Lead Pathways Study Land Report Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Assessment of Agricultural Potential of Soils in the Gulf Region, North Queensland
REPORT TO DEPARTMENT OF NATURAL RESOURCES REGIONAL INFRASTRUCTURE DEVELOPMENT (RID), NORTH REGION ON An Assessment of Agricultural Potential of Soils in the Gulf Region, North Queensland Volume 1 February 1999 Peter Wilson (Land Resource Officer, Land Information Management) Seonaid Philip (Senior GIS Technician) Department of Natural Resources Resource Management GIS Unit Centre for Tropical Agriculture 28 Peters Street, Mareeba Queensland 4880 DNRQ990076 Queensland Government Technical Report This report is intended to provide information only on the subject under review. There are limitations inherent in land resource studies, such as accuracy in relation to map scale and assumptions regarding socio-economic factors for land evaluation. Before acting on the information conveyed in this report, readers should ensure that they have received adequate professional information and advice specific to their enquiry. While all care has been taken in the preparation of this report neither the Queensland Government nor its officers or staff accepts any responsibility for any loss or damage that may result from any inaccuracy or omission in the information contained herein. © State of Queensland 1999 For information about this report contact [email protected] ACKNOWLEDGEMENT The authors thank the input of staff of the Department of Natural Resources GIS Unit Mareeba. Also that of DNR water resources staff, particularly Mr Jeff Benjamin. Mr Steve Ockerby, Queensland Department of Primary Industries provided invaluable expertise and advice for the development of the agricultural suitability assessment. Mr Phil Bierwirth of the Australian Geological Survey Organisation (AGSO) provided an introduction to and knowledge of Airborne Gamma Spectrometry. Assistance with the interpretation of AGS data was provided through the Department of Natural Resources Enhanced Resource Assessment project. -
NW Queensland Water Supply Strategy Investigation
NW Queensland Water Supply Strategy Investigation Final Consultant Report 9 March 2016 Document history Author/s Romy Greiner Brett Twycross Rohan Lucas Checked Adam Neilly Approved Brett Twycross Contact: Name Alluvium Consulting Australia ABN 76 151 119 792 Contact person Brett Twycross Ph. (07) 4724 2170 Email [email protected] Address 412 Flinders Street Townsville QLD 4810 Postal address PO Box 1581 Townsville QLD 4810 Ref Contents 1 Introduction 1 2 Methodology 2 2.1 Geographic scope and relevant regional characteristics 2 2.2 Situation and vulnerability analysis 3 2.3 Multi criteria decision analysis 5 2.3.1 The principles of multi criteria decision making 5 2.3.2 Quantitative criteria 7 2.3.3 Qualitative criteria 8 3 Situation analysis: Water demand and supply 12 3.1 Overview 12 3.2 Urban water demand and supply 14 3.2.1 Mount Isa 14 3.2.2 Cloncurry 15 3.3 Mining and mineral processing water demand and supply 16 3.3.1 Mount Isa precinct 16 3.3.2 Cloncurry precinct 17 3.4 Agriculture 18 3.5 Uncommitted water 19 3.6 Projected demand and water security 19 3.7 Vulnerability to water shortages 20 4 Water infrastructure alternatives 21 4.1 New water storage in the upper Cloncurry River catchment 23 4.1.1 Cave Hill Dam 23 4.1.2 Black Fort Dam 25 4.1.3 Painted Rock Dam 26 4.1.4 Slaty Creek 27 4.1.5 Combination of Black Fort Dam and Slaty Creek 27 4.2 Increasing the capacity of the Lake Julius water supply 28 4.3 Utilising currently unused water storage infrastructure 30 4.3.1 Corella Dam 30 4.3.2 Lake Mary Kathleen 31 5 Ranking -
Records of the Australian Museum
RECORDS AUSTRALIAN MUSEUM EDITED BY THE CURATOR Vol VI H. PRINTED BY ORDER OF THE TRUSTEES. R. ETHERIDGE, Junr., J. P. Qturatov. SYDNEY, 1910-1913. 5^^^ l^ ^ll ^ CONTENTS. No. I. Published 1 5th November, 19 JO. pagb; North Queensland Ethnogi'aphy. By Walter E. Roth No. 14. Transport and Trade 1 No. 15. Decoration, Deformation, and Clothing 20 No. 16. Huts and Shelters 55 No. 17. Postures and Abnormalities 67 No. 18. Social and Individual Nomenclature ... 79 No. 2. Published 27th January, I9n. Description of Cranial Remains from Whaugarei, New Zealand By W. Ramsay Smith ... ... ... ... 107 The Results of Deep-Sea Investigations in the Tasman Sea. I. The Expedition of H.M.C.S. " Miner." No. 5. Polyzoa Supplement. By C. M. Maplestone ... ... ... 113 Mineralogical Notes. No. ix. Topaz, Quartz, Monazite, and other Australian Minerals. By C. Anderson ... ... 120 No. 3. Published 6th May, J9I2. Descriptions of some New or Noteworthy Shells in the Australian Museum. By Chai'les Hedley. ... ... ... 131 No. 4. Published 1 8th April, 19 13. Australian Tribal Names with their Synonyms. By W. W, Thorpe ... ... ... ... ... 161 Title Page, Contents, and Indices ... ... ... 193 — — — LIST OF THE CONTRIBUTORS. With Reference to the Articles contributed by each. Anderson, Chas. : PACK Miueralogical Notes. No. ix. Topaz, Quartz. Mouazite, and other Australian Minerals ... ... ... 120 Medley, Chas. Desoriptions of Ronie New or Noteworthy Shells in the Australian Museum ... ... .. ... 131 Maplestone, C. M. :— The Results of Deep-Sea Investigations in the Tasman Sea. I. The Expedition of H.M.C.S. "Miner." No. 5. Polyzoa. Supplement ... ... ... 118 Roth, Walter E. :— North Queensland Ethnography. -
We Would Rather Be Ruined Than Changed We Would Rather Die in Our Dread Than Climb the Cross of the Moment and Let Our Illusions Die W.H
SOME EARLY ILLUSIONS CONCERNING NORTH QUEENSLAND Ray Sumner Department of Geography James Cook University of North Queensland We would rather be ruined than changed We would rather die in our dread Than climb the cross of the moment And let our illusions die W.H. Auden Our assessment of any landscape results as much from how we view it as from the reality of what is actually there. As Brookfield said "decision makers operating in an environment base their decisions on the environ- ment as they perceive it, not as it is". 1 The Europeans who explored tropical Queensland entered an unknown land which they were required to examine and then offer an assessment of its potential. Since the environment confronted the explorers with a situation of complete uncertainty, a subjective error component was inevitable in their description and analysis, but in fact their reaction to the new environment was affected by what they wanted to see, or thought they saw, as much as by what was actually there. The image of new country recounted by each explorer resulted largely from his response to visual stimuli in the new environment. Since observation and interpretation are enhanced by some degree of familiarity, a history of prior exploration in the south might be expected to improve the performance of explorers in the Tropics, but this was no criterion for an objective appraisal of the new areas. After three successful journeys of exploration in southern states, the Surveyor-General Major (later Sir) Thomas Mitchell concluded his trip to central Queensland with a spectacular blunder; Edmund Kennedy had a background of inland journeys, but died in a disastrous attempt on Cape York. -
Sources and Pathways of Contaminants to the Leichhardt River Sources and Pathways of Contaminants to the Leichhardt River
Lead Pathways Study – Water Sources and Pathways of Contaminants to the Leichhardt River Sources and Pathways of Contaminants to the Leichhardt River 2 Centre for Mined Land Rehabilitation – Sustainable Minerals Institute Sources and Pathways of Contaminants to the Leichhardt River Lead Pathways Study – Water Sources and Pathways of Contaminants to the Leichhardt River 11 May 2012 Report by: Barry Noller1, Trang Huynh1, Jack Ng2, Jiajia Zheng1, and Hugh Harris3 Prepared for: Mount Isa Mines Limited Private Mail Bag 6 Mount Isa 1 Centre for Mined Land Rehabilitation, The University of Queensland, Qld 4072 2 National Research Centre for Environmental Toxicology, The University of Queensland Qld 4008 3 School of Chemistry and Physics, The University of Adelaide SA 5005 Centre for Mined Land Rehabilitation – Sustainable Minerals Institute 3 Sources and Pathways of Contaminants to the Leichhardt River This report was prepared by the Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072. The report was independently reviewed by an environmental chemistry specialist, Dr Graeme Batley. Dr Graeme Batley, B.Sc. (Hons 1), M.Sc, Ph.D, D.Sc Chief Research Scientist in CSIRO Land and Water’s Environmental Biogeochemistry research program Dr Graeme Batley is the former director and co-founder of the Centre for Environmental Contaminants Research (CECR), a program that brings together CSIRO’s extensive expertise in research into the contamination of waters, sediments and soils. He is also a Fellow of the Royal Australian Chemical Institute, member Australasian Society for Ecotoxicology and Foundation President and Board Member of the Society of Environmental Toxicology and Chemistry (SETAC) Asia/Pacific. -
AUSTRALIAN BIODIVERSITY RECORD ______2007 (No 2) ISSN 1325-2992 March, 2007 ______
AUSTRALIAN BIODIVERSITY RECORD ______________________________________________________________ 2007 (No 2) ISSN 1325-2992 March, 2007 ______________________________________________________________ Some Taxonomic and Nomenclatural Considerations on the Class Reptilia in Australia. Some Comments on the Elseya dentata (Gray, 1863) complex with Redescriptions of the Johnstone River Snapping Turtle, Elseya stirlingi Wells and Wellington, 1985 and the Alligator Rivers Snapping Turtle, Elseya jukesi Wells 2002. by Richard W. Wells P.O. Box 826, Lismore, New South Wales Australia, 2480 Introduction As a prelude to further work on the Chelidae of Australia, the following considerations relate to the Elseya dentata species complex. See also Wells and Wellington (1984, 1985) and Wells (2002 a, b; 2007 a, b.). Elseya Gray, 1867 1867 Elseya Gray, Ann. Mag. Natur. Hist., (3) 20: 44. – Subsequently designated type species (Lindholm 1929): Elseya dentata (Gray, 1863). Note: The genus Elseya is herein considered to comprise only those species with a very wide mandibular symphysis and a distinct median alveolar ridge on the upper jaw. All members of the latisternum complex lack a distinct median alveolar ridge on the upper jaw and so are removed from the genus Elseya (see Wells, 2007b). This now restricts the genus to the following Australian species: Elseya albagula Thomson, Georges and Limpus, 2006 2006 Elseya albagula Thomson, Georges and Limpus, Chelon. Conserv. Biol., 5: 75; figs 1-2, 4 (top), 5a,6a, 7. – Type locality: Ned Churchwood Weir (25°03'S 152°05'E), Burnett River, Queensland, Australia. Elseya dentata (Gray, 1863) 1863 Chelymys dentata Gray, Ann. Mag. Natur. Hist., (3) 12: 98. – Type locality: Beagle’s Valley, upper Victoria River, Northern Territory. -
Three Rivers Irrigation Project Initial Advice Statement
Three Rivers Irrigation Project Initial Advice Statement June 2015 TRIP Initial Advice Statement: Stanbroke TRIP Initial Advice Statement: Stanbroke TABLE OF CONTENTS GLOSSARY ..................................................................................................................................... I EXECUTIVE SUMMARY ................................................................................................................. III 1. INTRODUCTION ...................................................................................................................... 1 1.1. Background ....................................................................................................................... 1 1.1.1. Purpose and Scope of the Initial Advice Statement ................................................. 1 2. THE PROPONENT.................................................................................................................... 3 2.1. Stanbroke Pty Ltd .............................................................................................................. 3 3. THE NATURE OF THE PROPOSAL ............................................................................................. 4 3.1. Scope of the Project .......................................................................................................... 4 3.1.1. Water Extraction ....................................................................................................... 4 3.1.2. Offstream Storages .................................................................................................. -
Gulf Unallocated Water Release 2020
GULF UNALLOCATED Gilbert River Zone 6 (AMTD 0 to 171) ´ WATER RELEASE 2020 G Cairns Townsville GilbertRiv er Mt Isa AMTD 171 Rockhampton (junction Gilbert and Ei Ri n Einasleigh Rivers) a v slei er F gh Brisbane Gilbert River Zone 6 (AMTD 171 to 368) INSET Catchment areas: B. Nicholson River Catchment C. Leichhardt River Catchment Gilbert River Zone 6 F. Norman River Catchment (AMTD 0 to 171) G. Gilbert River Catchment Annual volume Subcatchment areas: available 75,000 ML (i) Nicholson River Subcatchment Volume limit per (iv) Lower Leichhardt Subcatchment property 25,000 ML D e ev Burk Ro ad Nicholson River Gilbert River Catchment Area (B) Catchment Area (G) Subcatchment Area (i) unzoned or Annual volume available 4400 ML Volume limit per property 4400 ML Gilbert River Zone 6 (AMTD 171 to 368) Annual volume See Inset available 10,000 ML Volume limit per sleigh on Karumba Eina property 2,000 ML ls r o e River h iv B R i Nic Normanton Gi Burketown l bert B R Doomadgee Croydon iv er Georgetown i Le i c h ha W r F ills d t G DevRoadR ive r N orman R C iver iv Camooweal Norman River B ark ly Catchment Area (F) H ighwa Annual volume y available 3,000 ML Volume limit per Lower Leichhardt River Julia Ck. Mt Isa Flind property 3,000 ML Catchment Area (C) ersRichmond Subcatchment Area (iv) Cloncurry Highway Annual volume Hughenden available 10,000 ML Volume limit per property 5,000 ML Legend Town Disclaimer: Stream While every care is taken to ensure the accuracy of this product, the State of Queensland makes Major road no representations or warranties -
Variation in Trace Metal Concentrations in a Fluvial Environment, Ottawa River, Toledo, Ohio
VARIATION IN TRACE METAL CONCENTRATIONS IN A FLUVIAL ENVIRONMENT, OTTAWA RIVER, TOLEDO, OHIO. Mitra B. Khadka A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2010 Committee: Sheila J. Roberts, Advisor James E. Evans Enrique Gomezdelcampo ii ABSTRACT Sheila J Roberts, Advisor Surface sediment samples were collected from a 1000 m meander reach of the Ottawa River, Ohio and analyzed for trace metals (Zn, Pb, Sr, Mn, Cu, Cr, Co, Ba, Ti, Cd, and Hg) by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) to determine the local variability in their concentrations between geomorphic features. Eight metals (Zn, Pb, Sr, Mn, Cu, Cr, Co, and Ba) show significantly different concentrations between five fluvial geomorphic features namely, flood plains, point bars, lateral bars, pools, and riffles. Among the features, flood plains and lateral bars are places where flows are decelerated due to surface roughness and vegetation cover, promoting the deposition of fine-grained sediments and organic matter. Thus, flood plains and lateral bars consistently exhibit the highest metal concentrations. The lowest metal concentrations in point bars are attributed to relatively coarse-grained sediment and low organic matter content. The difference in mean metal concentration between flood plains and point bars ranges from 5 times for Co to 12.5 times for Pb. It was found that Zn, Sr, Mn, Cu, Cr, Co, and Ba are influenced by similar transport and interaction processes, and possibly have common sources, while Pb shows a weak to non-significant association with other metals indicating either a different mode of transport or separate anthropogenic sources. -
Queensland Geological Framework
Geological framework (Compiled by I.W. Withnall & L.C. Cranfield) The geological framework outlined here provides a basic overview of the geology of Queensland and draws particularly on work completed by Geoscience Australia and the Geological Survey of Queensland. Queensland contains mineralisation in rocks as old as Proterozoic (~1880Ma) and in Holocene sediments, with world-class mineral deposits as diverse as Proterozoic sediment-hosted base metals and Holocene age dune silica sand. Potential exists for significant mineral discoveries in a range of deposit styles, particularly from exploration under Mesozoic age shallow sedimentary cover fringing prospective older terranes. The geology of Queensland is divided into three main structural divisions: the Proterozoic North Australian Craton in the north-west and north, the Paleozoic–Mesozoic Tasman Orogen (including the intracratonic Permian to Triassic Bowen and Galilee Basins) in the east, and overlapping Mesozoic rocks of the Great Australian Basin (Figure 1). The structural framework of Queensland has recently been revised in conjunction with production of a new 1:2 million-scale geological map of Queensland (Geological Survey of Queensland, 2012), and also the volume on the geology of Queensland (Withnall & others, 2013). In some cases the divisions have been renamed. Because updating of records in the Mineral Occurrence database—and therefore the data sheets that accompany this product—has not been completed, the old nomenclature as shown in Figure 1 is retained here, but the changes are indicated in the discussion below. North Australian Craton Proterozoic rocks crop out in north-west Queensland in the Mount Isa Province as well as the McArthur and South Nicholson Basins and in the north as the Etheridge Province in the Georgetown, Yambo and Coen Inliers and Savannah Province in the Coen Inlier. -
Eucalyptus Camaldulensis Dehnh
Heredity (2002) 88, 402–412 2002 Nature Publishing Group All rights reserved 0018-067X/02 $25.00 www.nature.com/hdy Nuclear RFLP variation in Eucalyptus camaldulensis Dehnh. from northern Australia PA Butcher1, A Otero1,2, MW McDonald1 and GF Moran1 1/CSIRO Forestry and Forest Products, PO Box E4008, Kingston, ACT 2604, Australia Eucalyptus camaldulensis Dehnh. is the most widely planted ing that sampling strategies for breeding programmes eucalypt in the tropics. Natural populations are riparian and should be based on geographic distance rather than river sampling strategies for breeding programmes have system. The level of genetic variation was similar throughout = assumed that gene flow among drainage basins is limited. the geographic range examined (mean HE 0.49). However, RFLP variation, within and among 31 populations from river there was evidence of a barrier to gene flow between popu- systems across northern Australia, was analysed to test this lations in the east and west of the species range. The RFLP hypothesis. To allow comparisons within and between river data support morphological evidence of hybridisation systems, trees were sampled from up to three populations between E. camaldulensis and E. tereticornis Sm. in several per river system. Allele frequencies were correlated with populations in northeast Queensland and the genetic diver- longitude for more than half the 33 RFLP loci surveyed. Gen- gence of E. camaldulensis subsp. simulata Brooker and etic identity was greatest between populations in closest Kleinig. geographic proximity, irrespective of river system, suggest- Heredity (2002) 88, 402–412. DOI: 10.1038/sj/hdy/6800074 Keywords: Eucalyptus camaldulensis; RFLPs; genetic diversity; geographic variation; cline; tree breeding Introduction been recommended for E. -
A Compendium of Ecological Information on Australia's Northern
A Compendium of Ecological Information on Australia’s Northern Tropical Rivers REPORT 7 Freshwater Fish Damien BurrowsA AAustralian Centre for Tropical Freshwater Research, James Cook University, Townsville Queensland 4811 Australia Authors This report should be cited as follows: Burrows, D. 2008. In G.P. Lukacs and C.M. Finlayson (eds) 2008. A Compendium of Ecological Information on Australia’s Northern Tropical Rivers. Sub-project 1 of Australia’s Tropical Rivers – an integrated data assessment and analysis (DET18). A report to Land & Water Australia. National Centre for Tropical Wetland Research, Townsville, Queensland. Contact information NCTWR C/ Australian Centre for Tropical Freshwater Research James Cook University Townsville 4811 Queensland Australia Funding statement This project was funded by the Natural Heritage Trust Phase 2 (NHT2) and Land & Water Australia (LWA) as part of the Tropical Rivers Inventory and Assessment Project (TRIAP). Disclaimer The views and opinions expressed in this report do not necessarily reflect those of the National Centre for Tropical Wetlands Research and its partners. While reasonable efforts have been made to ensure that the contents of this report are factually correct, some essential data rely on the references cited and the NCTWR do not accept responsibility for the accuracy, currency or completeness of the contents of this report, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the report. Readers should exercise