Johannes Müller Museum Für Naturkunde Berlin

Total Page:16

File Type:pdf, Size:1020Kb

Johannes Müller Museum Für Naturkunde Berlin SAHRA REPORT ON LOAN 7454 The Evolutionary Origin of Hearing in Archosauria Student: Gabriela Sobral Advisor: Johannes Müller Museum für Naturkunde Berlin The aim of my PhD project is to recover when in the evolutionary history of Archosauria impedance matching hearing appeared. This morphological change in the braincase avoids loss of energy during sound transmission and is regarded as a key feature for improvement of hearing sensibility of terrestrial vertebrates. We are also trying to link this transformation to the tempo of other major biological and geological events. The material of Mesosuchus (SAM-PK-6536) permitted very high-resolution scans of its braincase, providing a handful of new information on its anatomy. The material had been scanned on a previous loan to Gaberiel Bever from the New York College of Osteopathic Medicine, and we agreed on a collaborative study on early rhynchosaur braincase evolution together with Dr. Richard Butler from the University of Birmingham, who is providing data for Howesia , which has also been scanned in the facilities of the MfN. This project is advancing rather quickly as segmentation and description of both braincases is almost complete. Hopefully, a manuscript should be ready for submission later next year. The exceptional preservation of Euparkeria (SAM-PK-7696) also allowed for a high-quality scan which facilitated the segmentation of inner ear structures and some of the sutures between bones. Roland Sookias, one of the PhD students of Dr. Butler is currently working on a reevaluation of the family Euparkeriidae. We have decided to collaborate with them, sharing the CT data for Roland’s thesis and, in the future, working on a more detailed description of Euparkeria braincase anatomy and inner ear structures. Anjan Bhullar from Harvard University will also participate and provide further CT data on the braincase of Euparkeria . The materials of Prolacerta (SAM-PK-K10018 and SAM-PK-K10797), on the other hand, were more difficult to scan given that densities between matrix and materials were too similar, but they also provided good data for early archosaur braincase anatomy. The data might be merged with those acquired for another Prolacerta material scanned here, loaned from the Council of Geosciences in Pretoria by the other PhD student of Dr. Butler, Martin Ezcurra. The Notochampsa material (SAM-PK-K4639) also yielded good results, but scans have not yet been completely worked out. All scans were performed by me at the Museum für Naturkunde Berlin using the micro-computed tomographer Phoenix Nanotom. The data acquired will be incorporated into my thesis, which will be published as a review paper after defense, in September next year. Furthermore, as mentioned, separate parts of the data will be used in different collaborative works. An electronic copy of all publications will be sent to the curator of the South African Museum Sheena Kaal once authorized, together with a copy of the CT data used in these studies. .
Recommended publications
  • The Early Evolution of Rhynchosaurs Butler, Richard; Montefeltro, Felipe; Ezcurra, Martin
    University of Birmingham The early evolution of Rhynchosaurs Butler, Richard; Montefeltro, Felipe; Ezcurra, Martin DOI: 10.3389/fevo.2015.00142 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Butler, R, Montefeltro, F & Ezcurra, M 2016, 'The early evolution of Rhynchosaurs', Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2015.00142 Link to publication on Research at Birmingham portal Publisher Rights Statement: Frontiers is fully compliant with open access mandates, by publishing its articles under the Creative Commons Attribution licence (CC-BY). Funder mandates such as those by the Wellcome Trust (UK), National Institutes of Health (USA) and the Australian Research Council (Australia) are fully compatible with publishing in Frontiers. Authors retain copyright of their work and can deposit their publication in any repository. The work can be freely shared and adapted provided that appropriate credit is given and any changes specified. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Generalising from Consensus to Supertrees
    GENERALISING FROM CONSENSUS TO SUPERTREES Mark Wilkinson Zoology, NHM [email protected] Overview • Classical consensus – strict, loose, majority-rule, Adams • Within-consensus generalisations – reduced methods • Generalisation to supertrees – classical and reduced • Some (simple) examples • Which properties generalise and the meaning of loose supertrees Input Trees Classical Consensus Trees Unique Plenary Conservative Liberal strict/loose majority-rule (insensitive to weight) (sensitive to weight) Problems with Classical Consensus Methods d a b c d r r b c d b c 1.0995 bits 1.58 bits r r ab nests within abcd (ab)c and/or (ab)d Reduced Consensus Within-consensus generalisations 1. Define (e.g.) STRICT* as the set of (informative) strict consensus trees for each of the sets of trees induced from then set of input trees 2. [Define STRICT as the intersection of all largest compatible subsets of STRICT* ] 3. The strict reduced consensus profile is the set of non- redundant trees in STRICT Non-redundant = not implied (and sustained) by any sets of more inclusive trees…… Rhynchosaurs H. gordoni H. huxleyi H. gordoni H. gordoni S. fischeri H. huxleyi S. sanjaunensis H. huxleyi S. fischeri S. fischeri Supradapedon S. sanjaunensis Nova Scotia S. sanjaunensis 1 Supradapedon 3 Supradapedon Texas Nova Scotia Isalorhnchus 2 Nova Scotia Isalorhnchus Isalorhnchus Acrodentus R. spenceri R. spenceri R. spenceri R. brodei R. brodei R. brodei R. articeps R. articeps R. articeps Mesodapedon Stenaulorhynchus Mesodapedon Stenaulorhynchus Stenaulorhynchus Howesia Howesia Mesosuchus Howesia Mesosuchus Mesosuchus H. gordoni H. gordoni H. gordoni H. huxleyi 5 H. huxleyi 6 H. huxleyi S. fischeri S. fischeri S.
    [Show full text]
  • Supplemental Material
    Citation for published version: Dunhill, A & Wills, M 2015, 'Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis', Nature Communications, vol. 6, 7980, pp. 1-8. https://doi.org/10.1038/ncomms8980 DOI: 10.1038/ncomms8980 Publication date: 2015 Link to publication Publisher Rights Unspecified University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 30. Sep. 2021 Supplementary Figure 1| Archosaurian phylogeny [S1] showing assignment of taxonomic groups in data1 and data2. 1 Supplementary Table 1| Summary table of Spearman’s rank pairwise correlation coefficients (rs) between the rate of geographic range size change and diversification rate. Convex hull measurements from raw palaeogeographic occurrences and mean great circle distance (GCD) measurements standardised to samples of 5 and 10 occurrences (1,000 reps). *significant at p < 0.05, **significant at p < 0.01, ***significant at p < 0.001. convex hull mean GCD n = 5 mean
    [Show full text]
  • Early Triassic
    www.nature.com/scientificreports OPEN A new specimen of Prolacerta broomi from the lower Fremouw Formation (Early Triassic) of Received: 12 June 2018 Accepted: 21 November 2018 Antarctica, its biogeographical Published: xx xx xxxx implications and a taxonomic revision Stephan N. F. Spiekman Prolacerta broomi is an Early Triassic archosauromorph of particular importance to the early evolution of archosaurs. It is well known from many specimens from South Africa and a few relatively small specimens from Antarctica. Here, a new articulated specimen from the Fremouw Formation of Antarctica is described in detail. It represents the largest specimen of Prolacerta described to date with a nearly fully articulated and complete postcranium in addition to four skull elements. The study of this specimen and the re-evaluation of other Prolacerta specimens from both Antarctica and South Africa reveal several important new insights into its morphology, most notably regarding the premaxilla, manus, and pelvic girdle. Although well-preserved skull material from Antarctica is still lacking for Prolacerta, a detailed comparison of Prolacerta specimens from Antarctica and South Africa corroborates previous fndings that there are no characters clearly distinguishing the specimens from these diferent regions and therefore the Antarctic material is assigned to Prolacerta broomi. The biogeographical implications of these new fndings are discussed. Finally, some osteological characters for Prolacerta are revised and an updated diagnosis and phylogenetic analysis are provided. Prolacerta broomi is a medium sized non-archosauriform archosauromorph with a generalized, “lizard-like” body type. Many specimens, mostly consisting of cranial remains, have been described and Prolacerta is considered one of the best represented early archosauromorphs1–3.
    [Show full text]
  • The Tarsus of Erythrosuid Archosaurs, and Implications for Early Diapsid
    Zoological Journal of the Linnean Society (1996), 116: 347–375. With 11 figures The tarsus of erythrosuchid archosaurs, and implications for early diapsid phylogeny DAVID J. GOWER Department of Geology, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK and Institut und Museum f¨ur Geologie und Pal¨aontologie, Universit¨at T¨ubingen, Sigwartstrasse 10, D-72076 T¨ubingen, Germany Received September 1994, accepted for publication February 1995 The morphology of the erythrosuchid ankle joint is reassessed. Two specimens, recently thought to have been incorrectly referred to Erythrosuchus africanus, are shown without doubt to belong to this taxon. Furthermore, the morphology is essentially similar to that of other early archosaurs. The tarsus of Erythrosuchus is poorly ossified and consists of a calcaneum, astragalus, and two distal tarsals. The calcanea of Erythrosuchus, Vjushkovia triplicostata, and Shansisuchus shansisuchus are all similar in being dorsoventrally compressed, possessing a lateral tuber, and lacking a perforating foramen. The astragalus of V. triplicostata is currently unknown. The astragalus of Shansisuchus is apparently unique in form. The erythrosuchid pes is therefore more derived than has been recently proposed. The tarsal morphology of several other archosauromorph taxa is reviewed and many details are found to be at variance with the literature. The plesiomorphic condition for the Archosauromorpha consists of four distal tarsals and a proximal row of three elements; two of which articulate with the tibia. These proximal elements are interpreted as the astragalus, calcaneum, and a centrale, and the same pattern is retained in the earliest archosaurs. This reassessed tarsal morphology has implications for the homology of the centrale and reconstruction of early diapsid phylogeny.
    [Show full text]
  • DINOSAUR SUCCESS in the TRIASSIC: a NONCOMPETITIVE ECOLOGICAL MODEL This Content Downloaded from 137.222.248.217 on Sat, 17
    VOLUME 58, No. 1 THE QUARTERLY REVIEW OF BIOLOGY MARCH 1983 DINOSAUR SUCCESS IN THE TRIASSIC: A NONCOMPETITIVE ECOLOGICAL MODEL MICHAEL J. BENTON University Museum, Parks Road, Oxford OX] 3PW, England, UK ABSTRACT The initial radiation of the dinosaurs in the Triassic period (about 200 million years ago) has been generally regarded as a result of successful competition with the previously dominant mammal- like reptiles. A detailed review of major terrestrial reptile faunas of the Permo- Triassic, including estimates of relative abundance, gives a different picture of the pattern of faunal replacements. Dinosaurs only appeared as dominant faunal elements in the latest Triassic after the disappear- ance of several groups qf mammal-like reptiles, thecondontians (ancestors of dinosaurs and other archosaurs), and rhynchosaurs (medium-sized herbivores). The concepts of differential survival ("competitive") and opportunistic ecological replacement of higher taxonomic categories are contrasted (the latter involves chance radiation to fill adaptive zones that are already empty), and they are applied to the fossil record. There is no evidence that either thecodontians or dinosaurs demonstrated their superiority over mammal-like reptiles in massive competitive take-overs. Thecodontians arose as medium-sized carnivores after the extinction of certain mammal-like reptiles (opportunism, latest Permian). Throughout most of the Triassic, the thecodontians shared carnivore adaptive zones with advanced mammal-like reptiles (cynodonts) until the latter became extinct (random processes, early to late Triassic). Among herbivores, the dicynodont mammal-like reptiles were largely replaced by diademodontoid mammal-like reptiles and rhynchosaurs (differential survival, middle to late Triassic). These groups then became extinct and dinosaurs replaced them and radiated rapidly (opportunism, latest Triassic).
    [Show full text]
  • ON the PRINCIPLES of GLOBAL CORRELATION of the CONTINENTAL TRIASSIC on the TETRAPODS the Triassic Was a Time of Transition From
    Acta Palaeontologica Polonica Vol. 34, No. 2 pp. 149-173 Warszawa, 1989 V. G. OCHEV and M. A. SHISHKIN ON THE PRINCIPLES OF GLOBAL CORRELATION OF THE CONTINENTAL TRIASSIC ON THE TETRAPODS OCHEV, V. G. and SHISHKIN, M. A.: On the principles of global correlation af the continental Triassic on the tetsapods. Acta Palaeont. Polonica, 34, 2, 143--173, 1989. History of the Triassic land vertebrates comprises three successive global epoches referred to as proterosuchian, kannemeyeroid and dinosaur ones. The earliest and the middle epoches are typified by the regional faunal sequence of East Europe. The proterosuchian time spaas here the Neorhachitome and Paroto- suchus faunas, the former being directly correlated with the Induan-Lower Olenekian, and the latter with the Upper Olenekian (Spathian). The Eryosuchus and Mastodonsaurus faunas of the kannemeyeroid epoch in East Europe are Middle Triassic in age and correspond to the Muschelkalk and Lettenkohle respectively. An evidence is brought for contemporaneity of the protero- suchian-kannemeyeroid biotic replacement in Laurasia and Gondwana. This implies the Middle Triassic age of the Cynognathus Zone of South Africa and its equivalents in South America. The bulk of Lystrosausus fauna in Gondwana is suggested to range over the most of, or the whole, Early Triassic. K e y w 0 r d s: Triassic tetrapods, biotic epoches, correlation. V. G. Ochev, Saratov State University, Saratov, USSR; M. A. Shtshktn, PaUleontologtcal Institute, Academy of Sciences of the USSR, Profsoyuznaya, 123 Moscow, USSR. Received: December 1988. INTRODUCTION The Triassic was a time of transition from the late Palaeozoic (the- rapsid) to the true Mesozoic (archosaur) stage of the tetrapod faunal evolution.
    [Show full text]
  • A New Species of Basal Rhynchosaur (Diapsida: Archosauromorpha) from the Early Middle Triassic of South Africa, and the Early Evolution of Rhynchosauria
    bs_bs_banner Zoological Journal of the Linnean Society, 2015, 174, 571–588. With 6 figures Downloaded from https://academic.oup.com/zoolinnean/article-abstract/174/3/571/2453122 by Universidade Estadual Paulista J�lio de Mesquita Filho user on 06 May 2019 A new species of basal rhynchosaur (Diapsida: Archosauromorpha) from the early Middle Triassic of South Africa, and the early evolution of Rhynchosauria RICHARD J. BUTLER1,2*, MARTÍN D. EZCURRA1,2, FELIPE C. MONTEFELTRO1,3, ADUN SAMATHI2,4 and GABRIELA SOBRAL5 1School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 2GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany 3Departamento de Biologia e Zootecnia, UNESP, Rua Monção 226, 15385-000, Ilha Solteira, Brazil 4Division of Paleontology, Steinmann Institute, University of Bonn, Nussallee 8, 53115, Bonn, Germany 5Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany Received 14 August 2014; revised 8 January 2015; accepted for publication 14 January 2015 Rhynchosauria was an important clade of herbivorous archosauromorph reptiles during the Triassic, with a world- wide distribution. We describe a new genus and species of early rhynchosaur, Eohyosaurus wolvaardti gen. et sp. nov., from the early Middle Triassic (early Anisian) Cynognathus Assemblage Zone (Subzone B) of the Karoo Supergroup, South Africa. Eohyosaurus wolvaardti is known from a single skull, and is recovered as the sister taxon of Rhynchosauridae in a new phylogenetic analysis. Cynognathus Subzone B has previously yielded the stratigraphically oldest well-understood rhynchosaur species, Mesosuchus browni and Howesia browni. Eohyosaurus wolvaardti increases the rhynchosaur diversity within this stratigraphical horizon to three species.
    [Show full text]
  • University of Birmingham Osteology of the Archosauromorph Teyujagua
    University of Birmingham Osteology of the archosauromorph Teyujagua paradoxa and the early evolution of the archosauriform skull Pinheiro, Felipe; Oliveira, Daniel; Butler, Richard DOI: 10.1093/zoolinnean/zlz093 License: Other (please specify with Rights Statement) Document Version Peer reviewed version Citation for published version (Harvard): Pinheiro, F, Oliveira, D & Butler, R 2020, 'Osteology of the archosauromorph Teyujagua paradoxa and the early evolution of the archosauriform skull', Zoological Journal of the Linnean Society, vol. 189, no. 1, pp. 378–417. https://doi.org/10.1093/zoolinnean/zlz093 Link to publication on Research at Birmingham portal Publisher Rights Statement: This is a pre-copyedited, author-produced version of an article accepted for publication in Zoological Journal of the Linnean Society following peer review. The version of record Pinheiro, F.L., Oliveira, D & Butler, R.J. (2019) Osteology of the archosauromorph Teyujagua paradoxa and the early evolution of the archosauriform skull, Zoological Journal of the Linnean Society, zlz093 is available online at: https://doi.org/10.1093/zoolinnean/zlz093 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • The Early Evolution of Rhynchosaurs
    ORIGINAL RESEARCH published: 11 January 2016 doi: 10.3389/fevo.2015.00142 The Early Evolution of Rhynchosaurs Martín D. Ezcurra 1, 2*, Felipe Montefeltro 2, 3 and Richard J. Butler 2 1 Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Buenos Aires, Argentina, 2 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK, 3 Departamento de Biologia e Zootecnia, FEIS, Universidade Estadual Paulista, Ilha Solteira, Brazil The rhynchosaurian archosauromorphs are an important and diverse group of fossil tetrapods that first appeared during the Early Triassic and probably became extinct during the early Late Triassic (early Norian). Here, the early evolution of rhynchosaurs during the Early and early Middle Triassic (Induan-Anisian: 252.2-242 Mya) is reviewed based on new anatomical observations and their implications for the taxonomy, phylogenetic relationships and macroevolutionary history of the group. A quantitative phylogenetic analysis recovered a paraphyletic genus Rhynchosaurus, with “Rhynchosaurus” brodiei more closely related to hyperodapedontines than to Rhynchosaurus articeps. Therefore, a new genus is erected, resulting in the new combination Langeronyx brodiei. A body size analysis found two independent increases in size in the evolutionary history of rhynchosaurs, one among stenaulorhynchines and the other in the hyperodapedontine lineage. Maximum likelihood fitting of phenotypic evolution models to body size data Edited by: Michel Laurin, found ambiguous results, with body size evolution potentially interpreted as fitting either Muséum National d’Histoire Naturelle, a non-directional Brownian motion model or a stasis model. A Dispersal-Extinction- France Cladogenesis analysis reconstructed the areas that are now South Africa and Europe Reviewed by: Sean P.
    [Show full text]
  • A Revision of the Parainfraclass Archosauria Cope, 1869, Excluding the Advanced Crocodylia
    ^ARThS SOEWCES USHAH1 A Revision of the Parainfraclass Archosauria Cope, 1869, Excluding the Advanced Crocodylia George Olshevsky Mesozoic Meanderings #2 Published by: George Olshevsky Publications Requiring Research Post Office Box 16924 San Diego, California 92176-6924 Price: $20.00 First printing (October 24, 19i>l): 100 copies, of which this is # /C / Signed by author: j>r £Vr Contents PREFACE 1 Parasuborder: Erythrosuchia Bonaparte, Acknowledgments 3 1982 40 Technical Review 4 Parafamily: Erythrosuchidae INTRODUCTION 5 Watson, 1917 40 Materials and Methods 6 Parasuborder Rauisuchia How To Use This List: Conventions 7 Bonaparte, 1982 41 TAXONOMIC CONSIDERATIONS 13 Family: Rauisuchidae The Problems of Cladistic von Huene, 1942 41 Classifications 14 Rauisuchia incertae sedis 42 Linnaean Taxa at the Ordinal Level .. .19 Suborder Poposauria nov. 43 New Subfamilial Taxa 21 Family: Teratosauridae Cope, 1871 ... 43 ARCHOSAUR PHYLOGENY 25 Pseudosuchia incertae sedis 44 Defining Archosaurs 26 Family: Ctenosauriscidae Early Archosaurs 28 Kuhn, 1964 44 Thecodontian Orders 29 Family: Teleocrateridae Romer, 1966 .. 44 Superorder: THECODONTU Owen, 1859 . 31 Order: PARASUCHIA Huxley, 1875 44 Paraorder: PROTEROSUCHIA Family: Parasuchidae Lydekker, 1885 .44 Broom, 1906 37 Order: AETOSAURIA Family: Mesenosauridae Nicholson & Lydekker, 1889 49 Romer, 1956 37 Family: Stagonolepididae Family: Proterosuchidae Lydekker, July 1887 49 von Huene, 1914 37 Aetosauria incertae sedis 50 Proterosuchia incertae sedis 38 Order: CROCODYLIA Gmelin, 1788 .... 50 Order: ORNITHOSUCHIA Suborder Trialestia Crush, 1984 51 Bonaparte, 1971 38 Family: Trialestidae Bonaparte, 1982 .. 51 Parafamily: Euparkeriidae Suborder: Sphenosuchia von Huene, 1920 38 Bonaparte, 1971 51 Family: Erpetosuchidae Family: Pedeticosauridae Watson, 1917 38 van Hoepen, 1915 51 Family: Ornithosuchidae Family: Hemiprotosuchidae von Huene, 1908 38 Crush, 1984 51 Order: PSEUDOSUCHIA Family: Sphenosuchidae Zittel, 1887-90 39 von Huene, 1922 51 Suborder: Arcfaaeosuchia SilL 1967 39 Family: Lewisuchidae nov.
    [Show full text]
  • Geological Explorations in the Triassic of Southern Tanzania
    Supplementary Material to: Supradapedon revisited: geological explorations in the Triassic of southern Tanzania Max C. Langer 1, Átila A. S. da Rosa 2, Felipe C. Montefeltro 3 1 Laboratório de Palentologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil 2 Laboratório de Estratigrafia e Paleobiologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil 3 Departamento de Biologia e Zootecnia, FEIS, Universidade Estadual Paulista, Ilha Solteira, SP, Brazil This document includes: 1 - CHARACTER LIST 2 - OTUs USED IN THE PHYLOGENETIC ANALYSIS 3 – TAXON-CHARACTER MATRIX 4 – SYNAPOMORPHY LIST 5 – BOOTSTRAP AND BREMER-SUPORT VALUES 1 – CHARACTER LIST Character list used in the parsimony analysis. Characters modified from previously published analyses, and new characters are acknowledged accordingly. Characters 70 and 76 are treated as additive. 1. Skull dimensions: longer than broad (0); broader than long (1) (Benton, 1984). 2. Skull height: <50% of the midline length (0); >50% of the midline length (1) (Hone & Benton, 2008). 3. External nares: separate (0), single medial naris (1) (Benton, 1985). 4. Orbit orientation: mostly lateral (0); mostly dorsal (1) (Langer & Schultz, 2000). 5. Orbit with elevated rim along the jugal, postorbital, frontal, prefrontal and lacrimal: absent (0); present (1). 6. Orbital medial margin: rounded (0); forming a marked angle (1) (Montefeltro, Langer & Schultz, 2010). 7. Lower temporal fenestra: open ventrally (0), closed ventrally (1) (Dilkes, 1998). 8. Premaxilla ventral margin: horizontal (0), down-turned (1) (Benton, 1985). 9. Premaxilla and prefrontal contact: absent (0), present (1) (Dilkes, 1998). 10. Shape of rostral margin of nasal at midline: strongly convex with rostral process (0) or transverse with little convexity (1) (Dilkes, 1998).
    [Show full text]