profila ležišta Veliki Krivelj i prvobitnu cirkulaciju podzemne vode u vulkanskim i sedimentnim stenama (Izvor: Ibid)

Broj 1,2011. 177 RUDARSKI RADOVI

Geološki poprečni presek (slika 3) od napredovanja rudarskih radova, Kriveljska nadmorske visine 350 do -200 m prikazuje reke teče duž ivice kopa. U oblasti kopa položaj istražnih bušotina i konture ležišta Velikog Krivelja, rudarskim aktivnostima (isprekidana linija) pri obračunu rezervi dolazi do izbijanja na površinu peščara rude (procenjenih na 440 Mt u konturnoj (čime se dobija mala propustljivost) i hi- liniji sa 0.43 % bakra u rudi). Kose linije (I drotermalno izmenjenih vulkanskih stena do IV varijanta) predstavljaju četiri različite koje su nepropustljive i u kojima je smešten kosine i dna otvorenog kopa u raznim faza- ispucali vodonosni sloj. Sa raspoloživim ma rudarskih radova. Na ovom poprečnom informacijama ne može se proceniti opas- preseku uočava se da četvrtom varijantom nost od ovog područja.

Sl. 3. Geološki poprečni presek i IV projektovane varijante dna otvorenog kopa Veliki Krivelj

ZAGAĐENJE ZEMLJIŠTA I VODA

Ekološko stanje u opštini Bor prema Borska i Kriveljska reka predstavljaju podacima iz 2005. godine za sadržaj bakra otvoreni kolektor za otpadnu vodu, kom- je iznad dozvoljenih granica Republike pletno su degradirane i nemogu se klasi- Srbije u Oštrelju, Slatini i Bučju (odnosno fikovati prema zakonskim propisima. 125 mg/kg, 135 mg/kg i 120 mg/kg). Sa- Posle uliva Borske reke u Kriveljsku reku držaj arsena, blizu maksimalne dozvoljene nastaje Bela reka koja se uliva u Veliki koncentracije od 25 mg/kg je pronađen u Timok (slika 1). Ispitivanje rečnog sedi- Krivelju, Slatini i Metovnici. Kiselost menta je radjena u okviru projekta UNEP- zemljišta se javlja kao zajednički problem a. Sedimenti u Borskoj reci pre njenog na celokupnoj ispitanoj površini. Vrednost spajanja sa Kriveljskom rekom (uzorak ID pH < 5 izmerena je u Boru i Brestovcu, 10-33); Sedimenti u Kriveljskoj reci, na dok je na drugim lokacijama pH vrednost mestu spajanja sa Borskom rekom (uzorak ispod 6. ID 10-34) i sedimenti u borskoj reci posle

Broj 1,2011. 178 RUDARSKI RADOVI spajanja sa Kriveljskom rekom (uzorak ID predstavlja međudržavni problem za- 10-33). gađenja životne sredine. Reke koje se nalaze nizvodno od RTB U drugoj polovini dvadesetog veka, ja- Bor i ulivaju se u Borsku reku su zagad- lovina od flotacije se izlivala u Borsku jene i njihov dotok utiče na kvalitet reku i tako oštetila najmanje 2.500 ha Dunava. U njihovim plavnim zonama se plavne zone Borske reke i Velikog Ti- talože sedimenti jalovine od flotacije. To moka (slika 4).

Sl. 4. Sadržaj metala iz reka (Izvor: LEAP)

Na svim lokacijama gde su se uzimali TOC ukupni ugljovodonici, bakar, cink, uzorci nađena je velika količina rast- nikl i mineralna ulja. vorenih materija. U Borskoj reci, uzvodno Ulivanje Bele reke u Timok smanjuje i nizvodno od uliva u Kriveljsku reku i pre pH vrednosti i povećava BPK5, HPK, rast- spajanja sa Timokom, u Kriveljskoj reci, vorene materije, gvoždje, ukupne ugljo- uzvodno od uliva Borske reke i u Timoku, vodonike, bakar, cink, nikl i arsen. nizvodno od uliva Borske reke koncen- tracije gvožđa i bakra su visoke u pored- ZAKLJUČAK jenju sa limitima klase III. Borska, Kriveljska i Bela reka imaju Rezultati svih ispitivanja su jasni, vidi velike koncentracije nikla na svim lokaci- se uticaj Bele reke na kvalitet vode Ti- jama gde su uzimani uzorci. Cink je prisu- moka, odnosno, kvalitet vode u Timoku se tan u velikim koncentracijama i u Borskoj naglo smanjuje posle ulivanja Bele reke i Beloj reci. (slika 4). Borska reka je 2002. godine od Kriveljska i Bela reka se karakterišu svog izvora do naselja Bor klasifikovana veoma malim pH vrednostima (<5). Loka- kao vodotok II kategorije. Nizvodno od cija uzimanja uzorka u Beloj reci pokazuje naselja Bor do spajanja sa Kriveljskom visoke koncentracije olova i kadmijuma. rekom – kao klasa IV. Kriveljska reka je Isto tako je očigledno da se ulivanjem van kategorija, dok Bela reka ima klasu IV. Borske reke u Kriveljsku reku smanjuju Timok je od naselja Zaječar do spa- pH vrednosti a povećava BPK5, HPK, janja sa Belom rekom kategorisan klasom rastvorene materije, gvožđe, amonijak, IIb. Odatle, pa do spajanja sa Dunavom,

Broj 1,2011. 179 RUDARSKI RADOVI njegov tok je klasifikovan kao III kate- [9] S. Krstić, M. Ljubojev, V. Ljubojev, gorija. Petrological Characteristics Rock on U okviru rudarskog kompleksa RTB Tunnel for Relocation Krivelj`s River, postoje tri jalovišta za odlaganje jalovine, Proceedings of the 15 th Congress of sa ukupnom rekultivisanom površinom geologists of Serbia with International oko 30 ha. Jalovište Veliki Krivelj (Polje participation (Extended abstract) pp.40., 1 i Polje 2), sa tri nasipa (nasip 1A, 2A i Belgrade, 26-29. 05. 2010 .ISBN 978- 3A) je najkritičnije zbog stanja kolektora i 86-86053-08-4 mogućeg ekološkog incidenta. [10] S. Krstić, M. Ljubojev, M. Bugarin, Litological types of rocks along the LITERATURA new tunnel route for the relocation of the Kriveljska River, 4th Croatian [1] Analiza koncentracije metala u Borskoj Geological Congress with international reci, Zavod za zaštitu zdravlja Timok, participation, Šibenik 14-15.10.2010, Zaječar, 2005. Abstracts Book, pp 167. [2] Izveštaj o ekološkom stanju u opštini [11] S. Krstic, M. Ljubojev, V. Ljubojev, Bor za period I-XII 2004 do I-VI 2005, M. Bugarin, Massif rock and effect Odsek za društvene i industrijske glivage on stability tunnel of Krivelj aktivnosti, Opština Bor, 2005. river inBor, Proceedings of the 9-th [3] Plan monitoringa životne sredine International Multidisciplinary Scien- (EMP) za RTB Bor kompleks, tokom i tific Geo-Conference (SGEM 2009), posle privatizacionog procesa. Izvor: 14-19.06 2009, Albiena Bulgaria, pp Opština Bor, 2005. 65-71. [4] Rezultati projekta “Zemljište i pod- [12] M. Ljubojev, D. Ignjatović, V. zemne vode” teški metali (Centar za Ljubojev, L. Đ. Ignjatović, S. Krstić, poljoprivredna istraživanja, 1997) Determination of rock quality index [5] Rezultati projekta “Zemljište i pod- during tunneling, Proceedings of the zemne vode” rečni nanosi, UNEP, 42nd International October Conference 2002. on Mining and Metallurgy, 10.- 13.10.2010, pp. 138-142. [6] Assessment of Existing Environmental Monitoring Capacities in Bor, UNEP, [13] M. Ljubojev, D. Ignjatović, V. 2002. Ljubojev, L. Đ. Ignjatović, S. Krstić, Determination of rock quality index [7] Rezultati projekta “Plan praćenja stanja životne sredine“ Izvor: Opština Bor, during tunneling, Proceedings of the 2005. 42nd International October Conference on Mining and Metallurgy, 10.-13.10. [8] S. Krstic, M. Ljubojev, V. Ljubojev, 2010, pp. 138-142 M. Bugarin, Developloment of a new

tunnel under the flotation barren Veliki

Krivelj, Proceedings of the 10-th

International Multidisciplinary Scienti- fic Geo-Conference (SGEM 2010), 21-26 june 2010, Albiena Bulgaria, pp. 227-231.

Broj 1,2011. 180 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK: 551.49:622.79:504.06(045)=20

Sladjana Krstić*, Goran Marinković**, Vesna Ljubojev*

TUNNEL FOR RELOCATION THE RIVER KRIVELJ PERMANENT RISK SOLUTION OF POSIBLE CRITICAL ASPECTS***

Abstract

Tailing dumps are one of the major environmental problems within the complex of RTB Bor. As the urgent priority of solving the environmental problems, a construction of tunnel for relocation the river Krivelj is at the top, what is a permanent solution of possible critical aspects of collector which is located below the tailing dump Veliki Krivelj. This paper analyzed the facts indicated a need for construction the tunnel for relocation the Krivelj river eliminating the risk of ecological disaster. Geotechnical, hydrogeological and petrological characteristics of rocks of the Veliki Krivel mine are reviewed in this paper. The tunnel is a permanent solution to environmental risk of Timok and larger, because it belongs to the catchment area of Danube and Black Sea. Key words: tailing dump, hydrogeological characteristics of rocks, environmental problems, tunnel

1. INTRODUCTION

The Bor mining complex (RTB) is lo- river, which flows in its natural basin to the cated mainly in the predominantly hilly and open pit Veliki Krivelj. mountainous area at altitude of 400-600 m. Due to the mining activities, developed Bor is situated in a valley of the same during the last century, the morphology is named river at altitude of 360 m. significantly changed compared to the Northwest of Bora, in the hilly area, a original state. The area of Bor has focused watershed of the Krivelj stream is formed. direction of groundwater to Timok (Figure The rivers Cerovo, in the east, and Valja 1), which belongs to the catchment area of Mare, in the southwest, connecting at a Danube and Black Sea. distance of about 2 km southeast of the Hydrological situation in the catchment mine Cerovo and the same distance from area of Timok is complex due to many the village Mali Krivelj, giving the Krivelj places where wastewater discharge

* Mining and Metallurgy Institute Bor ** Geology Institute of Serbia, Belgrade *** This paper is derived from the Project 33021, funded by the Ministry of Education and Science of the Republic Serbia.

No 1, 2011. 181 MINING ENGINEERING from RTB complex along with sanitary Mining activity in recent years, the waste water from the town of Bor and most affected the natural flow of the Bor many villages. The whole RTB complex river, which originally flowed from the affects the watercourses, because apart northwest to the southeast and away to Bor, from deposition the dissolved solids in the and that was diverted by the pipeline, built mine Cerovo, there is no wastewater in the north of the Bor Open Pit, and now treatment in the metallurgical complex. inflows a deviation of the Krivelj river in The Krivelj stream, in the south of mine front of the collector, installed below the and tailing dump Veliki Krivelj is acidic tailing dump Veliki Krivelj. In the south of and contains increased level of dissolved the tailings dump "RTH", a natural river solids, iron, copper and zinc. basin does not receive any river water, but The Bor river and Krivelj rivers are the water drains that flow into the Krivelj river final destinations of waste water discharge in the southeast of the village Slatina. Thus, from the flotation process, which takes the flow of the Krivelj river was changed place in Veliki Krivelj, and water from the from the original course and to the Open Smelter and Refineries and untreated mu- Pit of Veliki Krivelj which now line the pit, nicipal wastewater. Therefore, the surface and at the tailing dump Veliki Krivelj, it water is highly polluted and degraded (pH, was diverted into underground collector dissolved solids, copper and iron). that runs below the east tailing dump.

Figure 1. The river basin of Timok

No 1, 2011. 182 MINING ENGINEERING

Pollution of the Bor river is clearly Rgotina, Vražogrnac and many villages in visible between Bor and Slatina and the the valley of the Veliki Timok. river banks have deposits of tailings from the previous incidents at the Bor tailing 2. HYDROGEOLOGY OF THE dump. The Bor water is still acidic and KRIVELJ RIVER contains the increased level of dissolved solids and copper concentrations copper Water permeability in the area of Ve- and at distance of 10 km from the metal- liki Krivelj is conditioned by the charac- lurgical complex. teristics of hornblende andesite agglomer- Soil quality was investigated in Serbia ates and conglomerates that have little and it is considered that mining in Bor permeability. Hydrogeological character- (metallic, nonmetallic exploitation) de- istics of the area of Mali Krivelj deposit stroyed the land area of 1,110 ha, what is (V. Dragišić, 1987) were investigated in the major part in this distribution at the detail (Figure 2). Figure 2 shows the water level of Serbia. It was estimated as about source what indicates the initial water 60.6% of total agricultural land. The main level and inflow of groundwater from the causes of land destruction are mining and karst aquifer to the present layer that in metallurgy, open pits, landfills for dis- the cracked rocks that contain copper de- posal of waste and flotation tailings. posits. This circulation of groundwater Exploitation (metal and nonmetal) has was increased forming an open pit that degraded the agricultural cultivable land in eliminated shale (right upper part of Figue Bor, Slatina, Oštrelj, Krivelj, Bučje and 2) sharing the volcanic and flysch sedi- Donja Bela Reka. Discharge of waste water mentary aquifers. Underground water is from the flotation plants and tailing dumps now taken by the gravity to the sandstone have degraded the land in the industrial of flysh sediment (aquifer 4) to the area of the cadastral municipalities Slatina, cracked solid rock (aquifer 3).

Figure 2. Hydrogeological cross-section profile of the Veliki Krivelj deposit and initial circulation of groundwater in volcanic and sedimentary rocks (Source: Ibid)

No 1, 2011. 183 MINING ENGINEERING

Geological cross section (Figure 3) at edge of open pit by the fourth version of the altitude from 350 to 200 m shows the progress the mining operations. In the area location of exploration drill holes and de- of the Veliki Krivelj mine, posit contours (dashed line) in the calcula- The sandstone breaks out to the sur- tion of ore reserves (estimated at 440 Mt face by the mining activities (resulting in a in the contour line with 0.43% copper in low permeability) and hydrothermally ore). The oblique lines (I-IV version) rep- altered volcanic rocks that are imperme- resent four different slopes and bottom of able and where the cracked aquifer is lo- the open pit at various stages of mining cated. The risk of this area cannot be operations. It is observed in this cross sec- evaluated by the available information. tion that the Krivelj river flows along the

Figure 3. Geological cross-section and IV designed versions of the Veliki Krivelj open pit bottom

3. POLLUTION OF SOIL AND WATER Bor and Brestovac, while in other loca- The ecological situation for copper tions pH value was below 6. content in the Bor municipality, according The Bor and Krivelj rivers, presenting to the data from 2005, is over allowable an open collector for waste water, are limits of the Republic of Serbia in Oštrelj, completely degraded and can be classified Slatina and Bučje (i.e.125 mg/kg, 135 mg according to legal regulations. After the kg and 120 mg/kg). The content of arse- inflow of the Bor river into the Krivelj nic, near maximum allowable concentra- river, the Bela River is formed that flows tion of 25 mg/kg was found in Krivelj, into the Veliki Timok (Figure 1). Investi- Slatina and Metovnica. Soil acidity occurs gation of the river sediments was done as a common problem on the entire inves- within the UNEP project. The sediments tigated surface. pH <5 was measured in

No 1, 2011. 184 MINING ENGINEERING in the Bor river before its connection with quality of Danube. In their flood zones, the Krivelj river (sample ID 10-33); the the sediments from flotation tailings are sediments in the Krivelj river, at the con- deposited. This is an international problem nection point with the Bor river (sample of environmental pollution. ID 10-34) and sediments in the Bor river In the second half of the twentieth cen- after its connection with the Krivelj river tury, the tailings from the flotation was (sample ID 10-33). discharged into the Bor river and also The rivers, located downstream of damaged at least 2,500 ha of flood zone of RTB Bor and flowed into the Bor river, the Bor river and Veliki Timok (Figure 4). are polluted and their flow affects the

Figure 4. Metal contents in the rivers (Source: LEAP)

At all locations, where the samples were The Krivelj and Bela River are charac- taken, a large quantity of dissolved solids terized by very low pH values (<5). Sam- was found. In the Bor river, upstream and pling location in the Bela River shows downstream of the river flows into the high concentrations of lead and cadmium. Krivelj river and before connecting with Also, it is obvious that the inflow of Timok, in the Krivelj river, upstream from the Bor river into the Krivelj river reduces the inflow of the Bor river in Timok, down- pH values and increases BPK5, HPK, dis- stream from the inflow of the Bor river, solved matters, iron, ammonia, TOC total copper and iron concentrations are high hydrocarbons, copper, zinc, nickel and compared with the limits of the III class. mineral oils. The Bor, Krivelj and Bela River have Inflow of the Bela River into Timok high concentrations of nickel at all loca- decreases the pH values and increases tions where samples were taken. Zinc is BPK5, HPK, dissolved matters, iron, total present in high concentrations in the Bor hydrocarbons, copper, zinc, nickel and and the Bela River. arsenic.

No 1, 2011. 185 MINING ENGINEERING

5. CONCLUSION

The results of all tests are clear; the ef- [6] Assessment of Existing Environmental fect of the Bela River to the water quality Monitoring Capacities in Bor, of Timok, i.e., the water quality in Timok September 2002, UNEP rapidly decreases after inflow of the Bela [7] Project Results “Plan for Environmental River (Figure 4). The Bor river in 2002, Monitoring “ 2005, Source: Munici- from its source to the Bor settlement was pality of Bor (in Serbian) classified as the II category watercourse; [8] S. Krstić, M. Ljubojev, V. Ljubojev, downstream from the Bor settlement to the M. Bugarin, Development of a New connection with the Krivelj river as the IV Tunnel under the Flotation Tailing class. The Krivelj river is outside the cate- Dump Veliki Krivelj, Proceedings, gory, while the Bela River isthe IV class. 10th International Multidisciplinary Timok is, from the Zaječar settlement Scientific Geo-Conference (SGEM to the connection with the Bela River, 2010), 21-26 June 2010, Albiena categorized as the IIb class. By there, to Bulgaria, pp. 227-231 the connection with Danube, its course is [9] S. Krstić, M. Ljubojev, V. Ljubojev, classified as the III category. Petrological Characteristics of Rocks Within the mining complex RTB, there on Tunnel for Relocation the Krivelj are three tailing dump for disposal of tail- River, Proceedings , 15th Congress of ings, with the total re-cultivated area about Geologists of Serbia with International 30 ha. The tailing dump Veliki Krivelj Participation (Extended Abstract) (Field 1 and Field 2), with three dams pp.40, Belgrade, 26-29 May 2010, (dams 1A, 2A and 3A) is the most critical ISBN 978-86-86053-08-4 due the collector state and possible envi- [10] Sladjana Krstić, Milenko Ljubojev, M. ronmental incident. Bugarin, Lithological Types of Rocks along the New Tunnel Route for REFERENCES Relocation of the Krivelj River, 4th [1] Analysis of Metal Concentrations in the Croatian Geological Congress with International Participation, Šibenik 14- Bor River, Institution for Health Protection Timok, Zaječar (in Serbian) 15 October 2010, Abstracts Book, pp 167 [2] Report on Environmental Condition in [11] S. Krstić, M. Ljubojev, V. Ljubojev, the Bor Municipality for the Period I- XII 2004 to I-VI 2005, 2005, M. Bugarin, Massif Rock and Effect of Clivage on the Tunnel Stability of the Department of Social and Industrial Activities, Municipality of Bor (in Krivelj River in Bor, Proceedings, 9th Serbian) International Multidisciplinary Scien- tific Geo-Conference (SGEM2009), [3] Environmental Monitoring Plan (EMP) for RTB Bor Complex During 14-19 June 2009, Albiena Bulgaria, pp and After the Privatization Process, 65-71 [12] M. Ljubojev, D. Ignjatović, V. 2005, Source: Municipality of Bor (in Serbian) Ljubojev, L. Djurdjevac - Ignjatović, S. [4] Project Results “Soil and Groundwater” Krstić, Determination of Rock Quality Index during Tunneling, Proceedings, Heavy Metals (Center for Agricultural Research, 1997), (in Serbian) 42nd International October Conference [5] Project Results “Soil and Groundwater” on Mining and Metallurgy, 10-13 October 2010, pp. 138-142 River Sediments, 2002, UNEP (in Serbian)

No 1, 2011. 186 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:553.94:622.333:622.79(045)=861

Duško Đukanović*, Milan Popović**, Dragomir Zečević**

EKONOMSKI EFEKTI UPOTREBE JALOVINE IZ SEPARACIJE UGLJA IBARSKIH RUDNIKA

Izvod

U Ibarskim rudnima kamenog uglja Baljevac, do 2005. godine čišćenje rovnog uglja obavljano je u teško tekućinskoj separaciji na principu „pliva–tone“. Jalovina iz separacije je odlagana na lokaciji u neposrednoj blizini separacije. Tokom oksidacionih procesa separacijska jalovina se promenila, rezultat promene je novi materijal – rudnička šljaka, crvenkaste boje. Korišćenje rudničke šljake, nastale oksidacionim procesima za putnu privredu i proizvodnju građevinskih elemenata je način da se uz ostvarivanje proizvodnje ukloni jalovina i izvrši sanacija lokacije odlagališta jalovine i ostvare određeni ekonomski efekti. Ključne reči: separacija, separacijska jalovina, rudnička šljaka, građevinski elementi, troškovi proizvodnje.

1. UVOD

Ibarski rudnici kamenog uglja bave se procesa jalovina se promeni, rezultat eksploatacijom uglja više osamdeset godina promene je novi materijal – rudnička šljaka, u ležištima Jarando, Ušće, - crvenkaste boje. . Eksploatacija uglja u ležištu Godine 1974. izgrađena je fabrika za Ušće je zbog iscrpljenosti rezervi završena. proizvodnju građevinskih elemenata od Otkopani rovni ugalj u ležištima Jarando i rudničke šljake, koja je radila do 2002. Tadenje-Progorelica se oplemenjuje u godine. Od 2005. godine se ne vrši čišćenje jedinstvenoj separaciji u Piskanji, do koje se uglja po principu ''pliva – tone'', niti se doprema vazdušnom žičarom. odlaže jalovina na pomenutoj lokaciki. U periodu od 1960. godine do 1963. Planirano je da se izvrši sanacija postojećeg godine izgrađena separacija uglja u jalovišta, što se može učiniti ponovnim Piskanji-Baljevac. pokretanjem proizvodnje građevinskih Prilikom izgradnje separacije izgrađeno elemanata i prodajom šljake putnoj privredi. je jalovište. Separaciska jalovina se sastoji od 2. OSOBINE RUDNIČKE ŠLJAKE sitnih i krupnih klasa stena koje se javljaju u produktivnoj seriji ležišta Jarando i Tadenje Jalovine iz prališta uglja mogu da – Progorelica i sraslace koji imaju sagorljivih predstavljaju vrlo pogodne agregate za materija. Na separacijskom jalovištu javljaju proizvodnju šupljih betonskih blokova pod se oksidacioni procesi, tokom oksidacionih uslovom da se radi o prirodno paljenim

* JP za PEU, Biro za projektovanje i razvoj Beograd ** JP PEU Resavica, Ibarski rudnici kamenog uglja – Baljevac

Broj 1,2011. 187 RUDARSKI RADOVI glinama čiji hemijski sastav i zapreminske alumo-silikatnu materiju čiju osnovnu težine odgovaraju uslovima postavljenim komponentu predstavlja nerastvorni SiO2 pri odnosnim standardima, odnosno propisima. čemu se šljaka odlikuje visokim sadržajem Do procesa "samopaljenja" ovih otpadnih sulfata (oko 8 %). Ispitivanjem prirode materijala dolazi zbog onečišćenja sulfata sadržanih u ovoj šljaki utvrdjeno je da osnovne glinene mase znatnim količinama sadržaj sulfata rastvornih u vodi iznosi 2,97 uglja koji nije uklonjen pri procesu separi- % pri čemu je difraktometrijskom analizom sanja, odnosno pranja uglja. Inače, do sa- utvrđeno da se sulfati nalaze uglavnom u mog procesa sagorevanja primesa uglja, obliku minerala anhidrita. odnosno pečenja cele glinene mase dolazi 3. REZERVE RUDNIČKE ŠLJAKE zbog procesa spontanog sagorevanja sum- pornih jedinjenja prisutnih u glinenoj masi. Ukupne rezerve rudničke šljake, koja se Ovaj, prirodnim procesom dobijeni može koristiti za proizvodnju građevinskih agregat, rudnička šljaka, ima izgled i boju elemenata, agregata za putnu privredu ili pečene gline, odlikuje se relativno visokim druge namene iznose oko 320.000 t. zapreminskim težinama (800-1000 t/m3) i često puta vrlo visokim sadržajem sulfata. 4. LOKACIJA ODLAGALIŠTA Zbog ovako visokog sadržaja rastvorljivih SEPARACIJSKE JALOVINE sulfata došlo je i do osporavanja Jalovište separacije locirano je sa desne mogućnosti iskorišćenja ovakvih šljaka strane reke Ibar. Teren na kome je locirano kao agregata za proizvodnju betona, jalovište je takoreći ravno, visinske razlike odnosno betonskih prefabrikata. Međutim, su male. Širi teren je nagnut prema reci Ibar izvesna fizička ispitivanja nekoliko koja drenira čitav teren, pa na jalovište domaćih šljaka su pokazala da su ove nema izraženih uticaja površinskih i šljake i pored visokog sadržaja sulfata bile podzemnih voda. Sa istočne strane i "stalne zapremine", a što je bilo dokazano severozapadne strane nalazi se Piskanjski testom-kuvanjem kolačića na kojima nisu potok, koji je regulisan do napuštanja obale registrovanje pojave radijalnih pukotina, kruga fabrike građevinskih elemenata. vitoperenja i svih ostalih pojava koje Prema reci Ibar urađen je nasip visine 3 m', diskredituju ovu rudničku šljaku u pogledu širine 11 m', na kome je urađen obodni put stalnosti zapremine. širine 4 m', a zatim nasip visine od 4,6 m'

Hemijska analiza rudničke šljake sa deponije do 7,1 m', širine 11 m'. Ovaj nasip štiti u Piskanji obalu reke i omogućava oticanje - Vlaga na 1100C 0,34 % površinskih voda. Sa druge strane jalovišta - Gubitak žarenjem 1,35 % prema taložnicima sitnih klasa uglja - SiO2 49,00 % jalovište je zaštićeno nasipom visine 6,0 m' - Al2O3 11,69 % - TiO2 0,37 % a širine 9 m'. Između jalovišta i taložnika - Fe2O3 14,34 % sitnih klasa urađen je do fabrike - MnO 0,10 % građevinskih elemenata, put širine 4 m'. - CaO 9,33 % - MgO 2,22 % 5. PROIZVODNJA GRAĐEVINSKIH - Na2O 0,66 % BLOKOVA OD RUDNIČKE - K O 2,17 % 2 ŠLJAKE - SO3 8,19 % U K U P N O : 99,76 % Vreme za koje separacijska jalovina Ispitivanja hemijskog sastava rudničke usled oksidacionih procesa dobije oblik šljake nastale spontanim sagorevanjem rudničke šljake, koja se može koristiti u jalovine sa odlagališta uglja u Piskanji proizvodnji građevinskih elemenata je 6 do 8 pokazala su da ispitivana šljaka predstavlja meseci. Rudnička šljaka, utova-rivačem RD

Broj 1,2011. 188 RUDARSKI RADOVI

180 se utovara u kamione i sa odlagališta Kalupi su izmenljivi tako da se mogu, po odvozi na drobljenje. Transportna dužina je obliku i dimenzijama praviti različiti tipovi do 70 m. Drobljenje šljake (1.) se vrši dro- građevinskih blokova. Sušenje blokova traje bilicom sa čekićima UG 3B, kapaciteta 25 21 dan uz povremeno kvašenje. Po celoj pisti t/h. Nakon drobljenja obavlja se klasiranje na za odlaganje blokova razveden je sistem (8.) klase - 12 mm +8 mm, -8 mm+4 mm i - 4 za snabdvanje vodom. mm. U smesi od koje se izrađuju blokovi Klase se odvajaju u posebne drvene klasirana šljaka ima sledeći odnos: boksove. Klasirana šljaka (2.) iz boksova, - šljaka krupnoće - 4 mm, 40 % skreperom se tovari na transportere sa - šljaka krupnoće +8 mm - 4 mm, 30 % gumenom trakom i transportuje do postro- - šljaka krupnoće -12 mm + 8 mm, 25 % jenja (3.) za mešanje cementa, šljake i vode. Kapacitet automatskog posreojenja za Na 1 t šljake dodaje se 0,2 t cementa. mešanje smese je 24 m3/h. Cement se nalazi Klase -4 mm se koriste i za druge name- u silosima (4.) i automatski se dozira u ne: za potrebe putne privrede, izradu spor- postrojenje. Kapacitet silosa je 200 t ce- tskih terena i dr. Proizvodnja građevinskih menta. Pripremljena smesa se iz postrojenja blokova od rudničke šljake je sezonskog istače u kontejner samohodnog nosača smese karaktera, odvija se u periodu proleće – (5.) na kome su kalupi i odvozi do piste (6.) jesen. Klase -4mm se mogu pripremati i na kojoj odlažu blokovi (7.) na sušenje. plasirati na tržište tokom cele godine.

Sl. 1. Postrojenje za proizvodnjugrađevinskih elemenata

6. EKONOMSKA ANALIZA

I ako se proizvodnja građevinskih blo- proizvodnju bi bili angažovani radnici koji kova, ne vrši od 2002. godine, postrojenje su već zaposleni u rudniku. Proizvodnja za proizvodnju građevinskih blokova je i građevinskih elemenata bi bila organizovana dalje u funkcionalnom stanju, tako da nisu pet radna dana u sedmici u samo u prvoj potrebne dodatne investicije za ponovno smeni. Poteban broj neposrednih izvršilaca pokretanje proizvodnje. Na osnovu ranijih za proizvodnju građevinskih elemenata dat iskustava i sadšnjih saznanja, postoji tržište je u tabeli broj 1. U tabeli broj 2. dat je na kome se mogu plasirati ovi proizvodi. mogući kapacitet proizvodnje građevinskih Proizvodnja građevinskih elemenata je blokova. Od ukupnih rezervi šljake, koje sezonska, organizuje se šest meseci u toku iznose 320.000 t, količina od 200.000 t će godine u periodu april - septembar. Za biti plasirana za putnu privredu, a 120.000

Broj 1,2011. 189 RUDARSKI RADOVI za proizvodnju građevinskih elemenata. Za Uvažavajući rezerve rudničke šljake, proizvodnju 1.404.000 komada građe- kapacitet proizvodnje i troškove vinskih elemenata potrebno je 19.500 t proizvodnje jedinice proizvoda, prodajnu šljake. Vek eksploatacije za rad u jednoj cenu proizvoda, određeni su ekonomski smeni iznosi 6,15 godina. U tabeli broj 3. efekti ponovnog pokretanja proizvodnje dati su troškovi proizvodnje po jedinici blokva, a koji iznose: 1.404.000 kom. × 1,6 proizvoda. din./kom. = 2.246.600 din. ili 22.000 EUR. Tabela 1. Poteban broj neposrednih izvršilaca za proizvodnju ZAKLJUČAK građevinskih elemenata Analiza ekonomskih efekata proi- Broj Naziv izvršilaca zvodnje građevinskih blokova, dala je - Rukovaoc drobilice 1 pozitivne rezultate. Rudnik bi obezbedi - Pomoćni radnik na drobilici 1 dodatni prihod, a na proizvodnji bi mogao - Rukovaoc skrepera 1 da uposli invalide rada ili radnike koji su u - Rukovaoc postrojenja za određenom periodu kategorisani kao 1 mešanje -miksera radnici nesposobni za rad u jami. - Rukovaoc samohodnog Pokretanjem proizvodnje uklonila bi se 1 nosača smese jalovina, i istovremeno bi se izvršila i - Rukovaoc viljuškara 1 sanacija lokacije odlagališta jalovine. - Radnik na negi blokova 1 - UKUPNO 8 LITERATURA Tabela 2. Kapacitet proizvodnje [1] Projektna dokumentacija JPPEU-Biro - smenska proizvodnja 7.800 kom. za projektovanje i razvoj Beograd. - nedeljna proizvodnja 39.000 kom. [2] Izveštaj o ispitivanju kvaliteta zgure sa - mesečna proizvodnja 234.000 kom. deponije Ibarskih rudnika u Baljevcu na - godišnja prizvodnja 1.404.000 kom. Ibru (Jugoslovenski građevinski centar Tabela 3. Troškovi proizvodnje po jedinici Beograd, 1975. godine.) proizvoda [3] Đukanović D., Đukić B., Sanković Ć., 1. Cement 20,41 din./kom. 2005: Ukrupnjavanje sitnih asortimana 2. Nafta 0,13 din./kom. uglja u cilju povećanja finansijske 3. Ulja i maziva 0,02 din./kom. efikasnosti rudnika uglja sa podzemnom eksploatacijom u republici 4. Elektr. energija 0,59 din./kom. Srbiji, Energija 2/2005, Savez Troš. 5. 1,22 din./kom. energetičara, Beograd, 244-245; održavanja 6. Bruto zarade 5,96 din./kom. [4] Đukanović D., Ivković M.,2005: Uticaj 7. Amortizacija 0,44 din./kom. podzemne eksploatacije mrkog uglja u 8. Osiguranje 0,20 din./kom. RMU „Jasenovac“-Krepoljin na životnu 9. Ostali troškovi 0,03 din./kom. sredinu, Naučno-stručni skup Ekološka Proizvodna istina EcoIst-05. 10. 29,00 din./kom. cena koštanja: [5] Maksimović M., Pačkovski G., 11. Troš. PDV 18% 5,40 din./kom. Jovanović M., Nikolić K. 2009: Cena košt. sa Ekonomska (vrednosna) ocena tehno- 12. 34,40 din./kom. PDV genog ležišta „Depo šljake 1“, Rudarski radovi 2/2009, Bor, 45-52. Građevinski elementi od rudničke šljake se na tržištu mogu plasirati po ceni od 36,00 din./kom.

Broj 1,2011. 190 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK: 553.94:622.333:622.72(045)=20

Duško Đukanović*, Milan Popović**, Dragomir Zečević**

ECONOMIC EFFECTS OF THE WASTE USE FROM COAL SEPARATION IN THE IBAR MINES

Abstract

In the Ibar Coal Mines Baljevac by 2005 the cleaning OF run of mine coal was performed in A difficult liquid separation by the “floats-sinks” principle. Tailings from separation were dumped on a site close to separation. During the oxidation processes, the separation tailings were changed; the result of change is new material - mining slag of reddish color. Use of mining slag, resulted from oxidation processes for road industry and production of construction elements is a way to eliminate the tailings with achievement of production and make the rehabilitation of tailing waste dump site and to achieve the economic effects. Key words: separation, separation tailings, mine slag, construction elements, the cost of pro- duction.

INTRODUCTION

The Ibar Coal Mines have dealt with the mesogen with combustible materials. On the coal exploitation over eighty years in the separation tailing dump, the oxidative proc- deposits of Jarand, Usce, Tadenje- esses occur during which the tailings are Progorelica. Coal mining in the deposit Usce changed, and the result of change is a new was completed due to the depleted coal re- material - mining slag of reddish color. serves. Excavated run of mine coal in the In 1974, a factory for production of deposits Jarand and Tadenje-Progorelica is construction elements of mine slag was valorized in the unique separation in Pis- built, which worked until 2002. Since kanja, where it is delivered by air lift. 2005 there is no coal cleaning by the In the period from 1960 to 196 the coal “floats-sinks” principle or the waste is not separation was built in – Baljevac. deposited at the aforementioned location. During the construction of separation, the It was planned to carry out the rehabilita- tailing dump was built. Separation tailings tion of existing tailing dump, what can be consist of small and large classes of rocks done by restarting the production of con- that occur in the productive series of depos- struction elements and sale of slag to the its Jarando, Tadenje - Progorelica and road industry.

* PC for Underground Exploitation Resavica, Bureau for Design and Development, Belgrade ** The Ibar Mines of Stone Coal - Baljevac

No 1, 2011. 191 MINING ENGINEERING

CHARACTERISTICS OF MINE Chemical analysis of slag from the mine SLAG dump in Piskanja - Moisture at 0.34 % o Tailings from the coal cradle may rep- 110 C resent very suitable aggregates for produc- - Ignition loss 1.35 % tion of hollow concrete blocks provided - SiO2 49.00 % that it is natural burnt clay with chemical - Al2O3 11.69 % composition and gravity that correspond - TiO2 0.37 % to the set conditions of relevant standards - Fe2O3 14.34 % or regulations. - MnO 0.10 % Process of "self-ignition" of these - CaO 9.33 % waste materials occurs due to the con- - MgO 2.22 % tamination of primary clay mass by large - Na2O 0.66 % quantities of coal which was not removed - K2O 2.17 % during the process of separation, that is - SO 8.19 % coal washing. Otherwise, the combustion 3 T O T A L: 99.76 % process of coal impurities or burning the whole clay mass is due to the process of Analyses of chemical composition the spontaneous combustion of sulfur com- mining slag formed by spontaneous com- pounds in the clay mass. bustion of coal from the coal dump in Pis- This obtained aggregate by the natural kanja have showed that the analyzed slag process, mining slag, has look and color of presents an alumino-silicate matter whose baked clay, and it is characterized with the main component is insoluble SiO2, where relatively high gravity (800-1000 t/m³) the slag is characterized by high content of and often very high sulfate content. sulfate (8%). Testing the nature of sulfate, Due to its high content of soluble sul- contained in this slag, has determined that fate there was a dispute of possible recov- the content of soluble sulfate in water is ery of such slag as aggregate for concrete 2.97% as the use of difractometrical production or prefabricated concrete. How- analysis determined that the sulfates are ever, the certain physical tests of several usually in the form of mineral anhydrite. domestic slag showed that the slag even with a high sulfate content have the "con- MINE RESERVES OF SLAG stant volume", which has been proven by the test-cooking of cakes with no registered Total reserves of mine slag, which can appearance of radial cracks, warping, and be used for production of construction ele- all other phenomena that discredit this mine ments, aggregates for the road industry or slag in terms of volume constancy. other purposes amounts to about 320,000 t.

No 1, 2011. 192 MINING ENGINEERING

LOCATION OF THE DUMP OF SEPARATION TAILINGS

Dump of separation is located on the 3B, capacity 25 t/h. After crushing, the right side of the river Ibar. The terrain on sizing is done to the classes -12 mm + 8 which it is located is almost is flat, the mm, -8 mm+4 mm and - 4 mm. height differences are small. Larger terrain Classes are separated into special is tilted towards the river Ibar, which drains wooden boxes. Classified slag (2) from the entire terrain, and tailing dump has no boxes, is loaded by the scraper on belt pronounced influence of surface and conveyors and transported to the plant (3) ground water. On its east side and north- for mixing of cement, slag and water. Ca- west side there is the Piskanja stream, pacity of automatic plant for mixing is 24 which is regulated to the coast leaving the m³/h. Cement is situated in silos (4) and factory of construction elements. An em- dosed automatically into plant. Silo capac- bankment, height 3 m', width 11 m', was ity is 200 tons of cement. The prepared built towards the Ibar river, where circum- mixture from the plant is unloaded into ferential road was constructed, width 4 m', container of the self-driven mixture carrier and then the embankment, height of 4.6 m' (5) on which it is molded and transported to 7.1 m', width 11 m'. This embankment to the runway (6) where the blocks are protects the river side and allows run-off of delayed (7) for drying. Moulds are the surface water. On the other side of tail- changeable such various types of con- ing dump, towards the settlers of small struction blocks can be made by form and coal classes, the tailing dump is protected size. Drying of blocks is 21 days with oc- by an embankment, height 6.0 m' and casional wetting. All over the catwalk for width o 9 m'. Between the tailing dump and storage of blocks, the system for water settler of small classes, the road, width 4 supply (8) is distributed. m', was constructed to the factory of con- The mixtures for production of blocks, struction elements. the classified slag has the following ratio: - size class of slag -4 mm, 40% PRODUCTION OF CONSTRUCTION - size class of slag +8 mm - 4 mm, 30% BLOCKS OF MINE SLAG - size class of slag -12 mm + 8 mm, 25% 0.2 t of cement is added to 1 t of slag Time for which the separation tailings, due to the oxidation processes, takes the Classes of -4 mm are also used for form of mine slag, which can be used in the other purposes: for the needs of road in- production of construction elements, is 6 to dustry, construction of sports facilities and 8 months. Mine slag is loaded into trucks others. Production of construction blocks using the RD 180 loader and transported of mine slag is seasonal and it takes place from the dump to the crushing. Transport during spring - autumn. Classes of -4 mm length is up to 70 m. Slag crushing (1) is could be prepared and sent to the market carried out by the shredder hammers UG throughout the year.

No 1, 2011. 193 MINING ENGINEERING

Figure 1. Plant for production the construction elements

ECONOMIC ANALYSIS

Although the production of construction in just the first shift. The required number blocks has not done since 2002, the plant of direct employees for production of con- for production of construction blocks is still struction elements is given in Table 1. in operational condition, so the additional Table 2 gives the potential production investments are not need to restart the pro- capacity of construction blocks. Out of the duction. Based on the previous experiences total reserves of slag, which amount to and current knowledge, there is a market 320,000 tons, the amount of 200,000 tons where these products can be placed. will be placed for road industry, and Production of construction elements is 120,000 for production of construction seasonal; it is organized six months during elements. For the production of 1,404,000 the year from April-September. The pieces of construction elements, 19,500 workers, already employed in the mine, tons of slag is required. Exploitation time would be engaged for production. Produc- for work in one shift is 6.15 years. Table 3 tion of construction elements would be gives the production costs per unit of organized five working days of the week product.

No 1, 2011. 194 MINING ENGINEERING

Table 1. Required number of direct employees for the production of construction elements Name Number of employees - Operator of crusher 1 - Support worker of crusher 1 - Operator of scraper 1 - Operator of mixing plant - mixer 1 - Operator of self-driven compound carrier 1 - Operator of forklift 1 - Worker on block care 1 - TOTAL 8

Table 2. Production capacity - shift production 7,800 pieces - weekly production 39,000 pieces - monthly production 234,000 pieces - annual production 1,404,000 pieces

Table 3. Production costs per unit 1. Cement 20.41 din./pcs. 2. Petroleum 0.13 din./pcs. 3. Oils and lubricants 0.02 din./pcs. 4. Electricity 0,59 din./pcs. 5. Maintenance costs 1.22 din./pcs. 6. Gross profit 5.96 din./pcs. 7. Depreciation 0.44 din./pcs. 8. Insurance 0.20 din./pcs. 9. Other charges 0.03 din./pcs. 10. Production price of costs 29.00 din./pcs. 11. Costs of VAT 18% 5.40 din./pcs. 12. Costs without VAT 34.40 din./pcs.

Construction elements of mine slag 1,404,000 pcs. × 1.6 din./pcs. = can be sold on the market at price of 36.00 = 2,246,600 din. or 22,000 EUR. din./pcs. Recognizing the mining slag reserves, the production capacity and unit production CONCLUSION costs of products and the selling price of Analysis of the economic effects of products, the economic effects of re- production the construction blocks, has starting the production of blocks were de- given the positive results. The mine would termined and they are the following: provide the additional income, and the

No 1, 2011. 195 MINING ENGINEERING production could employ disabled workers of Coal in Order to Increase the Financial or workers who were ranked in the certain Effects of the Coal Mines with the period as employees unable to work in the Underground Mining in the Republic of pit. Launching of production would re- Serbia, Energy 2/2005, Association of move the tailings, and also the remedia- Energetic, Belgrade, pp.244-245 (in tion of the tailing dump would be per- Serbian) formed. [4] Djukanović D., Ivković M.,2005: Effect of Underground Mining of Brown in REFERENCES the Brown Coal Mine “jasenova” - Krepoljin on the Environmen, Scientific [1] Project Documentation of the JP PEU- and Research Conference Ecological Bureau for Design and Development, Truth EcoIst-05 (in Serbian) Belgrade (in Serbian) [5] Maksimović M., Pačkovski G., [2] Report on Testing the Quality of slag Jovanović M., Nikolić K. 2009: from the Dump of the Ibar Mines in Economic Evaluation of Technogenetic Baljevac on Ibar, Yugoslav Civil Deposit “Depot of Slag 1”, Mining Center, Belgrade, 1975 (in Serbian) Engineering 2/2009, Bor, pp.45-52 (in [3] Djukanović D., Djukić B., Sanković Ć., Serbian) 2005: Sizing the Small Size Assortments

No 1, 2011. 196 MINING ENGINEERING

INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162 KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622

UDK:330.1:622(045)=861

Mile Bugarin*, Gordana Slavković*, Zoran Stojanović*

UTVRĐIVANJE CENE KOŠTANJA U EKONOMSKOJ ANALIZI RUDARSKOG PROJEKTA

Izvod

U radu se predstavlja značaj utvrđivanja cene koštanja prilikom ekonomskog ocenjivanja projekata u rudarstvu. Na bazi tehničkih podloga određuju se svi tzv. inputi u projektovanoj rudarskoj proizvodnji: investicije, utvrđeni normativi materijala i energenata, zatim određene stope amortizacije, kamate na kredite, potrebna radna snaga, održavanje opreme, razni transakcioni troškovi i zakonske obaveze. Ekonomskom evulacijom definiše se troškovna strana poslovnih bilansa, što je predstavljeno na primeru rudarskog projektovanja za ležište Čoka Marin. Ključne reči: proizvodna cena, projekat, rudarstvo, ocenjivanje

1. UVOD 2. POLAZNI PARAMETRI ZA OBRAČUNA TROŠKOVA Projektovane investicije, utvrđeni nor- mativi materijal i energenati u tehničkom Obračun troškova za rudarski deo i deo delu, zatim određene stope amortizacije, prerade-PMS izvršen je na bazi podloga kamate na kredite, potrebna radna snaga, tehničko-tehniloškog dela. održavanje opreme, razni transakcioni Svi obračuni su u američkim dolarima: troškovi i zakonske obaveze, odredili su USD većinu inputa za definisanje kalkulativnih • Obračun troškova normativnog ma- troškova produkcije metala u ležištu Ćoka terijala je na osnovu projektovanih Marin. Ukupni troškovi mogu se podeliti (planiranih) fizičkih utrošaka po jedi- na varijabilne, relativno fiksne i fiksne nici i cena koje su sagledane na bazi troškove u funkciji godišnje proizvodnje. ostvarenja i prognoze.

* Institut za rudarstvo i metalurgiju Bor

Broj 1,2011. 197 RUDARSKI RADOVI

Tabela 2.1. God.obračun troškova normativnog materjala za otkopavanje 20000 t Naziv Jed.normt. Ukupno Cena U 000 Po t rude Eksploziv praškasti 0.46444 9288.8 1.2 11.15 0.5575 elektro upaljači 0.32418 6483.6 0.85 5.51 0.2755 kabla za miniranje 0.00888 177.6 0.1 0.02 0.001 monoblok burgije 0.00042 8.4 43.5 0.37 0.0185 monoblok burg. l=1,6m 0.00094 18.8 68.7 1.29 0.0645 bušaće šipke 0.0002 4 94.5 0.38 0.019 nastavne šipke 0.00021 4.2 105 0.44 0.022 početni segment 0.0002 4 94 0.38 0.019 krune za busen. 26,5 0.00074 14.8 26.5 0.39 0.0195 industrijska voda 0.00919 183.8 0.14 0.03 0.0015 ulje i mazivo 0.14889 2977.8 2.8 8.34 0.417 plast. cevi za vodu 0.00349 69.8 2.91 0.2 0.01 creva vazduh i voda 0.00599 119.8 2.67 0.32 0.016 plastične cevi vetr. 0.00517 103.4 72 7.44 0.372 čelič. anker 1,6 m 0.00706 141.2 7.31 1.03 0.0515 čelič. anker 0,6 m 0.00706 141.2 5.6 0.79 0.0395 čelična mreža 0.01049 209.8 3.8 0.8 0.04 komprimirani vazduh 73.35 1467000 0.004 5.87 0.2935 obla jamska građa 0.00004 0.8 53 0.04 0.002 rezana jamska građa 0.00003 0.6 220 0.13 0.0065 gume za utovarivač 0.00079 15.8 2000 31.6 1.58 ulje i maziv. sp. tran 0.3 6000 2.8 16.8 0.84 gume sp. tran 0.000625 12.5 1000 12.5 0.625 ulje i mazivo utovar 0.123 2460 2.8 6.89 0.3445 gume utovar 0.000366 7.32 2000 14.64 0.732 el. energija 12.46 249200 0.06 14.95 0.7475 dizel gorivo 1.49 29800 1.3 38.74 1.937 gorivo dizel utovar. 1.19 23800 1.3 30.94 1.547 gorivo dizel sp.tran 3.75 75000 1.3 97.5 4.875 Ukupno 309.48 15.474

Broj 1,2011. 198 RUDARSKI RADOVI

Tabela 2.2. God.obračun troškova normativnog materjala za PMS 19.500 t Jed.normt. Ukupno Cena U 000 Po t rude 2 101 ulja i maziva 0.02 390 3.18 1.24 0.064 2 103 čelične obloge 0.005 97.5 4.18 0.41 0.021 2 104 čelične obloge 0.072 1404 4.18 5.87 0.301 2 105 šipke 0.46 8970 1.16 10.41 0.534 2 106 kugle 0.8 15600 1.18 18.41 0.944 2 107 filter platno 0.0005 9.75 7.45 0.07 0.004 2 108 D250 0.04 780 5.46 4.26 0.218 2 109 KAX 0.125 2437.5 3.42 8.34 0.428 2 110 3418A 0.125 2437.5 5.5 13.41 0.688 2 111 KREČ 10 195000 0.08 15.6 0.800 2 112 obloge gumene 0.04 780 5.6 4.37 0.224 2 113 sveza indust. v 2.3 44850 2.18 97.77 5.014 2 201 el. energija 25 487500 0.06 29.25 1.500 Ukupno 209.41 10.739

• Troškovi održavanja su računati u • Amortizacija osnovnih sredstava je iznosu od 5% u odnosu na nabavnu utvrđena po važećim zakonskim vrednost sredstava. propisima za nova ulaganja.

Tabela. 2.3. Obračun troškova amortizacije

NAZIV GOD. NAB.VRED.STOPA AMORTIZ. ISPRAVKA KRAJNJA

AMORT. VRED. RED. 1 oprema RUD. 1 1,170 12.50 146 1,170 0

1,170 146 1,170 0 2 POSTOJECA PMS 1 216 12.50 27 216 0 1 gr.obj.pr./otk 1 131 2.50 3 33 98 1 gr.rad.pr.i ot 1 35 2.50 1 9 26 1 gr.rad.pr.i ot 1 81 2.50 2 20 61 1 gr.rad.pr.i ot 6 50 2.50 1 6 44 1 gr.rad.pr.i ot 7 11 2.50 0 1 10 1 gr.rad.pr.i ot 7 45 2.50 1 4 41

Broj 1,2011. 199 RUDARSKI RADOVI

1 gr.rad.pr.i ot 7 36 2.50 1 4 32 1 gr.rad.pr.i ot 8 45 2.50 1 3 42 1 gr.rad.pr.i ot 9 22 2.50 1 1 21 1 izrada podz.pr 1 598 2.50 15 149 449 1 pr.rad.pr.i ot 2 18 2.50 0 4 14 1 pr.rad.pr.i ot 2 40 2.50 1 9 31 1 pr.rad.pr.i ot 2 40 2.50 1 9 31 1 pr.rad.pr.i ot 3 51 2.50 1 10 41 1 pr.rad.pr.i ot 4 29 2.50 1 5 24 1 pr.rad.pr.i ot 4 65 2.50 2 11 54 1 pr.rad.pr.i ot 4 21 2.50 1 4 17 1 pr.rad.pr.i ot 5 50 2.50 1 7 43

1,584 61 505 1,079 1 istrazni radov 1 1,850 20.00 370 1,850 0 1 ekologija 1 150 20.00 30 150 0 1 projektovanje 1 50 20.00 10 50 0

2,050 410 2,050 0 U K U P N O: 4,804 617 3,727 1,077

• Bruto zarade radnika su obračunate za US$ mesečno po radniku za sedam projektovani broj radnika (predvidjen meseci godisnje. u tehničkom delu) u visini od 1000

Tabela. 2.4. Obračun troškova radne snage Broj Mesečna bruto Ukupno u hiljd. godišnje Opis radnika zarada u USD (7 mes.) 1.Rudnik 28 1.000 196 2.PMS 10 1.000 70 Ukupno 38 1.000 266

Broj 1,2011. 200 RUDARSKI RADOVI

• Naknada za korišćenje mineralnih si- • Porez na dobit je utvrđen po stopi od rovina obračunata je prema zakon- 10%. skoj regulativi (3% na neto prihod • Investiciona ulaganja u osnovna topionice). sredstva iznose: 6.104.000 USD i Tabela 2.5. Obračun naknade za finansiraju se iz kredita pod sledećim korišćenje mineralne sirovine uslovima: u 000 - Iznos ukupnog kredita iznosi 4.200.000 GODINE PRIHOD NAKNADA USD 1 2844 85,32 - rok vraćanja kredita je 5 godine 2 2844 85,32 - kamatna stopa je 12% godišnje, 3 2963 88,89 - otplata kredita: jednaki godišnji anuiteti 4 2963 88,89 5 2963 88,89 Tabela 2.7. Ulaganja i izvori finansiranja 6 2963 88,89 u 000 USD % 1.Ukupno Osnovna 7 2963 88,89 5304 0.87 sredstva 8 2963 88,89 2. Obrtna sredstva 800 13.11 9 2963 88,89 10 2963 88,89 Ukupne investic. 6104 100.00 IZVORI • Troškovi prevoza koncentrata do 1.Sopstvena sred. 1904 31.19 topionice u Boru iznose 4 USD po t 2.Krediti 4200 68.81 koncentrata-godišnje iznose 43.680 UKUPNI IZVORI 6104 100.00 USD. • Ostali materijalni i nematerijalni Tabela 2.8. Plan otplate kredita troškovi su procenjeni u odnosu na Uslovi: Rok: 5 Kam.: 12.000% UC.: 0% Grac: 0 ukupan prihod. Anuitet kamata otplata dug 1 1165 504 661 4200 Tabela 2.6. Obračun ostalih troškova u 2 1165 425 740 3539 10.god. 3 1165 336 829 2798 OPIS U 000 4 1165 236 929 1969 GODINA: 10 5 1165 125 1040 1040 Tot: 5825 1626 4199 1 1 NAKNADA 44.00 Pros: 1165 325 840 2 1 NAKNADA 44.00

1 2 OSTALI TROSKOVI 180.00 Ukupno 2 2 OSTALI TROSKOVI 100.00 5825 1626 4199 2 5 prevoz koncentrata 43.68 1 6 rekultivacija 2.79 3. OBRAČUN CENE KOŠTANJA 1 101 NEMATERJALNI TROSK 100.00 2 101 NEMATERJALNI TROSK 86.00 Na osnovu sagledanih svih potrebnih 2 101 NEMATERJALNI TROSK 0.00 inputa, formirana je cena koštanja: ukupna i tzv. fazna . Subtotal ** Puna cena koštanja po toni rude iznosi 600.47 106,4 USD/t rude.

Broj 1,2011. 201 RUDARSKI RADOVI

Tabela 3.1. Cena koštanja u 000

UKU- PRO- PO GODINE 1 2 3 4 5 6 7 8 9 10 PNO SEK T/RUDE

1. Sirov.i mater. 308 308 308 308 308 308 308 308 308 308 3075 308 15.4

2. Energija 211 211 211 211 211 211 211 211 211 211 2114 211 10.55

Elektrika 44 44 44 44 44 44 44 44 44 44 442 44 2.2

Gorivo 167 167 167 167 167 167 167 167 167 167 1672 167 8.35

3. Odrzavanje 95 95 95 95 95 95 95 95 36 36 833 83 4.15

4. Amortizacija 604 607 608 611 612 204 206 207 34 34 3727 373 18.65

5. Ostali mat.tr. 418 416 418 418 418 418 418 418 418 420 4178 418 20.9

6. Nemater.trosk. 180 180 180 180 180 180 180 180 180 180 1800 180 9

7. Licni dohoci 266 266 266 266 266 266 266 266 266 266 2660 266 13.3

8. Kamate 504 425 336 236 125 1626 163 8.15

9. Osiguranje 42 42 42 42 42 42 42 42 15 15 368 37 1.85

I. TROS. POSLOVANJA- 2629 2549 2464 2367 2257 1723 1726 1727 1468 1471 20380 2038 101.9 cena kostanja

10. Zakon. 21 29 50 60 71 124 124 124 150 149 901 90 4,5 obav.

II. PUNA 2650 2579 2515 2427 2328 1847 1849 1850 1617 1620 21282 2127 106,4 CENA KOST.

Sl. 1. Struktura cene koštanja za Čoka Marin

Slika 1 pokazuje procentualno učešće po- jedinih troškova u ukupnom iznosu troškova.

Broj 1,2011. 202 RUDARSKI RADOVI

Tabela 3.1.a. Cena koštanja –faza otkopavanja u 000

UKU- PRO- PO GODINE 1 2 3 4 5 6 7 8 9 10 PNO SEK T

1. Sirov.i mater. 127 127 127 127 127 127 127 127 127 127 1274 127 6.35

2. Energija 182 182 182 182 182 182 182 182 182 182 1821 182 9.10

Elektrika 15 15 15 15 15 15 15 15 15 15 150 15 0.75

Gorivo 167 167 167 167 167 167 167 167 167 167 1672 167 8.35

3. Odrzavanje 95 95 95 95 95 95 95 95 36 36 833 83 4.15

4. Amortizacija 577 580 581 584 585 177 179 180 34 34 3511 351 17.55

5. Ostali mat.tr. 230 226 227 227 227 227 227 227 227 230 2274 227 11.35

6. Nema- 100 100 100 100 100 100 100 100 100 100 1000 100 5.00 ter.trosk.

7. Licni dohoci 196 196 196 196 196 196 196 196 196 196 1960 196 9.80

8. Kamate 504 425 336 236 125 1626 163 8.15

9. Osiguranje 38 38 38 38 38 38 38 38 15 15 333 33 1.65

I. TROS. 2049 1969 1882 1786 1676 1142 1144 1145 918 921 14632 1463 73.15 POSLOVANJA

Cena koštanja po toni rude za fazu otkopavanja iznosi 73,15 USD .

Tabela 3.1.b. Cena koštanja –faza PMS u 000

GODINE 1 2 3 4 5 6 7 8 9 10 UKUPNO PROSEK PO T

Sirov.i mater. 180 180 180 180 180 180 180 180 180 180 1802 180 9.23

2. Energija 29 29 29 29 29 29 29 29 29 29 293 29 1.49

Elektrika 29 29 29 29 29 29 29 29 29 29 293 29 1.49

3. Odrzavanje

4. Amortizacija 27 27 27 27 27 27 27 27 216 22 1.13

5. Ostali mat.tr. 189 190 191 191 191 191 191 191 191 191 1904 190 9.74 6. Nemater. 80 80 80 80 80 80 80 80 80 80 800 80 4.10 trosk. 7. Licni dohoci 70 70 70 70 70 70 70 70 70 70 700 70 3.59

8. Kamate

9. Osiguranje 4 4 4 4 4 4 4 4 4 4 35 4 0.21 I. TROS. 579 580 581 581 581 581 581 581 550 550 5748 575 29.49 POSLOVANJA

Cena koštanja po toni rude za fazu pre- definisanje kalkulativnih troškova produk- rade iznosi 29,49 USD . cije metala u ležištu odredjeni su na bazi: projektovanih investicija, utvrđenih norma- 4. ZAKLJUČAK tivih materijala i energenata u tehničkom delu, zatim određene stope amortizacije, Ekonomskom evulacijom definiše se kamate na kredite, potrebne radna snaga, troškovna strana poslovnih bilansa , što je održavanja, ostalih potrebnih troškova i predstavljeno na primeru rudarskog pro- zakonskih obaveza. Utvrđena je ukupna jektovanja za ležište Čoka Marin. Inputi za cena koštana i fazna cena koštanja.

Broj 1,2011. 203 RUDARSKI RADOVI

LITERATURA:

[1] B. Cavender, Mineral Production Costs [5] T. Kuronen: Capital Budgeting In A - Analyses and Management, SME, Capital-Intensive Industry, Helsinki 1999. University Of Technology, Mat-2.108 [2] N. Dondur, Ekonomska analiza Independent research projects in applied projekata, Mašinski fakultet, Beograd mathematics, 2007. 2002. [6] M. Bugarin, G. Slavković, M. [3] G. Mankju, Principi ekonomije, Maksimović, Vrednovanje korisne sirovine Čoka Marina, Rudarski radovi, Ekonomski fakultet Beograd, 2005. br. 2-2010, str. 17-23 [4] M. Bugarin, G. Slavković "Tehno- ekonomska ocena " Institut za bakar, Bor, 2006.

Broj 1,2011. 204 RUDARSKI RADOVI

MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162 COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622

UDK:330.1:622(045)=20

Mile Bugarin*, Gordana Slavković*, Zoran Stojanović*

DETERMINATION OF COST PRICE IN THE ECONOMIC ANALYSIS OF MINING PROJECT

Abstract

This paper presents the importance of determination the cost price in the economic evaluation of mining projects. Based on the technical backgrounds, all so-called inputs in designed mining production are determined: investments, set standards of materials and energy, then the specific depreciation rate, loan interests, the required manpower, equipment maintenance, various trans- action costs and legal obligations. Economic evaluation defines the cost side of the balance sheets, what was present in the example of mining design the deposit Čoka Marin. Key words: cost price, project, mining, evaluation

1. INTRODUCTION 2. INPUT PARAMETERS FOR COSTING The designed investments, set stan- dards of materials and energy in the tech- Costing for the mining part and part of nical part, then the specific rates of depre- mineral was done based on the back- ciation, loan interests, required manpower, grounds of technical – technological part. equipment maintenance, various transac- All calculations are in U.S. dollars: tion costs and legal obligations, have de- USD termined the majority of inputs for defin- • Costing of normative materials is on ing the calculation costs of metal produc- the basis of designed (planned) hysi- tion in the deposit Čoka Marin. Total costs cal consumptions per unit and prices can be divided into variable, relatively that are analyzed based on realization fixed and fixed costs as a function of an- and forecast. nual production.

* Mining and Metallurgy Institute Bor

No 1, 2011. 205 MINING ENGINEERING

Table 2.1. Costing of annual normative material for mining 20,000t Unit Name Total Price In 000 t /ore normative Powdered explosive 0.46444 9288.8 1.2 11.15 0.5575

Electric igniters 0.32418 6483.6 0.85 5.51 0.2755 Cable for blasting 0.00888 177.6 0.1 0.02 0.001

Monoblock drills 0.00042 8.4 43.5 0.37 0.0185

Monoblock drill l = 1.6 m 0.00094 18.8 68.7 1.29 0.0645 Drill rods 0.0002 4 94.5 0.38 0.019

Drill rod extension 0.00021 4.2 105 0.44 0.022

Initial segment 0.0002 4 94 0.38 0.019 Drill bits 26.5 0.00074 14.8 26.5 0.39 0.0195

Industry water 0.00919 183.8 0.14 0.03 0.0015

Oil and lubricant 0.14889 2977.8 2.8 8.34 0.417 Plastic pipes for water 0.00349 69.8 2.91 0.2 0.01

Air and water hoses 0.00599 119.8 2.67 0.32 0.016

Plastic pipes for ventilation 0.00517 103.4 72 7.44 0.372 Steel anchor 1.6 m 0.00706 141.2 7.31 1.03 0.0515

Steel anchor 0.6m 0.00706 141.2 5.6 0.79 0.0395

Steel grid 0.01049 209.8 3.8 0.8 0.04 Compressed air 73.35 1467000 0.004 5.87 0.2935

Round pit timber 0.00004 0.8 53 0.04 0.002

Cut pit timber 0.00003 0.6 220 0.13 0.0065 Tires for loader 0.00079 15.8 2000 31.6 1.58

Oil and lubricant for conveyor 0.3 6000 2.8 16.8 0.84

Tires for conveyor 0.000625 12.5 1000 12.5 0.625 Oil and lubricant for loader 0.123 2460 2.8 6.89 0.3445

Tires for loader 0.000366 7.32 2000 14.64 0.732

Electric energy 12.46 249200 0.06 14.95 0.7475

Diesel 1.49 29800 1.3 38.74 1.937

Diesel for loader 1.19 23800 1.3 30.94 1.547

Diesel for conveyor 3.75 75000 1.3 97.5 4.875

TOTAL 309.48 15.474

No 1, 2011. 206 MINING ENGINEERING

Table 2.2. Costing of annual normative material for mineral processing 19,500 t Unit Name Total Price In 000 t/ore normative 2 101 Oil and lubricant 0.02 390 3.18 1.24 0.064 2 103 Steel linings 0.005 97.5 4.18 0.41 0.021 2 104 Steel linings 0.072 1404 4.18 5.87 0.301 2 105 Rods 0.46 8970 1.16 10.41 0.534 2 106 Balls 0.8 15600 1.18 18.41 0.944 2 107 Filter cloth 0.0005 9.75 7.45 0.07 0.004 2 108 D250 0.04 780 5.46 4.26 0.218 2 109 KAX 0.125 2437.5 3.42 8.34 0.428 2 110 3418A 0.125 2437.5 5.5 13.41 0.688 2 111 Lime 10 195000 0.08 15.6 0.800 2 112 Rubber linings 0.04 780 5.6 4.37 0.224 2 113 Fresh industry water 2.3 44850 2.18 97.77 5.014 2201 Electrical energy 25 487500 0.06 29.25 1.500 TOTAL 209.41 10.739

• Maintenance costs were calculated in • Depreciation of fixed assets was de- the amount of 5% compared to the termined by the applicable legisla- purchase value of assets. tions for the new investments.

Table 2.3 Costing of depreciation

name year p.value rate depreciation Correction Final . of value value 1 Mining equiment 1 1,170 12.50 146 1,170 0

1,170 146 1,170 0 2 Mineral processing existing equipment 1 216 12.50 27 216 0 1 mining facilities 1 131 2.50 3 33 98 1 construct.works 1 35 2.50 1 9 26 1 construct.works 1 81 2.50 2 20 61 1 construct.works 6 50 2.50 1 6 44 1 construct.works 7 11 2.50 0 1 10 1 construct.works 7 45 2.50 1 4 41 1 construct.works 7 36 2.50 1 4 32 1 construct.works 8 45 2.50 1 3 42 1 construct.works 9 22 2.50 1 1 21

No 1, 2011. 207 MINING ENGINEERING

1 product.under.rooms 1 598 2.50 15 149 449 1 construct.works 2 18 2.50 0 4 14 1 construct.works 2 40 2.50 1 9 31 1 construct.works 2 40 2.50 1 9 31 1 construct.works 3 51 2.50 1 10 41 1 construct.works 4 29 2.50 1 5 24 1 construct.works 4 65 2.50 2 11 54 1 construct.works 4 21 2.50 1 4 17 1 construct.works 5 50 2.50 1 7 43

1,584 61 505 1,079 1 prospecting works 1 1,850 20.00 370 1,850 0 1 ecology 1 150 20.00 30 150 0 1 design 1 50 20.00 10 50 0

2,050 410 2,050 0 T O T A L: 4,804 617 3,72 1,077

• Gross earnings of workers were cal- • Compensation fee for the use of mineral culated for designed number of resources is calculated by the legisla- workers (estimated in the technical tion (3% of the net Smelter revenue). part) in the amount of U.S.$ 1,000 per month per worker for seven months a year.

Table 2.4. Calculation of labor costs Number of Total for 7 Description Gross earnings worker month 1. Mining 28 1,000 196 2. Mineral 10 1,000 70 Proessing Total 38 1,000 266

No 1, 2011. 208 MINING ENGINEERING

Table 2.5. Calculation the compensa • Transport costs of concentrate to the tion fee for the use of Smelter in Bor are 4 USD/t of con- mineral resources in 000 centrate - annually amount $ 43,680 Year Income Fee • Other material and nonmaterial costs 1 2844 85.32 were estimated in relation to the total 2 2844 85.32 income.

3 2963 88.89 4 2963 88.89 5 2963 88.89 6 2963 88.89 7 2963 88.89 8 2963 88.89 9 2963 88.89 10 2963 88.89

Table 2.6. Calculation of other costs in 2010 DESCRIPTION 000 YEAR: 2010 1 1 FEE 44.00 2 1 FEE 44.00 1 2 OTHER COSTS 180.00 2 2 OTHER COSTS 100.00 2 5 TRANSPORT OF CONCENTRATE 43.68 1 6 RECULTIVATION 2.79 1 101 NONMATERIAL COSTS 100.00 2 101 NONMATERIAL COSTS 86.00 Subtotal ** 600.47

• Income tax is determined by the rate Table 2.7. Investments and funding of 10%. sources • Investments in the fixed assets 000 USD % 1. TOTAL FIXED amount to: $ 6,104,000 are financed 5304 0.87 by the loans under the following ASSETS 2. CURRENT 800 13.11 conditions: ASSETS - The amount of total loans: 4,200,000 TOTAL USD $ 6104 100.00 - Loan repayment period: 5 years INVESTMENTS SOURCES - Interest rate: 12%/year 1. Own funds 1904 31.19 - Repayment of loans: equal annual an- nuities 2. Loans 4200 68.81 TOTAL SOURCES 6104 100.00

No 1, 2011. 209 MINING ENGINEERING

Table 2.8. Loan Repayment Plan TERMS: PERIOD:5 RATE: 12.000% UC.:0% GRACE 0: Annuity interest payment loan 1 1165 504 661 4200 2 1165 425 740 3539 3 1165 336 829 2798 4 1165 236 929 1969 5 1165 125 1040 1040 Total: 5825 1626 4199 Aver.: 1165 325 840

Total 5825 1626 4199

3. CALCULATION OF THE

COST PRICE

Based on the analyzed all the necessary and per phases. inputs, the cost price was formed: the total Full cost per ton of ore is USD $ 106.4.

Table 3.1. Total cost price in 000

Year 1 2 3 4 5 6 7 8 9 10 Total Average Per tone

1 Raw mat.&mater. 308 308 308 308 308 308 308 308 308 308 3075 308 15.4

2 Energy 211 211 211 211 211 211 211 211 211 211 2114 211 10.55

Electricity 44 44 44 44 44 44 44 44 44 44 442 44 2.2

Fuel 167 167 167 167 167 167 167 167 167 167 1672 167 8.35

3 Maintenance 95 95 95 95 95 95 95 95 36 36 833 83 4.15

4 Depreciation 604 607 608 611 612 204 206 207 34 34 3727 373 18.65

5 Other mat. costs 418 416 418 418 418 418 418 418 418 420 4178 418 20.9

6 Nonmaterial costs 180 180 180 180 180 180 180 180 180 180 1800 180 9

7 Personal incomes 266 266 266 266 266 266 266 266 266 266 2660 266 13.3

8 Interest 504 425 336 236 125 1626 163 8.15

9 Insurance 42 42 42 42 42 42 42 42 15 15 368 37 1.85

I Operative 2629 2549 2464 2367 2257 1723 1726 1727 1468 1471 20380 2038 101.9 costs – cost price

10 Taxes 21 29 50 60 71 124 124 124 150 149 901 90 4,5

II Full cost price 2650 2579 2515 2427 2328 1847 1849 1850 1617 1620 21282 2127 106,4

No 1, 2011. 210 MINING ENGINEERING

Graph chart 1. The structure of cost price for Čoka Marin

Graph chart shows the percentage share of certain expenses in the total amount of costs.

Table 3.1.a Cost price – stage of mining in 000

PER YEAR 1 2 3 4 5 6 7 8 9 10 TOTAL AVERAGE t ORE

1 Raw mat.&mater. 127 127 127 127 127 127 127 127 127 127 1274 127 6.35

2 Energy 182 182 182 182 182 182 182 182 182 182 1821 182 9.10

Electricity 15 15 15 15 15 15 15 15 15 15 150 15 0.75

Fuel 167 167 167 167 167 167 167 167 167 167 1672 167 8.35

3 Maintenance 95 95 95 95 95 95 95 95 36 36 833 83 4.15

4 Depreciation 577 580 581 584 585 177 179 180 34 34 3511 351 17.55

5 Other mat.costs. 230 226 227 227 227 227 227 227 227 230 2274 227 11.35

6 Nonmaterial costs. 100 100 100 100 100 100 100 100 100 100 1000 100 5.00

7 Personal incomes 196 196 196 196 196 196 196 196 196 196 1960 196 9.80

8 Interest 504 425 336 236 125 1626 163 8.15

9 Insurance 38 38 38 38 38 38 38 38 15 15 333 33 1.65

I Operative costs 2049 1969 1882 1786 1676 1142 1144 1145 918 921 14632 1463 73.15

Cost price per ton of ore for the mining stage is $ 73.15.

No 1, 2011. 211 MINING ENGINEERING

Tabela 3.1.b. Cost price – stage of mineral processing in 000

YEAR 1 2 3 4 5 6 7 8 9 10 TOTAL AVERAGE PER t ORE

1 Raw mat.&mater. 180 180 180 180 180 180 180 180 180 180 1802 180 9.23

2 Energy 29 29 29 29 29 29 29 29 29 29 293 29 1.49

Electricity 29 29 29 29 29 29 29 29 29 29 293 29 1.49

3 Maintenance

4 Depreciation 27 27 27 27 27 27 27 27 216 22 1.13

5 Other mat.costs. 189 190 191 191 191 191 191 191 191 191 1904 190 9.74

6 Nonmaterial costs. 80 80 80 80 80 80 80 80 80 80 800 80 4.10

7 Personal incomes 70 70 70 70 70 70 70 70 70 70 700 70 3.59

8 Interest

9 Insurance 4 4 4 4 4 4 4 4 4 4 35 4 0.21

I Operative costs 579 580 581 581 581 581 581 581 550 550 5748 575 29.49

REFERENCES

Cost price per ton of ore for the proc- [1] B. Cavender, Mineral Production essing stage is $ 29.49. Costs - Analyses and Management, SME, (1999) 4. CONCLUSION [2] N. Dondur, Economic Analysis of the Project, Faculty of Mechanical Economic evaluation defines the cost Engineering, Belgrade (2002), (in side of balance sheets, what is present on Serbian) the example of mining design for the Čoka [3] G. Mankju, Principles of Economics, Marin deposit. Inputs for defining the cal- Faculty of Economics, Belgrade culation costs of metal production in the (2005),(in Serbian). deposit were determined on the basis of: [4] M. Bugarin, G. Slavković Techno- the designed investments, determined nor- economic Evaluation, Copper Institute, Bor (2006), (in Serbian). mative materials and energy in the techni- cal section, then the specific rate deprecia- [5] T. Kuronen: Capital Budgeting in a Capital-Intensive Industry, Helsinki tion rate, interest on loans, the required University of Technology, Mat-2.108 labor, maintenance, and other necessary Independent research projects in expenses and legal obligations. The total applied mathematics (2007) price was determined as well as the stage [6] M. Bugarin, G. Slavković, M. cost price. Maksimović, Valuation of raw mineral for the Coka Marin deposit, Mining Engineering, 2-2010, pp. 23-29

No 1, 2011. 212 MINING ENGINEERING

UPUTSTVO AUTORIMA

Časopis RUDARSKI RADOVI izlazi dva puta godišnje i objavljuje naučne, stručne i pregledne radove. Za objavljivanje u časopisu prihvataju se isključivo originalni radovi koji nisu prethodno objavljivani i nisu istovremeno podneti za objavljivanje negde drugde. Radovi se anonimno recenziraju od strane recenzenta posle čega uredništvo donosi odluku o objavljivanju. Rad priložen za objavljivanje treba da bude pripremljen prema dole navedenom uputstvu da bi bio uključen u proceduru recenziranja. Neodgovarajuće pripremljeni rukopisi biće vraćeni autoru na doradu. Obim i font. Rad treba da je napisan na papiru A4 formata (210x297 mm), margine (leva, desna, gornja i donja) sa po 25 mm, u Microsoft Wordu novije verzije, fontom Times New Roman, veličine 12, sa razmakom 1,5 reda, obostrano poravnat prema levoj i desnoj margini. Preporučuje se da celokupni rukopis ne bude manji od 5 strana i ne veći od 10 strana. Naslov rada treba da je ispisan velikim slovima, bold, na srpskom i na engleskom jeziku. Ispod naslova rada pišu se imena autora i institucija u kojoj rade. Autor rada zadužen za korespodenciju sa uredništvom mora da navede svoju e-mail adresu za kontakt u fusnoti. Izvod se nalazi na početku rada i treba biti dužine do 200 reči, da sadrži cilj rada, primenjene metode, glavne rezultate i zaključke. Veličina fonta je 10, italic. Ključne reči se navode ispod izvoda. Treba da ih bude minimalno 3, a maksimalno 6. Veličina fonta je 10, italic. Izvod i ključne reči treba da budu date i na engleski jezik. Osnovni tekst. Radove treba pisati jezgrovito, razumljivim stilom i logičkim redom koji, po pravilu, uključuje uvodni deo s određenjem cilja ili problema rada, opis metodologije, prikaz dobijenih rezultata, kao i diskusiju rezultata sa zaključcima i implikacijama. Glavni naslovi trebaju biti urađeni sa veličinom fonta 12, bold, sve velika slova i poravnati sa levom marginom. Podnaslovi se pišu sa veličinom fonta 12, bold, poravnato prema levoj margini, velikim i malim slovima. Slike i tabele. Svaka ilustracija i tabela moraju biti razumljive i bez čitanja teksta, odnosno, moraju imati redni broj, naslov i legendu (objašnjenje oznaka, šifara, skraćenica i sl.). Tekst se navodi ispod slike, a iznad tabele. Redni brojevi slika i tabela se daju arapskim brojevima. Reference u tekstu se navode u ugličastim zagradama, na pr. [1,3]. Reference se prilažu na kraju rada na sledeći način: [1] B.A. Willis, Mineral Procesing Technology, Oxford, Perganom Press, 1979, str. 35. (za poglavlje u knjizi) [2] H. Ernst, Research Policy, 30 (2001) 143–157. (za članak u časopisu) [3] www: http://www.vanguard.edu/psychology/apa.pdf (za web dokument) Navođenje neobjavljenih radova nije poželjno, a ukoliko je neophodno treba navesti što potpunije podatke o izvoru. Zahvalnost se daje po potrebi, na kraju rada, a treba da sadrži ime institucije koja je finansirala rezultate koji se daju u radu, sa nazivom i brojem projekta; ili ukoliko rad potiče iz magistarske teze ili doktorske disertacije, treba dati naziv teze/disertacije, mesto, godinu i fakultet na kojem je odbranjena. Veličina fonta 10, italic. Radovi se šalju prevashodno elektronskom poštom ili u drugom elektronskom obliku. Adresa uredništva je: Časopis RUDARSKI RADOVI Institut za rudarstvo i metalurgiju Zeleni bulevar 35, 19210 Bor E-mail: [email protected] ; [email protected] Telefon: 030/435-164; 030/454-110 Svim autorima se zahvaljujemo na saradnji.

INSTRUCTIONS FOR THE AUTHORS

MINING ENGINEERING Journal is published twice a year and publishes the scientific, technical and review paper works. Only original works, not previously published and not simultaneously submitted for publication elsewhere, are accepted for publication in the journal. The papers are anonymously reviewed by the reviewers after that the editors decided to publish. The submitted work for publication should be prepared according to the instructions below as to be included in the procedure of reviewing. Inadequate prepared manuscripts will be returned to the author for finishing. Volume and Font size. The work needs to be written on A4 paper (210x297 mm), margins (left, right, upper and bottom) with each 25 mm, in the Microsoft Word later version, font Times New Roman, size 12, with 1.5 line spacing, justified to the left and right margins. It is recommended that the entire manuscript can not be less than 5 pages and not exceed 10 pages. Title of Work should be written in capital letters, bold, in Serbian and English. Under the title, the names of authors and institutions where they work are written under the title. The author of work, responsible for correspondence with the editorial staff, must provide his/her e-mail address for contact in a footnote. Abstract is at the beginning of work and should be up to 200 words, include the aim of the work, the applied methods, the main results and conclusions. The font size is 10, italic. Key words are listed below abstract. They should be minimum 3 and maximum of 6. The font size is 10, italic. Abstract and Key words should be also given in English language. Basic text. The papers should be written concisely, in understandable style and logical order that, as a rule, including the introductory section with a definition of the aim or problem, a description of the methodology, presentation of the results as well as a discussion of the results with conclusions and implications. Main titles should be done with the font size 12, bold, all capital letters and aligned with the left margin. Subtitles are written with the font size 12, bold, aligned to the left margin, large and small letters. Figure and Tables. Each figure and table must be understandable without reading the text, i.e., must have a serial number, title and legend (explanation of marks, codes, abbreviations, etc.). The text is stated below the figure and above the table. Serial numbers of figures and tables are given in Arabic numbers. References in the text are referred to in angle brackets, exp. [1, 3]. References are enclosed at the end in the following way: [1] Willis B. A., Mineral Procesing Technology, Oxford, Pergamon Press, 1979, pg. 35. (for the chapter in a book) [2] Ernst H., Research Policy, 30 (2001) 143–157. (for the article in a journal) [3] www: http://www.vanguard.edu/psychology/apa.pdf (for web document) Specifying the unpublished works is not desirable and, if it is necessary, as much as possible data on the source should be listed. Acknowledgement is given where appropriate, at the end of the work and should include the name of institution that funded the given results in the work, with the name and number of project, or if the work is derived from the master theses or doctoral dissertation, it should give the name of thesis / dissertation, place, year and faculty where it was defended. Font size is 10, italic. The paper works are primarily sent by e-mail or in other electronic form. Editorial address : Journal MINING ENGINEERING Mining and Metallurgy Institute 35 Zeleni bulevar, 19210 Bor E-mail:[email protected]; [email protected] Telephone: +381 (0) 30/435-164; +381 (0) 30/454-110 We are thankful for all authors on cooperation