Core Values: the First Hans-Cloos Lecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GSA TODAY North-Central, P
Vol. 9, No. 10 October 1999 INSIDE • 1999 Honorary Fellows, p. 16 • Awards Nominations, p. 18, 20 • 2000 Section Meetings GSA TODAY North-Central, p. 27 A Publication of the Geological Society of America Rocky Mountain, p. 28 Cordilleran, p. 30 Refining Rodinia: Geologic Evidence for the Australia–Western U.S. connection in the Proterozoic Karl E. Karlstrom, [email protected], Stephen S. Harlan*, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 Michael L. Williams, Department of Geosciences, University of Massachusetts, Amherst, MA, 01003-5820, [email protected] James McLelland, Department of Geology, Colgate University, Hamilton, NY 13346, [email protected] John W. Geissman, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, [email protected] Karl-Inge Åhäll, Earth Sciences Centre, Göteborg University, Box 460, SE-405 30 Göteborg, Sweden, [email protected] ABSTRACT BALTICA Prior to the Grenvillian continent- continent collision at about 1.0 Ga, the southern margin of Laurentia was a long-lived convergent margin that SWEAT TRANSSCANDINAVIAN extended from Greenland to southern W. GOTHIAM California. The truncation of these 1.8–1.0 Ga orogenic belts in southwest- ern and northeastern Laurentia suggests KETILIDEAN that they once extended farther. We propose that Australia contains the con- tinuation of these belts to the southwest LABRADORIAN and that Baltica was the continuation to the northeast. The combined orogenic LAURENTIA system was comparable in -
Memorial to Henno Martin 1910–1998 KLAUS WEBER Göttingen, Germany
Memorial to Henno Martin 1910–1998 KLAUS WEBER Göttingen, Germany Henno Martin was born on March 15, 1910, in Freiburg, Germany. He studied natural sciences and geosciences at the Universities of Bonn, Zürich, and Göttingen. In 1935 he wrote his Ph.D. on “Post-Archean Tectonics in Southern Central Sweden” with Hans Cloos, in Bonn. Rejecting a fascist Germany, he emigrated in the same year with his friend Hermann Korn, who also did his Ph.D. with Cloos, to South-West Africa (now Namibia), which was a South African protectorate at that time. For the first ten years there he earned his living as a consulting geologist, doing mainly water-exploration work, before being employed in 1945 by the government of South-West Africa, working on water-exploration projects. The success he earned for pro- viding water on farms made him well-known throughout the country, even before his best-seller Wenn es Krieg gibt, gehen wir in die Wüste (The Sheltering Desert) was published. This book, which has been reprinted several times, tells of the two-year exile in the Namib Desert which helped him and his friend avoid the threat of internment by the South African Mandatory Government. The adven- ture began on May 25, 1940, with two cars, no hunting weapons, only one air rifle and one pis- tol. It ended on September 3, 1942, because Hermann Korn fell ill with beri-beri and needed medical attention. Martin based the book on his diaries and memories, writing it for his wife. The actual experience must have been harder than he described in his book. -
Memorial to Roland Brinkmann 1889-1995 FRANZ KOCKEL Federal Institute for Geosciences and Natural Resources Stilleweg 2, D-30115 Hannover, Germany
Memorial to Roland Brinkmann 1889-1995 FRANZ KOCKEL Federal Institute for Geosciences and Natural Resources Stilleweg 2, D-30115 Hannover, Germany Roland Brinkmann died April 3, 1995, at age 95 in Hamburg. German geology lost with him a great scientist and an extraordinary teacher who influenced more than one generation of geologists. Brinkmann was born January 23, 1898, in Hagenow, in Mecklenburg. He remained a Mecklenburgian despite his extensive worldwide travels and studies. He spoke English, French, Spanish, Portuguese, and Polish, as well as fluent Turkish, with the guttural accent of the Baltic coast. His parents moved to Bad Doberan, as his education could not be continued in Hagenow. As a pupil he came to know Eugen Geinitz, professor of geology at Rostock University, as an early mentor, and in 1918 he published his first paper on the Pleistocene geology of Bad Doberan. Brinkmann studied in Freiburg im Breisgau and completed his Ph.D. thesis, “The Subdivi sion of the North German Quaternary,” in 1921. Between 1921 and 1933 he was assistant to the great German geologist, Hans Stille, in Gottingen. In 1923 at age 25, he qualified as a professor with a paleontological-biostratigraphical-paleogeographical study on the Middle Jurassic and Oxfordian in the German Baltic coastal region and in Lithuania. He revised the taxonomy of the Cosmoceras group, using additional faunas he collected in the British Peterborough district. These fauna collections were his database for statistical research on the term species and the phyllogeny of the Middle Jurassic ammonoids. In 1929 he became an associate professor. He had married Margarete Schnepfer, a mineralogist, in 1923, and by 1937 they had six children, three girls and three boys. -
GSA TODAY • 1998 Section Meetings a Publication of the Geological Society of America Southeastern, P
Vol. 7, No. 10 October 1997 INSIDE • New Honorary Fellows, p. 15 • Call for Award Nominations, p. 16, 22, 24, 26 GSA TODAY • 1998 Section Meetings A Publication of the Geological Society of America Southeastern, p. 27 Cordilleran, p. 29 Postglacial Ponds and Alluvial Fans: Recorders of Holocene Landscape History Paul Bierman,* Andrea Lini, Paul Zehfuss, Amy Church, Department of Geology, University of Vermont, Burlington, VT 05405 P. Thompson Davis, Department of Natural Sciences, Bentley College, Waltham, MA 02154 John Southon, Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550 Lyn Baldwin, Field Naturalist Program, University of Vermont, Burlington, VT 05405 ABSTRACT northern Vermont as an example, alluvial fan sediments reveal that we demonstrate that the sedimentary the highest rates of hillslope erosion Little is known about rates and record preserved in humid-region occurred as a consequence of European patterns of Holocene hillslope erosion ponds and alluvial fans can be dated, settlement. The geologic record of colo- in areas once covered by Pleistocene ice deciphered isotopically and stratigraph- nial deforestation is clear, revealing sheets and now heavily populated. Yet, ically, and used to understand the his- significant human impact and suggest- understanding past landscape behavior tory of hillslope erosion. Our data sug- ing that past landscape response is a is prerequisite to predicting and mitigat- gest that erosion rates were higher in meaningful basis for guiding future ing future impacts of human-induced the early and late Holocene than in the land management practices. disturbance and climate change. Using mid-Holocene, perhaps the result of changing climate and the frequency INTRODUCTION *E-mail address: [email protected]. -
GSA TODAY October
Vol. 5, No. 10 October 1995 INSIDE • Aerial Photos by Washburn, p. 200 • Call for Award Nominations, p. 203 • Rocky Mountain Section Meeting, GSA TODAY p. 206 A Publication of the Geological Society of America • Cordilleran Section Meeting, p. 207 Figure 2. Topography of the Manicouagan complex impact The Record of Terrestrial structure, Quebec, Canada. The original diameter of this Impact Cratering 214 ± 1 Ma structure is esti- mated to have been 100 km. Richard Grieve, James Rupert, Janice Smith, Ann Therriault Erosion, however, has removed the rim, and the structure Continental Geoscience Division. Geological Survey of Canada appears as a series of circular Ottawa, Ontario K1A 0Y3, Canada features with positive and nega- tive relief, beginning with a 150-km-diameter outer fracture zone, seen most easily in the western and southern sectors, ABSTRACT INTRODUCTION and culminating in slightly off- center topographic peaks. The Approximately 150 terrestrial The first studies of a terrestrial annular Manicouagan reservoir impact structures are currently impact structure, of the now famous (dark green area slightly left of known, representing a small, biased Meteor or Barringer Crater, Arizona, in center) is ˜65 km in diameter sample of a much larger population. the early 1900s by D. M. Barringer and and at ˜360 m elevation. Eleva- The spatial distribution indicates colleagues, produced more controversy tions in the center are as much as 1100 m (brown). concentrations in cratonic areas— than acceptance. There was, however, a ˜ in particular, ones where there have gradual increase in the number of rec- been active search programs. The ognized small craters with meteorite majority of the known impact struc- fragments until the 1960s, when so- tures are <200 m.y. -
GSA TODAY • Geopals Program, P
Vol. 5, No. 3 March 1995 INSIDE GSA TODAY • Geopals Program, p. 46 • 1995 GeoVentures, p. 48 A Publication of the Geological Society of America • 1994 Medals and Awards, p. 51 Late Devonian Oceanic Anoxic Events and Biotic Crises: “Rooted” in the Evolution of Vascular Land Plants? Thomas J. Algeo, H. N. Fisk Laboratory of Sedimentology, Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 Robert A. Berner, Department of Geology and Geophysics, Yale University, New Haven, CT 06511 J. Barry Maynard, H. N. Fisk Laboratory of Sedimentology, Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 Stephen E. Scheckler, Departments of Biology and Geological Sciences, Virginia Polytechnic Institute, Blacksburg, VA 24061 ABSTRACT Evolutionary developments among vascular land plants may Figure 1. Paleobotanic have been the ultimate cause for reconstructions of oceanic anoxic events, biotic crises, (A) an Early Devonian global climate change, and geochem- coastal delta, (B) an Early ical and sedimentologic anomalies of Devonian upland flood Late Devonian age. The influence of plain, (C) a Late Devonian vascular land plants on weathering coastal delta, and (D) a processes and global geochemical Late Devonian upland cycles is likely to have increased flood plain. Early Devonian substantially during the Late Devon- plants: Pr = Pertica, Ps = Psilophyton, Sc = Sciado- ian owing to large increases in root phyton, and Sw = Sawdonia; biomass associated with develop- Late Devonian plants: A = ment of (1) arborescence (tree-sized Archaeopteris, B = Barino- stature), which increased root pene- phyton, L = tree lycopod, tration depths, and (2) the seed R= Rhacophyton, and habit, which allowed colonization S = seed plant. -
From Concept Towards Reality: Developing the Attributed 3D Geological Model of the Shallow Subsurface
M G Culshaw Glossop lecture version 5-1 post referees 1 From concept towards reality: developing the attributed 3D geological model of the shallow subsurface M G Culshaw British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, UK ABSTRACT In recent years, engineering geology has been trying to redefine itself in terms of a set of ‘core values’ or ‘special scientific principles.’ John Knill (2003) illustrated the essence of engineering geology in the engineering geological triangle. One way of trying to understand the relationships between some of the ‘core values’ is through the engineering geological ground model, which seeks to combine understanding of the spatial distribution of engineering boundaries with knowledge of rock and soil material, and mass, properties and the geological processes that alter these through time. The rapid development in information technology over the last twenty years and the digitisation of increasing amounts of geological data has brought engineering geology to a situation in which the production of meaningful 3D spatial models of the shallow subsurface is feasible. The paper describes how this can be done and points the way to the next stage that involves the attribution of these spatial models with physical, mechanical and chemical property data. Some new developments in the provision of geohazard susceptibility information at the national scale are also discussed. A future is proposed in which site investigation sets out to test a pre- existing spatial model based on real data, rather than trying to create such a model based on concepts alone. M G Culshaw Glossop lecture version 5-1 post referees 2 INTRODUCTION In his Hans Cloos lecture, Sir John Knill (2003) implied that engineering geology was at a key point in its development. -
INTERNATIONAL UNION of GEOLOGICAL SCIENCES 58 EXECUTIVE COMMITTEE MEETING Official Minutes
INTERNATIONAL UNION OF GEOLOGICAL SCIENCES 58TH EXECUTIVE COMMITTEE MEETING MARCH 17-21, 2008 Kenzi Farah Hotel, Marrakech, Morocco Official Minutes i 58th IUGS Executive Committee Meeting Participants IUGS Executive Members Zhang Hongren, President Eldridge Moores, Vice President Peter Bobrowsky, Secretary General Mikhail Fedonkin, Councilor Antonio Brambati, Treasurer Marta Mantovani, Councilor Sylvi Haldorsen, Vice President Ryo Matsumoto, Councilor Observers Ahmed El Hassani (Member, Hassan II Academy of Science and Technology) Arne Bjørlykke (President, 33rd IGC) Jean-Paul Cadet (Past Councilor) Eduardo de Mulder (Executive Director of the Secretariat of the IYPE Corporation) Nasser Ennih (Secretary General, Geological Society of Africa) Ezzoura Errami (Assistant Secretary General, African Association of Women Geologists) David Huntley (Recording) Ian Lambert (Secretary General 34th IGC) Anne Liinamaa-Dehls (IUGS Secretariat) Robert Missotten (UNESCO Ecology and Earth Sciences Division) Godfrey Nowlan (Chair, Publications Ctte.) Alberto Riccardi (Past Councilor) Zhenyu Yang (Editor, Episodes) Regrets Gabi Schneider, IUGS Councilor; João Sentieiro, President FCT; Kouadio Affian, Cote d’Ivore NC; Mr. Ceciolio Quesada, Secretary Spanish NC for IUGS Kenzi Farah Hotel Avenue du Président Kennedy-Marrakech-Maroc Tel. +212 24 44 74 00 Fax. +212 24 43 82 16 Hosted by the Association of the African Women Geologists i Table of Contents 58th IUGS Executive Committee Meeting Participants ........................................... i 1) WELCOMING -
A to Z of Earth Scientists
A TO Z OF EARTH SCIENTISTS NOTABLE SCIENTISTS A TO Z OF EARTH SCIENTISTS ALEXANDER E.GATES A TO Z OF EARTH SCIENTISTS Notable Scientists Copyright © 2003 by Alexander E. Gates All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Facts On File, Inc. 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Gates, Alexander E., 1957– A to Z of earth scientists / Alexander E. Gates. p. cm. — (Notable scientists) Includes bibliographical reference and index. ISBN 0-8160-4580-1 (hardcover) 1. Earth scientists—Biography. I. Title. II. Series. QE21.G38 2002 551’.092’2’—dc21 2002014616 Facts On File books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at 212/967-8800 or 800/322-8755. You can find Facts On File on the World Wide Web at http://www.factsonfile.com Text design by Joan M. Toro Cover design by Cathy Rincon Chronology by Dale Williams Printed in the United States of America VB FOF 10 9 8 7 6 5 4 3 2 1 This book is printed on acid-free paper. CONTENTS List of Entries vii Preface ix Acknowledgments xi Introduction xiii Entries A to Z 1 Entries by Field 307 Entries by Country of Birth 310 Entries by Country of Major Scientific Activity 312 Entries by Year of Birth 315 Chronology 317 Bibliography 322 Index 325 LIST OF ENTRIES Albee, Arden L.