Three Rivers Irrigation Project Initial Advice Statement

Total Page:16

File Type:pdf, Size:1020Kb

Three Rivers Irrigation Project Initial Advice Statement Three Rivers Irrigation Project Initial Advice Statement June 2015 TRIP Initial Advice Statement: Stanbroke TRIP Initial Advice Statement: Stanbroke TABLE OF CONTENTS GLOSSARY ..................................................................................................................................... I EXECUTIVE SUMMARY ................................................................................................................. III 1. INTRODUCTION ...................................................................................................................... 1 1.1. Background ....................................................................................................................... 1 1.1.1. Purpose and Scope of the Initial Advice Statement ................................................. 1 2. THE PROPONENT.................................................................................................................... 3 2.1. Stanbroke Pty Ltd .............................................................................................................. 3 3. THE NATURE OF THE PROPOSAL ............................................................................................. 4 3.1. Scope of the Project .......................................................................................................... 4 3.1.1. Water Extraction ....................................................................................................... 4 3.1.2. Offstream Storages ................................................................................................... 4 3.1.3. Cropping Area and Water Management .................................................................. 7 3.1.4. Ginnery ..................................................................................................................... 7 3.1.5. Cotton Sale and Export ............................................................................................. 7 3.1.6. Cotton Seed .............................................................................................................. 7 3.2. Land Use ............................................................................................................................ 7 3.3. Project Need, Justification, and Alternatives Considered ................................................. 8 3.3.1. Relationship to Government Policies and Strategies ............................................... 8 3.3.2. Project Feasibility ...................................................................................................... 8 3.3.3. Alternatives ............................................................................................................. 11 3.3.4. Objectives and Key Benefits ................................................................................... 12 3.4. The Project to be declared .............................................................................................. 12 3.5. External Infrastructure Requirements ............................................................................ 13 3.6. Timeframes for the Project ............................................................................................. 13 3.7. Construction and Operational Processes ........................................................................ 14 3.8. Workforce Requirements during Construction and Operation ...................................... 14 3.9. Economic Indicators ........................................................................................................ 15 3.10. Project Financing ............................................................................................................. 16 4. LOCATION OF KEY PROJECT ELEMENTS ................................................................................. 17 4.1. Location ........................................................................................................................... 17 4.2. Tenure ............................................................................................................................. 19 5. DESCRIPTION OF THE EXISTING ENVIRONMENT .................................................................... 21 5.1. Natural Environment....................................................................................................... 21 5.1.1. Land ........................................................................................................................ 21 5.1.2. Water ...................................................................................................................... 21 5.1.3. Air and Emissions .................................................................................................... 24 5.1.4. Ecosystems .............................................................................................................. 24 5.1.5. Flora and Fauna Species ......................................................................................... 30 5.2. Social and Economic Environment .................................................................................. 36 5.2.1. Economic and Demographic Characterisation ....................................................... 36 5.2.2. Accommodation and Housing ................................................................................. 37 5.2.3. Social and Recreational Services ............................................................................. 37 5.2.4. Cultural Heritage ..................................................................................................... 38 TRIP Initial Advice Statement: Stanbroke 5.3. Built Environment ........................................................................................................... 38 5.3.1. Infrastructure .......................................................................................................... 38 5.3.2. Traffic and Transport .............................................................................................. 39 5.4. Land Use and Tenures ..................................................................................................... 39 5.4.1. Key Local and Regional Land Uses .......................................................................... 39 5.4.2. Key Local and Regional Tenures ............................................................................. 39 5.4.3. Native Title .............................................................................................................. 39 5.5. Planning Instruments, Government Policies ................................................................... 39 5.5.1. Commonwealth ...................................................................................................... 40 5.5.2. State ........................................................................................................................ 40 5.5.3. The Queensland Plan .............................................................................................. 44 5.5.4. Regional .................................................................................................................. 44 6. POTENTIAL IMPACTS OF THE PROJECT .................................................................................. 45 6.1. Natural Environment....................................................................................................... 45 6.1.1. Land ........................................................................................................................ 45 6.1.2. Water ...................................................................................................................... 45 6.1.3. Air and Emissions .................................................................................................... 45 6.1.4. Ecosystems .............................................................................................................. 45 6.1.5. Flora and Fauna ...................................................................................................... 47 6.2. Amenity ........................................................................................................................... 47 6.3. Social Environment ......................................................................................................... 48 6.3.1. Economic and Demographic Characterisation ....................................................... 48 6.3.2. Accommodation and Housing ................................................................................. 48 6.3.3. Social and Recreational Services ............................................................................. 48 6.3.4. Cultural Heritage ..................................................................................................... 49 6.4. Economic Effects ............................................................................................................. 49 6.4.1. Local ........................................................................................................................ 49 6.4.2. State ........................................................................................................................ 50 6.4.3. National................................................................................................................... 50 6.5. Built Environment ........................................................................................................... 50 6.5.1. Infrastructure .........................................................................................................
Recommended publications
  • Queensland Transport and Roads Investment Program for 2021–22 to 2024-25: Far North
    Far North 272,216 km2 Area covered by location1 5.68% Population of Queensland1 2,939 km Other state-controlled road network 217 km National Land Transport Network2 211 km National rail network See references section (notes for map pages) for further details on footnotes. Cairns Office 15 Lake Street | Cairns | Qld 4870 PO Box 6185 | Cairns | Qld 4870 (07) 4045 7144 | [email protected] • continue construction of road safety improvements on • commence installation of new Intelligent Transport Program Highlights Gillies Range Road Systems on the Kuranda Range section of Kennedy Highway, jointly funded by the Australian Government • commence construction of the Bruce Highway – Cairns and Queensland Government as part of the COVID-19 In 2020–21 we completed: Southern Access Cycleway, jointly funded by the economic recovery response Australian Government and Queensland Government • completed paving and sealing paving of a section of • commence early works on the Cairns Ring Road (CBD Peninsula Development Road at Fairview (Part B) • continue design of a flood immunity upgrade on the to Smithfield) project, jointly funded by the Australian Bruce Highway at Dallachy Road, jointly funded by the Government and Queensland Government • an upgrade of the Clump Point boating infrastructure at Australian Government and Queensland Government Mission Beach • commence upgrade of the culvert at Parker Creek • continue construction of a new overtaking lane on Crossing on Captain Cook Highway, Mossman, as part • construction of the Harley Street
    [Show full text]
  • Improved Continuing Losses Estimation Using Initial Loss-Continuing Loss Model for Medium Sized Rural Catchments
    American J. of Engineering and Applied Sciences 2 (4): 796-803, 2009 ISSN 1941-7020 © 2009 Science Publications Improved Continuing Losses Estimation Using Initial Loss-Continuing Loss Model for Medium Sized Rural Catchments Mahbub Ilahee and Monzur Alam Imteaz Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia Abstract: Problem statement: The rainfall based design flood estimation techniques are commonly adopted in hydrological design and require a number of inputs including information on soil loss characteristics. Approach: A conceptual loss model known as the ‘Initial Loss-Continuing Loss (IL- CL) model’ is widely used in Australia. Results: The Initial Loss (IL) occurs at the beginning of the rainfall event, prior to the commencement of surface runoff and the Continuing Loss (CL) is the average rate of loss throughout the remainder of the storm. The currently recommended design loss values depicted in “Australian Rainfall and Runoff Vol. 1” for Queensland (Australia) has some basic limitations. This study investigated how more accurate CL values can be estimated and derived for medium sized tropical Queensland catchments using long term rainfall and streamflow data. Accuracy in CL estimation has got significant implications in the estimation of design floods. Conclusion/Recommendations: The results showed that CL value is not fixed and constant through out the duration of the storm but the CL value decays with the duration of the storm. Key words: Initial loss, continuing loss, rural catchments, flood estimation, rainfall-runoff modeling PROBLEM STATEMENT topography, soil characteristics, vegetation and climate; the components exhibit a high degree of temporal and Flood estimation is often required in hydrologic spatial variability during high rainfall events.
    [Show full text]
  • An Assessment of Agricultural Potential of Soils in the Gulf Region, North Queensland
    REPORT TO DEPARTMENT OF NATURAL RESOURCES REGIONAL INFRASTRUCTURE DEVELOPMENT (RID), NORTH REGION ON An Assessment of Agricultural Potential of Soils in the Gulf Region, North Queensland Volume 1 February 1999 Peter Wilson (Land Resource Officer, Land Information Management) Seonaid Philip (Senior GIS Technician) Department of Natural Resources Resource Management GIS Unit Centre for Tropical Agriculture 28 Peters Street, Mareeba Queensland 4880 DNRQ990076 Queensland Government Technical Report This report is intended to provide information only on the subject under review. There are limitations inherent in land resource studies, such as accuracy in relation to map scale and assumptions regarding socio-economic factors for land evaluation. Before acting on the information conveyed in this report, readers should ensure that they have received adequate professional information and advice specific to their enquiry. While all care has been taken in the preparation of this report neither the Queensland Government nor its officers or staff accepts any responsibility for any loss or damage that may result from any inaccuracy or omission in the information contained herein. © State of Queensland 1999 For information about this report contact [email protected] ACKNOWLEDGEMENT The authors thank the input of staff of the Department of Natural Resources GIS Unit Mareeba. Also that of DNR water resources staff, particularly Mr Jeff Benjamin. Mr Steve Ockerby, Queensland Department of Primary Industries provided invaluable expertise and advice for the development of the agricultural suitability assessment. Mr Phil Bierwirth of the Australian Geological Survey Organisation (AGSO) provided an introduction to and knowledge of Airborne Gamma Spectrometry. Assistance with the interpretation of AGS data was provided through the Department of Natural Resources Enhanced Resource Assessment project.
    [Show full text]
  • Mcarthur Basin Geology and Mineral Resources of the Northern Territory
    Geology and mineral resources of the Northern Territory Ahmad M and Munson TJ (compilers) Northern Territory Geological Survey Special Publication 5 Chapter 15: McArthur Basin BIBLIOGRAPHIC REFERENCE: Ahmad M, Dunster JN and Munson TJ, 2013. Chapter 15: McArthur Basin: in Ahmad M and Munson TJ (compilers). ‘Geology and mineral resources of the Northern Territory’. Northern Territory Geological Survey, Special Publication 5. Disclaimer While all care has been taken to ensure that information contained in this publication is true and correct at the time of publication, changes in circumstances after the time of publication may impact on the accuracy of its information. The Northern Territory of Australia gives no warranty or assurance, and makes no representation as to the accuracy of any information or advice contained in this publication, or that it is suitable for your intended use. You should not rely upon information in this publication for the purpose of making any serious business or investment decisions without obtaining independent and/or professional advice in relation to your particular situation. The Northern Territory of Australia disclaims any liability or responsibility or duty of care towards any person for loss or damage caused by any use of, or reliance on the information contained in this publication. McArthur Basin Current as of Dec 2010 Chapter 15: McARTHUR BASIN M Ahmad, JN Dunster and TJ Munson INTRODUCTION The basin has been modelled as several north-trending asymmetric rifts or grabens separated by northwest- The Palaeo- to Mesoproterozoic McArthur Basin is exposed trending faults and transverse ridges. Previous workers over an area of about 180 000 km2 in the northeastern NT.
    [Show full text]
  • NW Queensland Water Supply Strategy Investigation
    NW Queensland Water Supply Strategy Investigation Final Consultant Report 9 March 2016 Document history Author/s Romy Greiner Brett Twycross Rohan Lucas Checked Adam Neilly Approved Brett Twycross Contact: Name Alluvium Consulting Australia ABN 76 151 119 792 Contact person Brett Twycross Ph. (07) 4724 2170 Email [email protected] Address 412 Flinders Street Townsville QLD 4810 Postal address PO Box 1581 Townsville QLD 4810 Ref Contents 1 Introduction 1 2 Methodology 2 2.1 Geographic scope and relevant regional characteristics 2 2.2 Situation and vulnerability analysis 3 2.3 Multi criteria decision analysis 5 2.3.1 The principles of multi criteria decision making 5 2.3.2 Quantitative criteria 7 2.3.3 Qualitative criteria 8 3 Situation analysis: Water demand and supply 12 3.1 Overview 12 3.2 Urban water demand and supply 14 3.2.1 Mount Isa 14 3.2.2 Cloncurry 15 3.3 Mining and mineral processing water demand and supply 16 3.3.1 Mount Isa precinct 16 3.3.2 Cloncurry precinct 17 3.4 Agriculture 18 3.5 Uncommitted water 19 3.6 Projected demand and water security 19 3.7 Vulnerability to water shortages 20 4 Water infrastructure alternatives 21 4.1 New water storage in the upper Cloncurry River catchment 23 4.1.1 Cave Hill Dam 23 4.1.2 Black Fort Dam 25 4.1.3 Painted Rock Dam 26 4.1.4 Slaty Creek 27 4.1.5 Combination of Black Fort Dam and Slaty Creek 27 4.2 Increasing the capacity of the Lake Julius water supply 28 4.3 Utilising currently unused water storage infrastructure 30 4.3.1 Corella Dam 30 4.3.2 Lake Mary Kathleen 31 5 Ranking
    [Show full text]
  • Surface Water Ambient Network (Water Quality) 2020-21
    Surface Water Ambient Network (Water Quality) 2020-21 July 2020 This publication has been compiled by Natural Resources Divisional Support, Department of Natural Resources, Mines and Energy. © State of Queensland, 2020 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Summary This document lists the stream gauging stations which make up the Department of Natural Resources, Mines and Energy (DNRME) surface water quality monitoring network. Data collected under this network are published on DNRME’s Water Monitoring Information Data Portal. The water quality data collected includes both logged time-series and manual water samples taken for later laboratory analysis. Other data types are also collected at stream gauging stations, including rainfall and stream height. Further information is available on the Water Monitoring Information Data Portal under each station listing.
    [Show full text]
  • Demographic Trends and Likely Futures for Australia's Tropical Rivers
    Demographic Trends and Likely Futures for Australia’s Tropical Rivers Prepared by Dean Carson, Andrew Taylor and Suzanne Campbell School for Social and Policy Research, Charles Darwin University October 2009 Disclaimer TRaCK has published the information contained in this publication to assist public knowledge and discussion and to help improve the sustainable management of Australia’s tropical rivers and coasts. Where technical information has been prepared by or contributed by authors external to TRaCK, readers should contact the author(s), and conduct their own enquiries, before making use of that information. No person should act on the contents of this publication whether as to matters of fact or opinion or other content, without first obtaining specific independent professional advice which confirms the information contained within this publication. While all reasonable efforts have been made to ensure that the information in this publication is correct, matters covered by the publication are subject to change. Charles Darwin University does not assume and hereby disclaims any express or implied liability whatsoever to any party for any loss or damage caused by errors or omissions, whether these errors or omissions result from negligence, accident or any other cause. Copyright This publication is copyright. Apart from any fair dealing for the purpose of private study, research, criticism or review as permitted under the Copyright Act, no part may be reproduced, by any process, without written permission from the publisher, Enquiries
    [Show full text]
  • Records of the Australian Museum
    RECORDS AUSTRALIAN MUSEUM EDITED BY THE CURATOR Vol VI H. PRINTED BY ORDER OF THE TRUSTEES. R. ETHERIDGE, Junr., J. P. Qturatov. SYDNEY, 1910-1913. 5^^^ l^ ^ll ^ CONTENTS. No. I. Published 1 5th November, 19 JO. pagb; North Queensland Ethnogi'aphy. By Walter E. Roth No. 14. Transport and Trade 1 No. 15. Decoration, Deformation, and Clothing 20 No. 16. Huts and Shelters 55 No. 17. Postures and Abnormalities 67 No. 18. Social and Individual Nomenclature ... 79 No. 2. Published 27th January, I9n. Description of Cranial Remains from Whaugarei, New Zealand By W. Ramsay Smith ... ... ... ... 107 The Results of Deep-Sea Investigations in the Tasman Sea. I. The Expedition of H.M.C.S. " Miner." No. 5. Polyzoa Supplement. By C. M. Maplestone ... ... ... 113 Mineralogical Notes. No. ix. Topaz, Quartz, Monazite, and other Australian Minerals. By C. Anderson ... ... 120 No. 3. Published 6th May, J9I2. Descriptions of some New or Noteworthy Shells in the Australian Museum. By Chai'les Hedley. ... ... ... 131 No. 4. Published 1 8th April, 19 13. Australian Tribal Names with their Synonyms. By W. W, Thorpe ... ... ... ... ... 161 Title Page, Contents, and Indices ... ... ... 193 — — — LIST OF THE CONTRIBUTORS. With Reference to the Articles contributed by each. Anderson, Chas. : PACK Miueralogical Notes. No. ix. Topaz, Quartz. Mouazite, and other Australian Minerals ... ... ... 120 Medley, Chas. Desoriptions of Ronie New or Noteworthy Shells in the Australian Museum ... ... .. ... 131 Maplestone, C. M. :— The Results of Deep-Sea Investigations in the Tasman Sea. I. The Expedition of H.M.C.S. "Miner." No. 5. Polyzoa. Supplement ... ... ... 118 Roth, Walter E. :— North Queensland Ethnography.
    [Show full text]
  • The Freshwater Crayfish (Family Parastacidae) of Queensland
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Riek, E. F., 1951. The freshwater crayfish (family Parastacidae) of Queensland. Records of the Australian Museum 22(4): 368–388. [30 June 1951]. doi:10.3853/j.0067-1975.22.1951.615 ISSN 0067-1975 Published by the Australian Museum, Sydney nature culture discover Australian Museum science is freely accessible online at http://publications.australianmuseum.net.au 6 College Street, Sydney NSW 2010, Australia 11ft! FRESHWATER CRAYFISH (FAMILY PARASTACIDAE) OF QUEENSLAND WITH AN ApPENDIX DESORIBING OTHlm AV5'lHALIAN SPEClEf'. By E. F. HIEK. (;ommonwealth Scientific and Industrial l~csearch Organization - Divhdon of Entomology, Canberra, A.C.T. (Figures 1-13.) Freshwater crayfish occur in almost every body of fresh water from artificial damfl and natural billabongs (I>tanding water) to headwater creeks and large rivers (flowing water). Generally the species are of considerable size and therefore easily collected, but even so many of the larger forms are unknown scientifically. This paper deals with all the species that have been collected from Queensland. It also includes a few species from New South Wales and other States. No doubt additional species will be found and some of the mOre variable series, at present included under the one specific namc, will be further subdivided. From Queensland nine species are described as new, making a total of seventeen species (of three genera) recorded from that State. The type localities of all but two of these species are in Queensland but some are not restricted to the State. Clark's 1936 and subsequent papers have been used as the basis for further taxonomic studies of the Australian freshwater crayfish.
    [Show full text]
  • IR 519 Preliminary Analysis of Streamflow Characteristics of The
    internal report 519 Preliminary analysis of streamflow characteristics of the tropical rivers region DR Moliere February 2007 (Release status - unrestricted) Preliminary analysis of streamflow characteristics of the tropical rivers region DR Moliere Hydrological and Geomorphic Processes Program Environmental Research Institute of the Supervising Scientist Supervising Scientist Division GPO Box 461, Darwin NT 0801 February 2007 Registry File SG2006/0061 (Release status – unrestricted) How to cite this report: Moliere DR 2007. Preliminary analysis of streamflow characteristics of the tropical rivers region. Internal Report 519, February, Supervising Scientist, Darwin. Unpublished paper. Location of final PDF file in SSD Explorer \Publications Work\Publications and other productions\Internal Reports (IRs)\Nos 500 to 599\IR519_TRR Hydrology (Moliere)\IR519_TRR hydrology (Moliere).pdf Contents Executive summary v Acknowledgements v Glossary vi 1 Introduction 1 1.1 Climate 2 2 Hydrology 5 2.1 Annual flow 5 2.2 Monthly flow 7 2.3 Focus catchments 11 2.3.1 Data 11 2.3.2 Data quality 18 3 Streamflow classification 19 3.1 Derivation of variables 19 3.2 Multivariate analysis 24 3.2.1 Effect of flow data quality on hydrology variables 31 3.3 Validation 33 4 Conclusions and recommendations 35 5 References 35 Appendix A – Rainfall and flow gauging stations within the focus catchments 38 Appendix B – Long-term flow stations throughout the tropical rivers region 43 Appendix C – Extension of flow record at G8140040 48 Appendix D – Annual runoff volume and annual peak discharge 52 Appendix E – Derivation of Colwell parameter values 81 iii iv Executive summary The Tropical Rivers Inventory and Assessment Project is aiming to categorise the ecological character of rivers throughout Australia’s wet-dry tropical rivers region.
    [Show full text]
  • We Would Rather Be Ruined Than Changed We Would Rather Die in Our Dread Than Climb the Cross of the Moment and Let Our Illusions Die W.H
    SOME EARLY ILLUSIONS CONCERNING NORTH QUEENSLAND Ray Sumner Department of Geography James Cook University of North Queensland We would rather be ruined than changed We would rather die in our dread Than climb the cross of the moment And let our illusions die W.H. Auden Our assessment of any landscape results as much from how we view it as from the reality of what is actually there. As Brookfield said "decision makers operating in an environment base their decisions on the environ- ment as they perceive it, not as it is". 1 The Europeans who explored tropical Queensland entered an unknown land which they were required to examine and then offer an assessment of its potential. Since the environment confronted the explorers with a situation of complete uncertainty, a subjective error component was inevitable in their description and analysis, but in fact their reaction to the new environment was affected by what they wanted to see, or thought they saw, as much as by what was actually there. The image of new country recounted by each explorer resulted largely from his response to visual stimuli in the new environment. Since observation and interpretation are enhanced by some degree of familiarity, a history of prior exploration in the south might be expected to improve the performance of explorers in the Tropics, but this was no criterion for an objective appraisal of the new areas. After three successful journeys of exploration in southern states, the Surveyor-General Major (later Sir) Thomas Mitchell concluded his trip to central Queensland with a spectacular blunder; Edmund Kennedy had a background of inland journeys, but died in a disastrous attempt on Cape York.
    [Show full text]
  • Food Webs of the Wet-Dry Tropics: Multiple Sources of Primary Production Fuel Animal Biomass
    Food webs of the wet-dry tropics: Multiple sources of primary production fuel animal biomass Tim Jardine1, Stephen Hamilton2, and Stuart Bunn1 1Australian Rivers Institute, Griffith University 2Michigan State University The rationale • Animal production is limited by primary production at the base of the food web • Sustainable animal populations require an abundant, high quality food supply • Tropical food webs are diverse and productive; what food source pathways are most important? Tertiary consumers Secondary consumers Primary consumers Primary producers Research to support river and estuary management in northern Australia The paradigm Floods bring animals into contact with terrestrial food sources Production within the waterbody contributes little to the food web Junk et al. 1989, Wantzen et al. 2002 Research to support river and estuary management in northern Australia The paradigm A strong role for terrestrial C advocated in the Flood Pulse Concept (Junk et al. 1989) •…..many species directly use pollen, fruits, seeds, and…..terrestrial insects. Detritus plays a major part in the food webs in floodplains (Junk et al. 1989) •Primary productivity is so low that a food chain could not be built up from endogenous sources alone to support such a large biomass of animals (Goulding 1980) •The rainforest, in its floodplain manifestation, has come to the trophic rescue of these aquatic ecosystems (Goulding 1980) •The overall trophic roles of phytoplankton and periphyton are minor. Fish depending on higher plants….very significant (Bayley
    [Show full text]