Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations STRATIGRAPHIC AND STRUCTURAL FRAMEWORK OF THE POTSDAM GROUP IN EASTERN ONTARIO, WESTERN QUEBEC AND NORTHERN NEW YORK STATE by B.V. Sanford CANADA'S PARLIAMENT BUILDINGS CONSTRUCTED FROM SANDSTONE OF THE NEPEAN FORMATION A thesis submitted to the School Of Graduate Studies in partial fulfillment of the requirements of the degree of Ph.D. in Earth Sciences OTTAWA- CARLETON GEOSCIENCE CENTRE UNIVERSITY OF OTTAWA OTTAWA, ONTARIO CANADA © BV Sanford, 2007 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-49395-3 Our file Notre reference ISBN: 978-0-494-49395-3 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. Canada mn u Ottawa l.'Univcrsilc cnnndicmic C'inadn's linivcrsiiv FACULTE DES ETUDES SUPERIEURES l=W FACULTY OF GRADUATE AND ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES L'Universittf eanadionne Canada's university Bruce Victor Sanford AUTEUR DE LA THESE / AUTHOR OF THESIS Ph.D. (Earth Sciences) GRADE/DEGREE Department of Earth Sciences 7AWTOC6L17DE7>ARW Stratigraphic and Structural Framework of the Potsdam Group in Eastern Ontario, Western Quebec and Northern New York State TITRE DE LA THESE / TITLE OF THESIS William Arnott EXAMINATEURS (EXAMINATRICES) DE LA THESE / THESIS EXAMINERS Jeffrey Chiarenzelli Allan Donaldson Andre Desrochers Robert Rainbird Gary W. Slater Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies © Bruce Victor Sanford, Ottawa, Canada, 2007 ABSTRACT The presence of a major unconformity within the Potsdam Group is an important key to unlocking the geological history of this succession throughout its area of distribution in the Ottawa Embayment and Quebec Basin. The beds below the unconformity (Abbey Dawn and Covey Hill/Ausable formations) largely of continental origin up to 600 metres thick, is a complex assortment of red and grey quartzite cobble, quartz pebble and quartzarenite deposits of assumed Neoproterozoic to Early Cambrian age. The Covey Hill/Ausable formations have been further divided into four units of wide distribution beginning with the Jericho member of marginal marine origin, confined to the Quebec Basin bordering the Oka-Beauhamois Arch; succeeded and overlapped to the west by Hannawa Falls, Chippewa Bay and Edwardsville members of aeolian, fluvial and possible lacustrine origin. During and immediately following deposition of these members the beds were locally faulted, folded and subjected to a long period of subaerial erosion. This process was likely triggered by a plate tectonic event in progress during Neoproterozoic to early Early Cambrian time, when the continents were in a state of rifting and break-up, followed by the opening of the lapetus Ocean. Above the unconformity are the white and grey Nepean and equivalent Cairnside and Keeseville formations up to 110 metres thick composed of quartzarenite and minor quartz pebble conglomerate of Late Cambrian to Early Ordovician age. These formations were deposited on the floor and margins of a seaway that entered the Ottawa Embayment from the east. The highland areas (arches) on all four sides of the embayment provided restricted marine depositional conditions that contributed to the precipitation of minor evaporates, a proliferation of stromatolites and a limited normal marine biota contained within the Nepean sandstone and its stratigraphic equivalents. Post-Potsdam deformation resulted in the rejuvenation of faults and local folding of Potsdam and younger Paleozoic strata throughout the Ottawa Embayment and Quebec Basin, the timing of which was likely associated with 11 Taconian and Acadian orogenesis, and by the much later rifting of the North American continent that occurred with the break-up and separation of the continents in the Jurassic and Cretaceous. in ACKNOWLEDGEMENTS The writer wishes to express sincere appreciation to Joe Wallach for his assistance in the field; particularly for logistical support and the locating of rock exposures throughout the study area, and for the many stimulating verbal exchanges relating to the stratigraphy and structure of the Potsdam Group. Deep appreciation is extended also to Professor William Arnott, of the University of Ottawa for his kind efforts in arranging financial support, and the writer's admission to the graduate (Ph.D.) program, and for volunteering his services as supervisor of a thesis project. Appreciation is also extended to Joseph DeKoninck and Margaret Moriarty, Dean and Assistant Dean respectively of Graduate Studies for their special consideration in granting approval of admission to the writer to undertake graduate studies at the University of Ottawa. Many thanks also to Alan Grant and Philip Moir of the Geological Survey of Canada, for facilitating the formal publication of the contents of this dissertation. Many thanks are also extended to William Arnott and the thesis committee members, Jeffery Chiarenzelli, Allan Donaldson, Robert Rainbird and Andre Desrochers for their critical review of an earlier manuscript. The maps and diagrams contained within the pages and on CD in Appendix (iii) were drafted by the Cartography Division of the Geological Survey of Canada for inclusion in a Bulletin by the same title and author to be published at a later date. Kind permission was granted by the Geological Survey of Canada to include the same diagrams in this dissertation in partial fulfillment of the requirements of the degree of Ph.D. at the University of Ottawa. IV TABLE OF CONTENTS Page ABSTRACT ii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS v LIST OF FIGURES vii LIST OF TABLES xvi CHAPTER 1 - INTRODUCTION 1 CHAPTER 2 - REGIONAL GEOLOGICAL SETTING 7 CHAPTER 3 - SUMMARY OF PREVIOUS INVESTIGATIONS 12 CHAPTER 4 - PRESENT INVESTIGATIONS 19 CHAPTER 5 - STRATIGRAPHIC FRAMEWORK 26 POTSDAM GROUP 26 Definition and Thickness 26 ABBEY DAWN FORMATION 31 Definition 31 Distribution and Thickness 33 Lithology and Stratigraphic Relationships 35 Petrogenesis 37 Age and Regional Correlation 38 COVEY HILL AND EQUIVALENT AUSABLE FORMATIONS 40 Definition 40 Distribution and Thickness 45 Lithology and Stratigraphic Relationships 49 Jericho Member 50 Hannawa Falls Member 53 Chippewa Bay Member 68 Edwardsville Member 86 Sedimentary Structures 90 Petrogenesis 106 Age and Regional Correlation 121 V NEPEAN AND EQUIVALENT CAIRNSIDE AND KEESEVILLE FORMATIONS 127 Definition 127 Distribution and Thickness 131 Lithology and Stratigraphic Relationships 136 Sedimentary Structures 161 Petrogenesis 167 Age and Regional Correlation 175 CHAPTER 6 - STRUCTURAL FRAMEWORK OF THE POTSDAM GROUP 179 CHAPTER 7 - SUMMARY AND CONCLUSIONS 193 REFERENCES 198 APPENDICES 214 (i) Location of Boreholes 214 (ii) Location of Field Stations 215 (iii) CD of Figures of 3, 6, 8 and 9 222 VI LIST OF FIGURES Figure 1: Photos of Potsdam Group in roadcut on Rideau Ferry Road, Ontario, at station 0-16. Figure 2: Index map showing approximate boundaries of research area and distribution of adjacent geological provinces and tectonic elements. Figure 3: Geological map of eastern Ontario, western Quebec and northern New York State, rsee CD in Appendix (iii)] Figure 4: Chart showing the Potsdam succession in eastern Ontario, western Quebec and northern New York State. Figure 5: Diagram showing generalized Potsdam Group succession and vertical stratigraphic range of key sections in the western part of the Ottawa Embayment and Frontenac Arch. Figure 6: Isopachous map showing distribution and thickness of the Potsdam Group, and the location of sections where the rocks are best exposed in eastern Ontario, western Quebec and northern New York State, [see CD in Appendix (iii)] Figure 7: Diagram showing generalized stratigraphic succession of the Potsdam Group showing range of key sections in the eastern part of the Ottawa Embayment
Recommended publications
  • State Ge?Logical Survey
    ILLINOIS State Ge?logical Survey BULLETIN NO. 1. THE GEOLOGICAL MAP OF ILLINOIS BY STUART WELLER. URBANA: UNIVERSITY OF ILLINOIS. 1906. SPRINGFIELD: lLLI:\'OIS STATE JOURNAL Co., STATE PRINTBRs· 1 9 0 6 ., STATE GEOLOGICAL COMMISSION GOVERNOR C. S. DENEEN, Chairman, PROFESSOR T. C. CHAMBERLIN, V·ice-Oha·irman. PRESIDENT EDMUND J. JAMES Secretary. H. FOSTER BAIN, Director. ·1 CONTENTS. PAGE. Letter of transmittal.... .. .. .. ..... ..... ...... .. ... ......... .. .. .... Introduction .................................................................... ..... 8 Purpose of a geological map.............................. ............................... 8 Sources of material . .. .. .. .. .. .. .. .. .. .. ........ .... 8 Lines of deformation .............................. ........................ 11 Geological formations represented ................................ rn Cambrian........................ ........ ..... .. 13 Potsdam sandstone .. ...... ...................... 1:J Ordovician ............................................... ........................... ...... 14 Lower Magnesian limestone.......................... ... ........ 14 St. Peters sandstone . ... .... .... .. .. ..... ..... ...... .. ... ... H Trenton-Galena formation ............................................ ............... 1r:i Cincinnatian formation.... .. ...... .. .. .. .. ...... .. .... 16 Silurian ......... ...... .... .. .... ....... .... ............ ........ .... .. ...... .... .. .... ...... 17 N iag-aran limestone.... .. .. .. .. .. ... ........ ... 17 Devonian..............................
    [Show full text]
  • An Analysis of Multiple Trackways of Protichnites Owen, 1852, from the Potsdam Sandstone (Late Cambrian), St
    AN ANALYSIS OF MULTIPLE TRACKWAYS OF PROTICHNITES OWEN, 1852, FROM THE POTSDAM SANDSTONE (LATE CAMBRIAN), ST. LAWRENCE VALLEY, NY by Matthew E. Burton-Kelly A Bachelors Thesis Submitted to the Faculty of the Department of Geology of St. Lawrence University in partial fulfillment of the requirements for the degree of Bachelor of Science with Honors in Geology Canton, New York 2005 1 2 3 This thesis submitted by in partial fulfillment of the requirements for the degree of Bachelor of Science with Honors in Geology from St. Lawrence University is hereby approved by the Faculty Advisor under whom the work was done. Faculty Advisor Date Department Chairman Date ii 4 ACKNOWLEDGMENTS The author would like to thank Dr. J. Mark Erickson for his assistance and guidance throughout the course of this project, as well as the St. Lawrence University Geology Department, which provided research materials and covered transportation costs. Attendance at the annual meeting of the Northeastern Section of the Geological Society of America to present preliminary results was funded by the Jim Street Fund, St. Lawrence University Geology. Jim Dawson provided vital insight into the nature of these trackways. Any number of additional people provided support for the author, most notably Camille Partin, Trisha Smrecak, and Joanne Cavallerano, but thanks go out to all the members of the St. Lawrence University Geology Department and the St. Lawrence University Track and Field teams. iii 5 TABLE OF CONTENTS THESIS APPROVAL..........................................................................................................ii
    [Show full text]
  • Mechanical Properties of St. Peter Sandstone a Comparison of Field and Laboratory Results a Thesis Submitted to the Faculty of T
    MECHANICAL PROPERTIES OF ST. PETER SANDSTONE A COMPARISON OF FIELD AND LABORATORY RESULTS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY MICHAEL EUGENE DITTES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DECEMBER, 2015 This thesis contains previously published material (Appendix E) in the “Journal of Geotechnical and Geoenvironmental Engineering” © 2002 ASCE. All other material © 2015 Michael E. Dittes All Rights Reserved. ACKNOWLEDGMENTS I would like to extend my thanks to those, who without their help I would not have been able to bring this project to completion. First and foremost, I thank Professor Joseph Labuz who took a chance on me, by offering me a TA-ship. Through my time in school, Joe helped me stay focused when I started to move off on tangents, offered timely advice, and over the years has become much more than my advisor. I am proud to think of him as a friend. Professors Andrew Drescher and Peter Huddleston also deserve special thanks for providing critical review of my work, and agreeing to sit on my thesis committee. To Ms. Tiffany Ralston who had an uncanny way of knowing what I needed to do, and how, before I knew myself. To Charles Nelson who helped me streamline my thesis project and helped me gain access to the Minnesota Library Archives construction site. To my fellow graduate students with whom I debated, joked and laughed, you helped me see things that I was missing. Your input was invaluable and you have my deep appreciation.
    [Show full text]
  • An Inventory of Trilobites from National Park Service Areas
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 179 AN INVENTORY OF TRILOBITES FROM NATIONAL PARK SERVICE AREAS MEGAN R. NORR¹, VINCENT L. SANTUCCI1 and JUSTIN S. TWEET2 1National Park Service. 1201 Eye Street NW, Washington, D.C. 20005; -email: [email protected]; 2Tweet Paleo-Consulting. 9149 79th St. S. Cottage Grove. MN 55016; Abstract—Trilobites represent an extinct group of Paleozoic marine invertebrate fossils that have great scientific interest and public appeal. Trilobites exhibit wide taxonomic diversity and are contained within nine orders of the Class Trilobita. A wealth of scientific literature exists regarding trilobites, their morphology, biostratigraphy, indicators of paleoenvironments, behavior, and other research themes. An inventory of National Park Service areas reveals that fossilized remains of trilobites are documented from within at least 33 NPS units, including Death Valley National Park, Grand Canyon National Park, Yellowstone National Park, and Yukon-Charley Rivers National Preserve. More than 120 trilobite hototype specimens are known from National Park Service areas. INTRODUCTION Of the 262 National Park Service areas identified with paleontological resources, 33 of those units have documented trilobite fossils (Fig. 1). More than 120 holotype specimens of trilobites have been found within National Park Service (NPS) units. Once thriving during the Paleozoic Era (between ~520 and 250 million years ago) and becoming extinct at the end of the Permian Period, trilobites were prone to fossilization due to their hard exoskeletons and the sedimentary marine environments they inhabited. While parks such as Death Valley National Park and Yukon-Charley Rivers National Preserve have reported a great abundance of fossilized trilobites, many other national parks also contain a diverse trilobite fauna.
    [Show full text]
  • The Wisconsin Sandstones
    The Wisconsin Sandstones The Manufacturer and Builder, Vol. 17, Issue 12 December 1885, pg. 274 This article, which begins on the next page, is presented on the Stone Quarries and Beyond web site. http://quarriesandbeyond.org/ Peggy B. Perazzo Email: [email protected] September 2013 The Wisconsin Sandstones The Manufacturer and Builder, Vol. 17, Issue 12, December 1885, pg. 274 “We present herewith a summary of the report of Prof. Allan D. Conover, special agent of the United States census, on the sandstones of Wisconsin, as published in the volume of building stones lately issued from the Census Office. “The great bed of Silurian rocks which almost complete encircles the Archæan area of northern central Wisconsin, had, previous to the last census year, furnished practically all of the building stone quarried within the State. Every one of the grand divisions of the belt furnishes in one or more localities material fit for ordinary building purposes, though stone suitable for the finer class of work is as yet quarried at but few places. Within the Silurian area, to which the more thickly settled portions of the State pretty closely correspond, except where a very deep covering of glacial drift exists, there are but few regions where rock fit for the most ordinary building purposes cannot be obtained everywhere within a few miles, and almost every large town or city has within its limits, or near by, quarries of sufficient capacity to supply its own most pressing needs for that sort of building material. But there were, previous to 1880, no localities (except at Bass Island in the Lake Superior region) where building stone had been quarried in any quantity for export beyond the State, and but a few where it had been quarried for other than a local market.
    [Show full text]
  • Sedimentology and Stratigraphy of the Cambrian-Ordovician Potsdam Group (Altona, Ausable and Keeseville Formations), Northeastern Ny
    SEDIMENTOLOGY AND STRATIGRAPHY OF THE CAMBRIAN-ORDOVICIAN POTSDAM GROUP (ALTONA, AUSABLE AND KEESEVILLE FORMATIONS), NORTHEASTERN NY DAVE LOWE Department of Earth Sciences, University of Ottawa, Ottawa, ON, Canada RYAN BRINK, CHARLOTTE MEHRTENS Department of Geology, University of Vermont, Burlington 05405 INTRODUCTION Geological Setting The Cambrian to Lower Ordovician Potsdam Group is the lowermost unit of the Paleozoic platform succession overlying rocks of the 1 – 1.5 Ga Grenville orogen within the Ottawa Embayment and Quebec Basin, two semi-connected fault-bounded basins that form an inboard salient of the St. Lawrence platform succession in eastern Ontario, northern New York State and western Quebec, over an area of approximately 26,000 km2 (Figure 1). Potsdam strata was deposited from the Late Early Cambrian until the Early Ordovician at subequatorial latitudes between 10o – 30o south approximately 200 – 400 km inboard of the south-facing Laurentian margin, during the late postrift and subsequent passive margin phase associated with the rifting and breakup of Rodinia (Torsvik et al. 1996; McCausland et al. 2007, 2011; Lavoie, 2008; Allen et al., 2009; Figure 2). It is mainly a siliciclastic unit that, in general, exhibits an upwards progression from terrestrial to marine deposits (Sanford and Arnott, 2010; with some exceptions, including the Altona Formation and Riviere Aux Outardes Member, see below). This terrestrial to marine progression is shared by stratal equivalents of the Potsdam Group on the Laurentian margin and in other North American cratonic basins that collectively form at the base of the Sauk Megasequence, a transgressive Megasequence that records eustatic rise across much of Early Paleozoic Laurentia preceding the Taconic Orogeny (Sloss, 1963; Lavoie, 2008).
    [Show full text]
  • Systematics, Environment, and Biogeography of Some Late Cambrian and Early Ordovician Trilobites from Eastern New York State
    Systematics, Environment, and Biogeography of Some Late Cambrian and Early Ordovician Trilobites From Eastern New York State GEOLOGICAL SURVEY PROFESSIONAL PAPER 834 Systematics, Environment, and Biogeography of Some Late Cambrian and Early Ordovician Trilobites From Eastern New York State By MICHAEL E. TAYLOR and ROBERT B. HALLEY GEOLOGICAL SURVEY PROFESSIONAL PAPER 834 The environmental setting and regional significance of two trilobite assemblages from shelf deposits of the fVhitehall Formation in the southern Champlain Valley UNITED STATES GOVERNl\1ENT PRINTING OFFICE, WASHINGTON 197 4 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-60031 S For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.35 (paper covers) Stock Number 2401-02459 CONTENTS Page Page Abstract 1 Systematic paleontology ------------------------­ 18 Introduction 1 Introductory statement ---------------------­ 18 Objectives ----------------------------------­ 1 Class Trilobita Walch, 1771 -----------------­ 19 Geologic setting ----------------------------­ 1 Family Catillicephalidae Raymond, 1938 --­ 19 Previous work ------------------------------­ 2 Genus Acheilops Ulrich, 1931 --------­ 19 Fossil collections ----------------------------­ 2 Genus Stenoc.hilina Ulrich, 1931 ------- 20 Acknowledgments --_- ------------------------ 2 Family Heterocaryonidae Hupe, 1953 _____ _ 21 Biostratigraphy ---------------------------------
    [Show full text]
  • Stratigraphic Framework of Cambrian and Ordovician
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY MISCELLANEOUS INVESTIGATIONS SERIES MAP I-2200 WOOSTER ARCH UNNAMED HINGE ZONE SE NORTHEASTERN END OF ROME TROUGH (MAIN BRANCH) ROME TROUGH (MINOR BRANCH) ALLEGHENY STRUCTURAL B' OHIO-WEST VIRGINIA HINGE ZONE 9t 11t FRONT Shell Oil Company California Company 10t No. 1 Snyder No. 1 Shade Mountain NW Deep Rock Oil Corporation Juniata Co., Pa. 8 Lycoming Co., Pa. No. A-1 Walizer B Texaco Incorporated and Marathon Oil Company No. 1 (Restored about 40 mi (64 km) southeastward to prethrusting A-A' Clinton Co., Pa. position using section C-C' from Berg and others (1980); bed Pennsylvania State Forest Tract 285 Composite outcrop section above drill hole Thrust faults showing about from Rones (1969) and Faill and Wells (1977) Composite outcrop section above drill hole thicknesses corrected for 45˚ dip above 4540 ft; gamma-ray Clinton Co., Pa 8 mi (12.9 km) shortening log above 4540 ft has not been corrected for dip) (Restored about 10 mi (16 km) southeastward from Thompson (1963), Rones (1969), Faill (Berg and others, 1980) Tie with to prethrusting position using section from Faill and Wells (1977), and Cotter (1982) Thrust faults showing about and Wells (1977); dip approximately horizontal, (Restored about 19 mi (30.6 km) southeast- LOWER (R.T. Ryder, unpub. data) unpub. Ryder, (R.T. FEET 8.5 mi (13.7 km) shortening thus, bed thickness correction unnecessary) ward to prethrusting position using section SILURIAN 7 10,000 from Faill and Wells (1977); bed thicknesses 1 (Faill and Wells, 1977) 2 4 Consolidated Gas Supply Corporation No.
    [Show full text]
  • Vermont Bedrock and Its Potential for Sequestration of Carbon Dioxide
    Vermont Bedrock and its Potential for Sequestration of Carbon Dioxide by Marjorie Gale, Laurence Becker, and Jonathan Kim Vermont Geological Survey 103 South Main Street, Logue Cottage Waterbury, Vermont 05671-2420 July 2011 Submitted electronically to: U.S. Geological Survey Joseph East 956 National center, Reston, VA 20192 [email protected] Cooperative Agreement # G10AC00639 1 Table of Contents 1. Introduction a. Deep Saline Formations b. Geologic and Geographic Settings 2. Bedrock Geology a. Proterozoic Rocks Cambro-Ordovician rocks of the Taconic allochthons Late Proterozoic to Cambrian rift/drift clastics Cambrian to Ordovician phyllites, schists, and serpentinized ultramafic rocks of the Rowe, Stowe, Ottauquechee Zone Cambrian - Ordovician fore-arc and arc deposits (Moretown of the Rowe-Hawley Belt) Silurian-Devonian metasedimentary rocks of the Connecticut Valley Trough Devonian granitic plutons in eastern Vermont Autochthonous and para-autochthonous rocks of the foreland in western Vermont 3. Autochthonous Rocks of Western Vermont and Oil and Gas Test Wells a. Potsdam and Danby Formations b. Clarendon Springs, Little Falls and Ticonderoga Formations c. Oil and Gas test Wells i. Yandow #1 ii. Gregoire #1 iii. Hazelett #1/Gregoire #2 iv. E.S. Baker v. Burnor #1 d. Interpretive Cross-Sections 4. Appendices Appendix A: Oil and Gas Test Well Summaries Appendix B: Scanned files (electronic) – well data Appendix C: Shapefile (GIS) for Oil and Gas Wells 2 VERMONT BEDROCK AND ITS POTENTIAL FOR SEQUESTRATION OF CARBON DIOXIDE Introduction Carbon sequestration is a possible strategy to reduce greenhouse gas emissions and mitigate global climate change. Assessment of potential sequestration sites in Vermont affects future energy use in the United States.
    [Show full text]
  • NYSGA-1978-A6-Paleoenvironments-Of-The-Potsdam-Sandstone-And-Theresa-Formation-Of
    Paleoenvironments of the Potsdam Sandstone and Theresa Formation of the Southwestern St. Lawrence Lowlands Bruce W. Selleck Colgate University, Hamilton, New York INTRODUCTION In northwestern New York State the Upper Cambrian-Lower Ordovician Potsdam Sandstone and Theresa Formation exhibit a variety of primary struc­ tures and compositional and textural variations indicative _o f deposition in nearshore, usuall y tide-dominated, settings. The purpose of thi s paper is to provide a descriptive overview of these units~ plus an interpretation of the depos itional environments of the various lithofacies. In the study area (Fig. 1) the Potsdam and Theresa are best exposed in the Frontenac Axis region . In this area the Paleozoi c rocks 1 ie in pro­ found unconformity upon a paleoerosional surface underlain by metamorphic rocks of Protoerozoic age. .,, I I , " I .., "I Figure 1. General ized geologic map of study area. 173 PREVIOUS STUDIES Since the Potsdam Sandstone was first described by Emmons (IB3B), the environment of its deposition has been a topic of discussion. Debate has arisen. no doubt, because the Potsdam, as pointed out by Fisher (1968), is a unit highly variable in both thickness and lithology throughout the area of its exposure . At the type section of the Potsdam, near Hannawa Falls, New York, Chadwick (1920) was convinced that the unit was depOSited in an aeolian setting on the basis of the magnitude of crossbeds, the high varia­ bility of crossbed-dip directions and the absence of fossils. Lewis (1970) argued for a marine origin for much of the Potsdam, based on the presence of marine fossils and dolomite in the upper portions of the formation and the lack of crossbed-dip an9les exceeding 30°.
    [Show full text]
  • St. Louis Quadrangle
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 438 GEOLOGY AND MINERAL RESOURCES OF THE ST. LOUIS QUADRANGLE MISSOURI-ILLINOIS BY N. M. FENNEMAN WASHINGTON GOVERNMENT FEINTING OFFICE 1911 CONTENTS. Introduction.....................................................".......... 7 Acknowledgments.................................................... 7 Location....................................:......................... 8 General relations....................................................... 8 Topography........................................................... 9 The upland....................................................... 9 General features................................................... 9 Small valleys...................................................... 9 Hock terraces.......:......!'...................................... 10 Relation of topography and underlying rocks................. .'... i ... 10 Mississippi flood plain.......................................... .". ...... 11 Drainage.............:........................................./...:... 12 Descriptive geology........................................................ 13 Stratigraphy.......................................................... 13 General section.................................................... 13 Detailed well sections..........................................'... 14 Well near Monks Mound........................................ 14 Well at the insane asylum.................................'..... 15 Belcher
    [Show full text]
  • Publication 14. Geological Series 11. the OCCURRENCE of OIL AND
    STATE OF MICHIGAN CHAPTER II. GEOLOGICAL FACTORS MICHIGAN GEOLOGICAL AND BIOLOGICAL SURVEY CONTROLLING THE OCCURRENCE OF OIL AND GAS. ................................................................................12 Publication 14. Geological Series 11. THE ANTICLINAL THEORY. .......................................12 THE OCCURRENCE OF OIL AND GAS IN ROCK PRESSURE IN GAS AND OIL WELLS............17 MICHIGAN Cause of Rock Pressure........................................ 17 SURFACE INDICATIONS............................................19 By Richard A. Smith CHAPTER III. THE PORT HURON FIELD. ...................19 Published as a part of the Annual Report of the Board of EARLY HISTORY AND DEVELOPMENT. ..................19 Geological and Biological Survey for 1912. GEOLOGICAL CONDITIONS IN WESTERN ONTARIO.....................................................................20 Lansing, Michigan The Petrolia Field .................................................. 21 Wynkoop Hallenbeck Crawford Co., State Printers Sarnia Township.................................................... 21 1914 Courtright............................................................... 22 EXPLORATIONS IN THE PORT HURON FIELD........22 Port Huron ............................................................. 22 Contents Marysville............................................................... 23 LETTER OF TRANSMITTAL............................................ 2 Wadham's Station.................................................. 24 Abbotsford ............................................................
    [Show full text]