Buseckite, (Fe,Zn,Mn)S, a New Mineral from the Zakłodzie Meteorite

Total Page:16

File Type:pdf, Size:1020Kb

Buseckite, (Fe,Zn,Mn)S, a New Mineral from the Zakłodzie Meteorite American Mineralogist, Volume 97, pages 1226–1233, 2012 Buseckite, (Fe,Zn,Mn)S, a new mineral from the Zakłodzie meteorite CHI MA,* JOHN R. BECKETT, AND GEORGE R. ROSSMAN Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. ABSTRACT Buseckite (IMA 2011-070), (Fe,Zn,Mn)S, is the Fe-dominant analog of wurtzite, a new member of the wurtzite group discovered in Zakłodzie, and an ungrouped enstatite-rich achondrite. The type material occurs as single-crystal grains (4–20 µm in size) in contact with two or more of enstatite, plagioclase, troilite, tridymite, quartz, and sinoite. Low-Ni iron, martensitic iron, schreibersite, keilite, cristobalite, and graphite, which are also present in the type sample, are not observed to be in contact with buseckite. Buseckite is black under diffuse illumination and nearly opaque grayish brown in transmitted light. The mean chemical composition of buseckite, as determined by electron micro- probe analysis of the type material, is (wt%) S 35.84, Fe 28.68, Zn 23.54, Mn 10.04, Mg 1.18, sum 99.28, leading to an empirical formula calculated on the basis of 2 atoms of (Fe0.46Zn0.32Mn0.16Mg0.04 )∑0.99S1.01. Electron backscatter diffraction patterns of buseckite are a good match to that of synthetic 3 (Zn0.558Fe0.442)S with the P63mc structure, showing a = 3.8357, c = 6.3002 Å, V = 80.27 Å , and Z = 2. Buseckite is likely derived from the breakdown of high-temperature pyrrhotite to form troilite and buseckite following the solidification of sulfide-rich liquids produced during impact melting of an enstatite-rich rock. Keywords: Buseckite, (Fe,Zn,Mn)S, new mineral, wurtzite group, sinoite, Zakłodzie meteorite, enstatite achondrite INTRODUCTION a mineralogist at the Arizona State University, for his many The Zakłodzie meteorite, which is a moderately weathered contributions to mineralogy, meteorite research, and transmis- find discovered near the village of Zakłodzie, Poland, is an sion electron microscopy. Two Caltech sections, ZAK-TS1 ungrouped enstatite-rich achondrite that has been ascribed to an (purchased) and ZAK-TS2 (made at Caltech), taken from facing impact melt (e.g., Keil 2010) and to internal melting within the slices of the meteorite, contain the type material. ZAK-TS2, parent body (Przylibski et al. 2005). During a nano-mineralogy hereafter referred to as USNM 7607, has been deposited in the investigation of this meteorite, a new Fe-dominant monosulfide Smithsonian Institution’s National Museum of Natural History, Washington, D.C., and cataloged under USNM 7607. mineral, (Fe,Zn,Mn)S with a P63mc wurtzite-type structure, was identified and named “buseckite.” Field-emission scanning APPEARANCE, PHYSICAL AND OPTICAL PROPERTIES electron microscope, electron-backscatter diffraction (EBSD), electron microprobe, and micro-Raman spectroscopic analyses The type material appears to consist of 11 single-crystal grains were used to characterize its composition and structure and those scattered in USNM 7607 and ZAK-TS1 along grain boundar- of associated minerals. All of the minerals in this study were ies between two or more of enstatite, plagioclase, quartz, and identified structurally with EBSD and/or Raman. (Fe,Zn,Mn)S tridymite, absent other sulfides or adjacent to troilite (Figs. 1–3). phases similar in composition to buseckite were previously found One of the type grains contains euhedral sinoite (Si2N2O) crystals through electron microprobe analysis of sulfides in the Yilmia (Fig. 3a). Buseckite (Figs. 1–3) is irregular to subhedral, 4–20 EL6 chondrite (Buseck and Holdsworth 1972), the Grein 002 µm in diameter. No forms or twinning were observed. EL4/5 chondrite (Patzer et al. 2004), and the Zakłodzie achon- The Zakłodzie meteorite is a modestly weathered find but drite (on a different sample; Karwowski et al. 2007). This study each of the 11 buseckite grains that we observed is surrounded by a rim of secondary Fe oxyhydroxides, which also fill frac- reports the first confirmed (Fe,Zn,Mn)S mineral with the P63mc wurtzite-type structure and considers the origin of this phase, tures that cut across the grains. Buseckite is black under diffuse relationships to coexisting minerals, and implications through illumination and nearly opaque grayish brown in transmitted its formation and survival for the evolution of the Zakłodzie light. Luster, streak, hardness, tenacity, cleavage, fracture, and meteorite. Preliminary results are given in Ma et al. (2012). optical properties, none of which were determined for buseckite because of the small grain size, are likely close to those of MINERAL NAME AND TYPE MATERIAL wurtzite (Zn,Fe)S. The density, calculated from the empirical 3 The new mineral and its name have been approved by the formula, is 3.697 g/cm . The crystal is non-fluorescent under Commission on New Minerals, Nomenclature and Classification the electron beam in an SEM. of the International Mineralogical Association (IMA 2011-070) CHEMICAL COMPOSITION (Ma 2011). The name is in honor of Peter R. Buseck (b. 1935), Quantitative elemental microanalyses were conducted with a JEOL 8200 electron microprobe operated at 15 kV and 10 nA * E-mail: [email protected] in a focused beam mode. Standards for the analysis were syn- 0003-004X/12/0007–1226$05.00/DOI: http://dx.doi.org/10.2138/am.2012.4110 1226 MA ET AL.: BUSECKITE, A NEW MINERAL 1227 FIGURE 1. Secondary electron image (by an Everhart-Thornley FIGURE 2. Secondary electron image showing buseckite with troilite, detector) showing a buseckite grain with plagioclase and enstatite. Vein plagioclase, and enstatite. Vein material surrounding and intruding into material surrounding and intruding into the buseckite consists of ferric the buseckite consists of ferric oxy-hydroxides. oxy-hydroxides. a b FIGURE 3. Secondary electron images showing (a) buseckite with sinoite inclusions and (b) buseckite with nearby sinoite. thetic FeS (FeKα, SKα), ZnS (ZnKα), MnS (MnKα), forsterite and are either rudashevskyites (Fe dominant) or sphalerites (Zn (MgKα), Cr2O3 (CrKα), TiO2 (TiKα), and anorthite (CaKα). dominant) depending on Fe/Zn. Buseckite from Zakłodzie has Analyses were processed with the CITZAF correction procedure substantially more Mn than known rudashevskyites and the of Armstrong (1995). The average of 14 individual analyses compositions, therefore, plot in the interior of the ternary shown from six grains of the type buseckite reported in Table 1 were in Figure 4, as do Zn-enriched sulfide compositions from EL4-6 carried out using WDS mode. The empirical formula, based on chondrites. The structures of these EL4-6 phases have not been 2 atoms per formula unit, is: (Fe0.46Zn0.32Mn0.16Mg0.04)∑0.99S1.01, determined but, as discussed below, it is likely that many, if not yielding a simplified formula of (Fe,Zn,Mn)S. We observed no all, have the wurtzite structure and are, therefore, buseckites. We significant grain-to-grain differences in buseckite composition are aware of no reports of Zn-rich monosulfides in enstatite achon- and no evidence for zoning within individual grains. drites (aubrites), presumably reflecting the lower bulk Zn in these In Figure 4, we show the compositions of Zn-enriched mono- meteorites and the presence of daubréelite, which can accommodate sulfides from enstatite-enriched meteorites. Note that most of the considerable Zn (Lin and El Goresy 2002; Keil 2010). plotted analyses are consistent with one of the Fe-dominant phas- es buseckite or rudashevskyite rather than one of the Zn-dominant CRYSTALLOGRAPHY phases, wurtzite or sphalerite. Compositions of rudashevskyite Crystallography by EBSD at a sub-micrometer scale was from the EH4 enstatite chondrite Indarch (Britvin et al. 2008) carried out using methods described in Ma and Rossman (2008, and the compositions of structurally uncharacterized sulfides 2009) with an HKL EBSD system on a ZEISS 1550VP scanning from other EH3-4 chondrites plotted in Figure 4 (open circles electron microscope operated at 20 kV and 6 nA in a focused and diamonds) are similarly Mn-Mg poor. As discussed below, beam with a 70° tilted stage and in a variable pressure mode (25 it seems likely that all of these grains have a sphalerite structure Pa). The structure was determined and cell constants obtained 1228 MA ET AL.: BUSECKITE, A NEW MINERAL TABLE 1. Mean electron microprobe analytical results for the type 2.4 (2000). The strongest X-ray powder diffraction lines are [d buseckite, along with keilite and troilite in Å, (I), hkl] 3.322 (100) (100), 3.150 (62) (002), 2.938 (90) Constituent Buseckite Troilite Keilite Troilite Troilite (101), 2.286 (36) (102), 1.918 (76) (110), 1.775 (76) (103), 1.638 (next to (next to (isolated) buseckite) keilite) (48) (112), 1.078 (28) (213). wt% n = 14* n = 5 n = 6 n = 6 n = 4 S 35.84(21)† 37.65(17) 39.50(22) 37.64(21) 37.44(6) RAMAN SPECTROSCOPY Fe 28.68(26) 56.46(44) 29.90(22) 56.23(14) 56.03(87) Zn 23.54(25) b.d. 0.15(6) b.d. b.d. Raman micro-analysis of buseckite and associated phases was Mn 10.04(12) 1.18(12) 24.03(14) 1.32(14) 1.40(58) carried out using a Renishaw M1000 micro-Raman spectrometer Mg 1.18(4) b.d. 4.86(7) b.d. b.d. Cr b.d.‡ 3.83(3) 1.13(4) 4.31(8) 4.13(10) system and a 514.5 nm laser with the methods described in Ma Ti b.d. 1.06(7) b.d. 0.75(4) 0.76(3) and Rossman (2008, 2009). A Raman spectrum of buseckite was Ca b.d. b.d. 0.88(2) b.d. b.d. obtained from 4000 to 100 cm–1. Because some decomposition Ni b.d.
Recommended publications
  • A New Sulfide Mineral (Mncr2s4) from the Social Circle IVA Iron Meteorite
    American Mineralogist, Volume 101, pages 1217–1221, 2016 Joegoldsteinite: A new sulfide mineral (MnCr2S4) from the Social Circle IVA iron meteorite Junko Isa1,*, Chi Ma2,*, and Alan E. Rubin1,3 1Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095, U.S.A. 2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. 3Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095, U.S.A. Abstract Joegoldsteinite, a new sulfide mineral of end-member formula MnCr2S4, was discovered in the 2+ Social Circle IVA iron meteorite. It is a thiospinel, the Mn analog of daubréelite (Fe Cr2S4), and a new member of the linnaeite group. Tiny grains of joegoldsteinite were also identified in the Indarch EH4 enstatite chondrite. The chemical composition of the Social Circle sample determined by electron microprobe is (wt%) S 44.3, Cr 36.2, Mn 15.8, Fe 4.5, Ni 0.09, Cu 0.08, total 101.0, giving rise to an empirical formula of (Mn0.82Fe0.23)Cr1.99S3.95. The crystal structure, determined by electron backscattered diffraction, is aFd 3m spinel-type structure with a = 10.11 Å, V = 1033.4 Å3, and Z = 8. Keywords: Joegoldsteinite, MnCr2S4, new sulfide mineral, thiospinel, Social Circle IVA iron meteorite, Indarch EH4 enstatite chondrite Introduction new mineral by the International Mineralogical Association (IMA 2015-049) in August 2015. It was named in honor of Thiospinels have a general formula of AB2X4 where A is a divalent metal, B is a trivalent metal, and X is a –2 anion, Joseph (Joe) I.
    [Show full text]
  • Fe,Mg)S, the IRON-DOMINANT ANALOGUE of NININGERITE
    1687 The Canadian Mineralogist Vol. 40, pp. 1687-1692 (2002) THE NEW MINERAL SPECIES KEILITE, (Fe,Mg)S, THE IRON-DOMINANT ANALOGUE OF NININGERITE MASAAKI SHIMIZU§ Department of Earth Sciences, Faculty of Science, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan § HIDETO YOSHIDA Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan § JOSEPH A. MANDARINO 94 Moore Avenue, Toronto, Ontario M4T 1V3, and Earth Sciences Division, Royal Ontario Museum, 100 Queens’s Park, Toronto, Ontario M5S 2C6, Canada ABSTRACT Keilite, (Fe,Mg)S, is a new mineral species that occurs in several meteorites. The original description of niningerite by Keil & Snetsinger (1967) gave chemical analytical data for “niningerite” in six enstatite chondrites. In three of those six meteorites, namely Abee and Adhi-Kot type EH4 and Saint-Sauveur type EH5, the atomic ratio Fe:Mg has Fe > Mg. Thus this mineral actually represents the iron-dominant analogue of niningerite. By analogy with synthetic MgS and niningerite, keilite is cubic, with space group Fm3m, a 5.20 Å, V 140.6 Å3, Z = 4. Keilite and niningerite occur as grains up to several hundred ␮m across. Because of the small grain-size, most of the usual physical properties could not be determined. Keilite is metallic and opaque; in reflected light, it is isotropic and gray. Point-count analyses of samples of the three meteorites by Keil (1968) gave the following amounts of keilite (in vol.%): Abee 11.2, Adhi-Kot 0.95 and Saint-Sauveur 3.4.
    [Show full text]
  • Magmatic Sulfides in the Porphyritic Chondrules of EH Enstatite Chondrites
    Published in Geochimica et Cosmochimica Acta, Accepted September 2016. http://dx.doi.org/10.1016/j.gca.2016.09.010 Magmatic sulfides in the porphyritic chondrules of EH enstatite chondrites. Laurette Piani1,2*, Yves Marrocchi2, Guy Libourel3 and Laurent Tissandier2 1 Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan 2 CRPG, UMR 7358, CNRS - Université de Lorraine, 54500 Vandoeuvre-lès-Nancy, France 3 Laboratoire Lagrange, UMR7293, Université de la Côte d’Azur, CNRS, Observatoire de la Côte d’Azur,F-06304 Nice Cedex 4, France *Corresponding author: Laurette Piani ([email protected]) Abstract The nature and distribution of sulfides within 17 porphyritic chondrules of the Sahara 97096 EH3 enstatite chondrite have been studied by backscattered electron microscopy and electron microprobe in order to investigate the role of gas-melt interactions in the chondrule sulfide formation. Troilite (FeS) is systematically present and is the most abundant sulfide within the EH3 chondrite chondrules. It is found either poikilitically enclosed in low-Ca pyroxenes or scattered within the glassy mesostasis. Oldhamite (CaS) and niningerite [(Mg,Fe,Mn)S] are present in ! 60 % of the chondrules studied. While oldhamite is preferentially present in the mesostasis, niningerite associated with silica is generally observed in contact with troilite and low-Ca pyroxene. The Sahara 97096 chondrule mesostases contain high abundances of alkali and volatile elements (average Na2O = 8.7 wt.%, K2O = 0.8 wt.%, Cl = 7000 ppm and S = 3700 ppm) as well as silica (average SiO2 = 63.1 wt.%). Our data suggest that most of the sulfides found in EH3 chondrite chondrules are magmatic minerals that formed after the dissolution of S from a volatile-rich gaseous environment into the molten chondrules.
    [Show full text]
  • Moon Minerals a Visual Guide
    Moon Minerals a visual guide A.G. Tindle and M. Anand Preliminaries Section 1 Preface Virtual microscope work at the Open University began in 1993 meteorites, Martian meteorites and most recently over 500 virtual and has culminated in the on-line collection of over 1000 microscopes of Apollo samples. samples available via the virtual microscope website (here). Early days were spent using LEGO robots to automate a rotating microscope stage thanks to the efforts of our colleague Peter Whalley (now deceased). This automation speeded up image capture and allowed us to take the thousands of photographs needed to make sizeable (Earth-based) virtual microscope collections. Virtual microscope methods are ideal for bringing rare and often unique samples to a wide audience so we were not surprised when 10 years ago we were approached by the UK Science and Technology Facilities Council who asked us to prepare a virtual collection of the 12 Moon rocks they loaned out to schools and universities. This would turn out to be one of many collections built using extra-terrestrial material. The major part of our extra-terrestrial work is web-based and we The authors - Mahesh Anand (left) and Andy Tindle (middle) with colleague have build collections of Europlanet meteorites, UK and Irish Peter Whalley (right). Thank you Peter for your pioneering contribution to the Virtual Microscope project. We could not have produced this book without your earlier efforts. 2 Moon Minerals is our latest output. We see it as a companion volume to Moon Rocks. Members of staff
    [Show full text]
  • Silicate-Sio Reaction in a Protoplanetary Disk Recorded by Oxygen Isotopes in Chondrules
    Silicate-SiO reaction in a protoplanetary disk recorded by oxygen isotopes in chondrules Ryoji Tanaka1* & Eizo Nakamura1 1The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan *Corresponding author: [email protected] The formation of planetesimals and planetary embryos during the earliest stages of the solar protoplanetary disk largely determined the composition and structure of the terrestrial planets. Within a few million years (Myr) after the birth of the solar system, chondrule formation and accretion of the parent bodies of differentiated achondrites and the terrestrial planets took place in the inner protoplanetary disk1,2. Here we show that, for chondrules in unequilibrated enstatite chondrites, high-precision Δ17O values (deviation of δ17O value from a terrestrial silicate fractionation line) vary significantly (ranging from -0.49 to +0.84‰) and fall on an array with a steep slope of 1.27 on a three oxygen isotope plot. This array can be explained by reaction between an olivine-rich chondrule melt and a SiO-rich gas derived from vaporized dust and nebular gas. Our study suggests that the majority of the building blocks of planetary embryos formed by successive silicate-gas interaction processes: silicate-H2O followed by silicate-SiO interactions under more oxidized and reduced conditions, respectively, within a few Myr after the formation of the solar system. Major precursor components of enstatite chondrites (EC), differentiated planetesimals, Mars, and the Earth are thought to have been formed at similar heliocentric distances3,4. The unequilibrated EC preserve records of nebular conditions in each component (chondrules, Ca- Al-rich inclusions [CAIs], Fe-Ni-metal, and matrix), each of which has not been heavily overprinted by post-accretionary thermal processes.
    [Show full text]
  • Sulfides in Enstate Chondrites
    Sulfides in Enstatite Chondrites: Indicators of Impact History Kristyn Hill1,2, Emma Bullock2, Cari Corrigan2, and Timothy McCoy2 1Lock Haven University of Pennsylvania, Lock Haven, PA 17745, USA 2National Museum of Natural History, Department of Mineral Sciences, Washington D.C. 20013, USA Introductton Results Discussion Enstatite chondrites are a class of meteorites. They are Determining the history of the parent body of a referred to as chondrites because of the spherical Impact Melt, Slowly Cooled chondritic meteorite often includes distinguishing whether chondrules found in the matrix of the meteorites. Enstatite aa bb cc d d or not the meteorite was impact melted, and the cooling chondrites are the most highly reduced meteorites and rate. contain iron-nickel metal and sulfide bearing minerals. The Impact melts are distinguishable by the texture of the matrix is made up of silicates, enstatite in particular. There metal and sulfide assemblages. A meteorite that was are usually no oxides found, which supports the idea that impact melted will contain a texture of euhedral to these formed in very oxygen poor environments. The subhedral silicates, like enstatite, protruding into the metal enstatite chondrites in this study are type 3, meaning they or sulfides (figure 2). Some textures will look shattered are unmetamorphosed and not affected by fluids. (figure 2b). Meteorites that contain the mineral keilite are Studying enstatite chondrites will help us determine the PCA 91125 ALHA 77156 PCA 91444 PCA 91085 also an indicator of impact melts (figure 3). Keilite only evolution of their parent bodies which formed at the occurs in enstatite chondrite impact-melt rocks that cooled beginning of our solar system.
    [Show full text]
  • Thermal History of the Enstatite Chondrites from Silica Polymorphs
    Meteoritics & Planetary Science 40, Nr 6, 855–868 (2005) Abstract available online at http://meteoritics.org Thermal history of the enstatite chondrites from silica polymorphs M. KIMURA1*, M. K. WEISBERG2, Y. LIN3, A. SUZUKI4, E. OHTANI4, and R. OKAZAKI5 1Faculty of Science, Ibaraki University, Mito 310-8512, Japan 2Department of Physical Sciences, Kingsborough College of the City University of New York, Brooklyn, New York 11235, and Department of Earth and Planetary Sciences, American Museum of Natural History, New York, New York 10024, USA 3State Key Laboratory of Lithosphere Tectonic Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 4Institute of Mineralogy, Petrology, and Economic Geology, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan 5Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan *Corresponding author. E-mail: [email protected] (Received 18 January 2005; revision accepted 14 April 2005) Abstract–Here we report the results of our petrologic and mineralogical study of enstatite (E) chondrites in order to explore their thermal histories. We studied silica phases in 20 E chondrites by laser micro Raman spectroscopy to determine the silica polymorphs they contain. Silica phases are commonly present in E chondrites and their polymorphs reflect the physical conditions of formation. The samples studied here include EH3–5, EL3–6, E chondrite melt rocks, and an anomalous E chondrite. We identified quartz, tridymite, cristobalite, and silica glass in the samples studied. EH4– 5 and EH melt rocks are divided into high and low temperature classes based on niningerite- alabandite solid solutions.
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINERALOGIS'I, VOL. 52, MAY-JUNE, 1967 NEW MINERAL NAMI'S Mrcu.q.Br,FrBrscnnn Niningerite Kleus Knrr- aNo K. G. SNrrsrxcnn (1967) Niningerite, a nern'meteoritic sulfide. Seience 155, 451-543. Averages of electron probe analyses of the mineral from 6 enstatite chondrites (1-Abee, 2-Saint Sauveur, 3-Adhi-Kot, 4-Indarch, 5-St. Mark's and 5-Kota-Kota) give: S 41.0 42.7 42.6 43.4 47.4 46.9 Mg 10.1 13.2 II.J 18.3 22.7 23.5 Mn 4.02 3.93 11 6.5 11.8 11.6 l'e 37.r 35.2 34.2 270 16.6 15.6 Ca 3.03 2.55 1.96 r.28 0.53 0.39 Zn 0.31 n.d. n.d. n.d. n.d. n d. Cr 1.84 t.97 IOD 0.40 0.14 Total 97.40 99.3s 99.t3 98.1'+ 99.43 98.13 No. of grains analyzed 20 IJ t4 10 10 a 5.17 516 n d. 5.r8 5.17 n.d G. calc. 3 .68 J.5v 3.644 3.35 s.Ll J,Zr * Calc G. assuminga:5.17A. These correspond to RS, with R: S ranging from 0 97 to 1.05, or (Mg, Fe, Mn)S. Mg is dominant in nos. 4, 5, 6, but Fe)Mg in nos 1, 2, and 3;no. I has Fe:Mg:Mn:0.52: 0.33:0.06. The X-ray pattern is very similar to that of aiabandite and ferroan alabandite (cubic), but with o slightly lower.
    [Show full text]
  • Volatization of Extraterrestrial Materials As Determined by Zinc Isotopic Analysis Randal Christopher Paniello Washington University in St
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) 12-27-2013 Volatization of Extraterrestrial Materials as Determined by Zinc Isotopic Analysis Randal Christopher Paniello Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Part of the Earth Sciences Commons Recommended Citation Paniello, Randal Christopher, "Volatization of Extraterrestrial Materials as Determined by Zinc Isotopic Analysis" (2013). All Theses and Dissertations (ETDs). 1188. https://openscholarship.wustl.edu/etd/1188 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Earth and Planetary Sciences Dissertation Examination Committee: Frederic Moynier, Chair Alex Bradley Jeffrey G. Catalano Bruce Fegley Christine Floss Brad Joliff Ernst Zinner Volitization of Extraterrestrial Materials as Determined by Zinc Isotopic Analysis by Randal C Paniello A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2013 St. Louis, Missouri © 2013 Randal C. Paniello ii TABLE OF CONTENTS List of Figures………………………………………………………………………….. v List of Tables…………………………………………………………………………… vii Acknowledgements…………………………………………………………………….. ix Statement on Role of Candidate in Coauthored Work………………………………….. x 1. Introduction……………………………………………………………………………. 1 a. References…………………………………………………………………….... 9 2. Methodology……………………………………………………………………………. 11 3. Martian Meteorites and Lunar Materials a. Introduction……………………………………………………………………. 15 b. Manuscript: “Zinc isotopic evidence for the origin of the Moon”……………… 17 c.
    [Show full text]
  • A Partial Melt Residue of Enstatite Chondrite Parentage
    Meteoritics & Planetary Science 43, Nr 7, 1233–1240 (2008) Abstract available online at http://meteoritics.org Northwest Africa 2526: A partial melt residue of enstatite chondrite parentage Klaus KEIL1* and Addi BISCHOFF2 1Hawai’i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai’i at Manoa, Honolulu, Hawai’i 96822, USA 2Institut für Planetologie, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany *Corresponding author. E-mail: [email protected] (Received 04 October 2007; revision accepted 05 February 2008) Abstract–NWA 2526 is a coarse-grained, achondritic rock dominated by equigranular grains of polysynthetically twinned enstatite (~85 vol%) with frequent 120° triple junctions and ~10–15 vol% of kamacite + terrestrial weathering products. All other phases including troilite, daubreelite, schreibersite, and silica-normative melt areas make up <~1 vol% of the rock. Oxygen isotopic analyses are well within the range of those for enstatite chondrites and aubrites. We show that the “enstatite achondrite” (Russell et al. 2005) Northwest Africa (NWA) 2526 is actually a partial melt residue of an enstatite chondrite-like lithology that experienced ~20 vol% partial melting. We suggest that the heat source was internal to the parent body. The FeS-Fe,Ni and plagioclase-enstatite partial melts were removed from the parent lithology, leaving NWA 2526 as a residue highly depleted in troilite and lacking plagioclase. Sub-solidus slow cooling and annealing is responsible for the coarse- grained, recrystallized texture of the rock. We also suggest that the parent lithology of NWA 2526, prior to partial melting, experienced a shock event which formed the curvilinear trails of blebs of minor troilite and rare metal that are enclosed in enstatite crystals; thus, these represent relicts.
    [Show full text]
  • Fersman Mineralogical Museum of the Russian Academy of Sciences (FMM)
    Table 1. The list of meteorites in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences (FMM). Leninskiy prospect 18 korpus 2, Moscow, Russia, 119071. Pieces Year Mass in Indication Meteorite Country Type in found FMM in MB FMM Seymchan Russia 1967 Pallasite, PMG 500 kg 9 43 Kunya-Urgench Turkmenistan 1998 H5 402 g 2 83 Sikhote-Alin Russia 1947 Iron, IIAB 1370 g 2 Sayh Al Uhaymir 067 Oman 2000 L5-6 S1-2,W2 63 g 1 85 Ozernoe Russia 1983 L6 75 g 1 66 Gujba Nigeria 1984 Cba 2..8 g 1 85 Dar al Gani 400 Libya 1998 Lunar (anorth) 0.37 g 1 82 Dhofar 935 Oman 2002 H5S3W3 96 g 1 88 Dhofar 007 Oman 1999 Eucrite-cm 31.5 g 1 84 Muonionalusta Sweden 1906 Iron, IVA 561 g 3 Omolon Russia 1967 Pallasite, PMG 1,2 g 1 72 Peekskill USA 1992 H6 1,1 g 1 75 Gibeon Namibia 1836 Iron, IVA 120 g 2 36 Potter USA 1941 L6 103.8g 1 Jiddat Al Harrasis 020 Oman 2000 L6 598 gr 2 85 Canyon Diablo USA 1891 Iron, IAB-MG 329 gr 1 33 Gold Basin USA 1995 LA 101 g 1 82 Campo del Cielo Argentina 1576 Iron, IAB-MG 2550 g 4 36 Dronino Russia 2000 Iron, ungrouped 22 g 1 88 Morasko Poland 1914 Iron, IAB-MG 164 g 1 Jiddat al Harasis 055 Oman 2004 L4-5 132 g 1 88 Tamdakht Morocco 2008 H5 18 gr 1 Holbrook USA 1912 L/LL5 2,9g 1 El Hammami Mauritani 1997 H5 19,8g 1 82 Gao-Guenie Burkina Faso 1960 H5 18.7 g 1 83 Sulagiri India 2008 LL6 2.9g 1 96 Gebel Kamil Egypt 2009 Iron ungrouped 95 g 2 98 Uruacu Brazil 1992 Iron, IAB-MG 330g 1 86 NWA 859 (Taza) NWA 2001 Iron ungrouped 18,9g 1 86 Dhofar 224 Oman 2001 H4 33g 1 86 Kharabali Russia 2001 H5 85g 2 102 Chelyabinsk
    [Show full text]
  • Mineral Evolution
    American Mineralogist, Volume 93, pages 1693–1720, 2008 REVIEW PAPER Mineral evolution ROBERT M. HAZEN,1,* DOMINIC PAPINEAU,1 WOUTER BLEEKER,2 ROBERT T. DOWNS,3 JOHN M. FERRY,4 TIMOTHY J. MCCOY,5 DIMITRI A. SVERJENSKY,4 AND HEXIONG YANG3 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A OE8, Canada 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218, U.S.A. 5Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. ABSTRACT The mineralogy of terrestrial planets evolves as a consequence of a range of physical, chemical, and biological processes. In pre-stellar molecular clouds, widely dispersed microscopic dust particles contain approximately a dozen refractory minerals that represent the starting point of planetary mineral evolution. Gravitational clumping into a protoplanetary disk, star formation, and the resultant heat- ing in the stellar nebula produce primary refractory constituents of chondritic meteorites, including chondrules and calcium-aluminum inclusions, with ~60 different mineral phases. Subsequent aque- ous and thermal alteration of chondrites, asteroidal accretion and differentiation, and the consequent formation of achondrites results in a mineralogical repertoire limited to ~250 different minerals found in unweathered meteorite samples. Following planetary accretion and differentiation, the initial mineral evolution of Earth’s crust depended on a sequence of geochemical and petrologic processes, including volcanism and degassing, fractional crystallization, crystal settling, assimilation reactions, regional and contact metamorphism, plate tectonics, and associated large-scale fluid-rock interactions.
    [Show full text]