Influence of Parasites on Fitness Parameters of the European Hedgehog (Erinaceus Europaeus)

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Parasites on Fitness Parameters of the European Hedgehog (Erinaceus Europaeus) Influence of parasites on fitness parameters of the European hedgehog (Erinaceus europaeus ) Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich vorgelegte DISSERTATION von Miriam Pamina Pfäffle aus Heilbronn Dekan: Prof. Dr. Stefan Bräse Referent: Prof. Dr. Horst Taraschewski Korreferent: Prof. Dr. Agustin Estrada-Peña Tag der mündlichen Prüfung: 19.10.2010 For my mother and my sister – the strongest influences in my life “Nose-to-nose with a hedgehog, you get a chance to look into its eyes and glimpse a spark of truly wildlife.” (H UGH WARWICK , 2008) „Madame Michel besitzt die Eleganz des Igels: außen mit Stacheln gepanzert, eine echte Festung, aber ich ahne vage, dass sie innen auf genauso einfache Art raffiniert ist wie die Igel, diese kleinen Tiere, die nur scheinbar träge, entschieden ungesellig und schrecklich elegant sind.“ (M URIEL BARBERY , 2008) Index of contents Index of contents ABSTRACT 13 ZUSAMMENFASSUNG 15 I. INTRODUCTION 17 1. Parasitism 17 2. The European hedgehog ( Erinaceus europaeus LINNAEUS 1758) 19 2.1 Taxonomy and distribution 19 2.2 Ecology 22 2.3 Hedgehog populations 25 2.4 Parasites of the hedgehog 27 2.4.1 Ectoparasites 27 2.4.2 Endoparasites 32 3. Study aims 39 II. MATERIALS , ANIMALS AND METHODS 41 1. The experimental hedgehog population 41 1.1 Hedgehogs 41 1.2 Ticks 43 1.3 Blood sampling 43 1.4 Blood parameters 45 1.5 Regeneration 47 1.6 Climate parameters 47 2. Hedgehog dissections 48 2.1 Hedgehog samples 48 2.2 Biometrical data 48 2.3 Organs 49 2.4 Parasites 50 3. Statistics 51 III. THE EXPERIMENTAL HEDGEHOG POPULATION 52 1. Results 52 1.1 Tick population 52 1.1.1 Larvae 55 1.1.2 Nymphs 56 1.1.3 Females 57 1.1.4 Males 58 5 Index of contents 1.1.5 Ticks and climate parameters 59 1.2 The hedgehog population 62 1.3 Hedgehog weight 64 1.3.1 Annual weight distribution 64 1.3.2 Hedgehog weight and ticks 67 1.4 Cortisol 68 1.4.1 Annual cortisol levels 68 1.4.2 Cortisol and tick infestation 71 1.4.3 Cortisol and climate parameters 72 1.5 Testosterone 76 1.5.1 Annual testosterone levels 76 1.5.2 Testosterone and tick infestation 78 1.5.3 Testosterone and cortisol 79 1.5.4 Testosterone and climate parameters 80 1.6 Haematological values 83 1.6.1 Haematological values and tick infestation 85 1.6.2 Haematological values and climate parameters 92 1.7 Regeneration 95 1.7.1 Comparison of the R- and C-groups 95 1.7.2 Comparison of sampling dates within the R-group and the C-group 99 2. Discussion 103 2.1 Haematological values, ticks and climate parameters 103 2.2 Tick population dynamics and regulation 105 2.2.1 Sex-biased tick infestation 105 2.2.2 Tick population dynamics and regulation 107 2.3 Cortisol 112 2.4 Testosterone 117 2.4.1 Annual testosterone levels 117 2.4.2 Testosterone and tick infestation 118 2.5 Haematological values and regeneration 120 2.5.1 Blood count 120 2.5.2 Regeneration 124 2.5.3 Consequences of tick-induced blood loss 125 3. Summary 129 6 Index of contents IV. HEDGEHOG DISSECTIONS 132 1. Results 132 1.1 Parasite distribution 132 1.1.1 Germany 132 1.1.2 UK 137 1.1.3 New Zealand 140 1.1.4 Comparison of the investigation areas 147 1.2 Parasites and fitness related parameters 159 1.2.1 Condition factor 159 1.2.2 Organs 164 1.2.3 Sexual Organs 170 2. Discussion 177 2.1 Parasite distribution 177 2.2 Comparison of investigation areas 183 2.3 Parasites and organs 184 2.4 Parasites and host reproduction 192 3. Summary 193 V. CONCLUSIONS AND PERSPECTIVES 196 VI. REFERENCES 198 ACKNOWLEDGEMENTS 233 APPENDIX I 235 APPENDIX II 236 APPENDIX III 245 APPENDIX IV 248 APPENDIX V 252 APPENDIX VI 254 7 Index of figures Index of figures Figure 1: Natural distribution of Erinaceus europaeus and E. amurensis . 21 Figure 2: Natural distribution of Erinaceus roumanicus and E. concolor . 21 Figure 3: Overview of the muscles of a hedgehog. 22 Figure 4: Method of nest construction by a European hedgehog. 23 Figure 5: Female and male hedgehog fleas ( Archaeopsylla erinacei ). 28 Figure 6: Caparinia tripilis from skin samples of a European hedgehog. 29 Figure 7: Larvae of Trombicula autumnalis on a European hedgehog. 30 Figure 8: Tick species infecting Erinaceus europaeus . 31 Figure 9: Developmental cycle of Crenosoma striatum . 32 Figure 10: Section of an opened lung from a European hedgehog. 33 Figure 11: View on the eastern part of the hedgehog garden. 42 Figure 12: Person securing an unrolled hedgehog. 44 Figure 13: Hind leg of a hedgehog with a placed tourniquet. 44 Figure 14: Multivette tube inserted in the saphenous vein of a hedgehog. 45 Figure 15: Primary sex characteristics of hedgehogs. 49 Figure 16: Illustration of the reproductive organs of hedgehogs. 50 Figure 17: Seasonal distribution of mean larval tick numbers. 55 Figure 18: Seasonal distribution of mean nymph tick numbers. 56 Figure 19: Seasonal distribution of mean female tick numbers. 57 Figure 20: Seasonal distribution of mean male tick numbers. 58 Figure 21: Seasonal distribution of mean hedgehog weight. 65 Figure 22: Seasonal distribution of mean hedgehog weight gain (or loss). 66 Figure 23: Annual distribution for mean cortisol levels. 68 Figure 24: Annual distribution for mean testosterone levels. 76 Figure 25: Annual distribution for mean testosterone levels, years pooled. 78 Figure 26: Relationship between erythrocytes and total tick weight. 87 Figure 27: Relationship between haemoglobin and total tick weight. 87 Figure 28: Relationship between haematocrit and total tick weight. 88 Figure 29: Relationship between MCV and total tick weight. 88 Figure 30: Relationship between MCH and total tick weight. 89 Figure 31: Relationship between MCHC and total tick weight. 89 Figure 32: Relationship between relative reticulocyte concentration and total tick weight. 90 Figure 33: Relationship between absolute reticulocyte concentration and total tick weight. 90 8 Index of figures Figure 34: Relationship between lymphocytes and total tick weight. 91 Figure 35: Relationship between neutrophils and total tick weight. 91 Figure 36: Relationship between thrombocytes and total tick weight. 92 Figure 37: Distribution of fleas in the investigation areas. 147 Figure 38: Distribution of Crenosoma striatum in the investigation areas. 148 Figure 39: Distribution of Capillaria aerophila in the investigation areas. 149 Figure 40: Distribution of intestinal Capillaria spp. in the investigation areas. 150 Figure 41: Distribution of trematodes in the investigation areas. 151 Figure 42: Distribution of peritoneal Plagiorhynchus in the investigation areas. 153 Figure 43: Distribution of intestinal Plagiorhynchus in the investigation areas. 154 Figure 44: Distribution of all Plagiorhynchus in the investigation area. 155 Figure 45: Species richness for the different investigation areas. 156 Figure 46: Species richness for age groups in the different investigation areas. 157 Figure 47: Distribution of total tick weight in the investigation areas. 158 Figure 48: Distribution of Ixodes ricinus weight in the investigation areas. 158 Figure 49: Distribution of Ixodes hexagonus weight in the investigation areas. 159 Figure 50: Relationship between body weight and body length of juvenile hedgehogs from Germany. 161 Figure 51: Relationship between body weight and body length of juvenile hedgehogs from the UK. 162 Figure 52: Relationship between body weight and body length of adult hedgehogs from New Zealand. 163 Figure 53: Relationship between body weight and body length of juvenile hedgehogs from New Zealand. 164 9 Index of tables Index of tables Table 1: Bacteria occurring in the European hedgehog. 37 Table 2: Viruses, protozoans and fungi occurring in the European hedgehog. 38 Table 3: Number of hedgehogs used for tick counts. 52 Table 4: Mean numbers of I. ricinus counted during the investigation period. 53 Table 5: Mean numbers of I. hexagonus counted during the investigation period. 54 Table 6: Correlation between temperature and tick density. 60 Table 7: Correlation between relative humidity and tick density. 61 Table 8: Correlation between rainfall and tick density. 62 Table 9: Mortality in the experimental hedgehog population. 63 Table 10: Homogenous subgroups for mean body weight of hedgehogs. 65 Table 11: Homogenous subgroups for mean weight gain (or loss) of hedgehogs. 66 Table 12: Correlation between tick weight and hedgehog weight or weight change. 67 Table 13: Homogenous subgroups for annual cortisol levels of female hedgehogs. 69 Table 14: Homogenous subgroups for annual cortisol levels of male hedgehogs. 70 Table 15: Correlation between tick weight and cortisol levels of female hedgehogs. 71 Table 16: Correlation between tick weight and cortisol levels of male hedgehogs. 71 Table 17: Correlation between temperature and cortisol levels. 73 Table 18: Correlation between relative humidity and cortisol levels. 74 Table 19: Correlation between rainfall and cortisol levels. 75 Table 20: Monthly comparison of mean testosterone levels for 2007 and 2008. 77 Table 21: Monthly comparison of mean testosterone levels for 2006-2008. 77 Table 22: Correlation between tick weight and testosterone levels. 79 Table 23: Correlation between testosterone and cortisol levels. 80 Table 24: Correlation between temperature and testosterone levels. 81 Table 25: Correlation between relative humidity and testosterone levels. 82 Table 26: Correlation between rainfall and testosterone levels. 83 Table 27: Descriptive statistics of the haematological values for 2007 and 2008. 84 Table 28: Means of haematological values from the experimental hedgehog population, QUILLIAM et al. (1971), WENZEL et al. (1977) and LEWIS et al. (2002). 85 Table 29: Correlation between tick weight and haematological values for 2007.
Recommended publications
  • Gamasid Mites
    NATIONAL RESEARCH TOMSK STATE UNIVERSITY BIOLOGICAL INSTITUTE RUSSIAN ACADEMY OF SCIENCE ZOOLOGICAL INSTITUTE M.V. Orlova, M.K. Stanyukovich, O.L. Orlov GAMASID MITES (MESOSTIGMATA: GAMASINA) PARASITIZING BATS (CHIROPTERA: RHINOLOPHIDAE, VESPERTILIONIDAE, MOLOSSIDAE) OF PALAEARCTIC BOREAL ZONE (RUSSIA AND ADJACENT COUNTRIES) Scientific editor Andrey S. Babenko, Doctor of Science, professor, National Research Tomsk State University Tomsk Publishing House of Tomsk State University 2015 UDK 576.89:599.4 BBK E693.36+E083 Orlova M.V., Stanyukovich M.K., Orlov O.L. Gamasid mites (Mesostigmata: Gamasina) associated with bats (Chiroptera: Vespertilionidae, Rhinolophidae, Molossidae) of boreal Palaearctic zone (Russia and adjacent countries) / Scientific editor A.S. Babenko. – Tomsk : Publishing House of Tomsk State University, 2015. – 150 р. ISBN 978-5-94621-523-7 Bat gamasid mites is a highly specialized ectoparasite group which is of great interest due to strong isolation and other unique features of their hosts (the ability to fly, long distance migration, long-term hibernation). The book summarizes the results of almost 60 years of research and is the most complete summary of data on bat gamasid mites taxonomy, biology, ecol- ogy. It contains the first detailed description of bat wintering experience in sev- eral regions of the boreal Palaearctic. The book is addressed to zoologists, ecologists, experts in environmental protection and biodiversity conservation, students and teachers of biology, vet- erinary science and medicine. UDK 576.89:599.4
    [Show full text]
  • The Worcestershire Biodiversity Action Plan
    The Worcestershire Biodiversity Action Plan Abstract Following its commitment to the 1992 Convention on Biological Diversity the UK began to develop a policy and strategy framework, beginning with Biodiversity Action Plans and recently with a focus on ecological networks and green infrastructure. This project contributed to Worcestershire’s Biodiversity Action Plan review process by demonstrating how green infrastructure (GI) can be identified and delivered in the Urban Habitat Action Plan. GI provides multifunctional benefits, so will help encourage biodiversity through a wide network of green spaces and corridors in urban and natural environments. It is crucial that biodiversity is conserved and sustainably managed for future generations because it provides direct and indirect services for people, such as food and climate regulation. i Worcestershire Biodiversity Action Plan 2018 H14 Urban HAP Table of Contents Abstract ................................................................................................................................................... i Table of Contents .................................................................................................................................... ii Table of Figures ...................................................................................................................................... iii Abbreviations ......................................................................................................................................... iv 1 Introduction
    [Show full text]
  • A Guide to the Mammals of Beijing Feb 2018
    A Guide to the Mammals of Beijing Last update 8 March 2018 Terry Townshend A GUIDE TO THE MAMMALS OF BEIJING "1 Introduction This guide has been collated to help residents and visitors to Beijing interested in specifically looking for mammals and/or identifying any species they record through casual observations. Given the lack of english-language resources and data this guide is certainly not comprehensive and reflects only a partial summary of the mammals in the capital. At the moment it includes information about only some of the orders and families. For example, mice, rats, voles, shrews, moles and bats are not included; as information is discovered or made available, the guide will be updated to rectify as many of these omissions as possible. Please contact Birding Beijing if you can help improve the information contained in this guide in any way. Individual sightings of any mammal in Beijing are also of interest. Please send any details, including species, location, date and time via email to [email protected]. Thank you. Format The list of mammals follows the order of “A Guide to the Mammals of China” by Andrew T Smith and Yan Xie1, the best reference guide to mammals in China. The format includes English name, scientific name, Chinese name and ‘pinyin’ (the Romanisation of Chinese characters based on their pronunciation). Photos are included where available together with a short paragraph about the status in Beijing. 1 Smith, Andrew T and Xie, Yan, “A Guide to the Mammals of China”, Princeton University Press, 2008 A GUIDE TO THE MAMMALS OF BEIJING "2 The Mammals Rhesus Macaque – Macaca mulatta – 猕猴 – Mi Hou Historically thought to have occurred in Beijing and today occasionally seen in Fangshan District, although sightings are thought to involve animals introduced for tourism purposes.
    [Show full text]
  • Mammals of Jordan
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order.
    [Show full text]
  • Comparative Morphology of Two Sympatric Species of Hedgehog in Ikh Nart Nature Reserve, Mongolia Richard P
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2010 Comparative Morphology of Two Sympatric Species of Hedgehog in Ikh Nart Nature Reserve, Mongolia Richard P. Reading Denver Zoological Foundation, [email protected] David Kenny Denver Zoological Foundation Sodnomphil Batdorj Denver Zoological Foundation James Murdoch University of Vermont, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biolmongol Part of the Asian Studies Commons, Biodiversity Commons, Environmental Sciences Commons, Nature and Society Relations Commons, Other Animal Sciences Commons, and the Zoology Commons Reading, Richard P.; Kenny, David; Batdorj, Sodnomphil; and Murdoch, James, "Comparative Morphology of Two Sympatric Species of Hedgehog in Ikh Nart Nature Reserve, Mongolia" (2010). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 64. http://digitalcommons.unl.edu/biolmongol/64 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Copyright 2010, Martin-Luther-Universität Halle Wittenberg, Halle (Saale). Used by permission. Erforsch. biol. Ress. Mongolei (Halle/Saale) 2010 (11): 323-328 Comparative Morphology of Two Sympatric Species of Hedgehog in Ikh Nart Nature Reserve, Mongolia R. P. Reading, D. Kenny, S. Batdorj & J.
    [Show full text]
  • First Detection of Tick-Borne Encephalitis Virus in Ixodes Ricinus
    Ticks and Tick-borne Diseases 10 (2019) 101265 Contents lists available at ScienceDirect Ticks and Tick-borne Diseases journal homepage: www.elsevier.com/locate/ttbdis Original article First detection of tick-borne encephalitis virus in Ixodes ricinus ticks and T their rodent hosts in Moscow, Russia ⁎ Marat Makenova, , Lyudmila Karana, Natalia Shashinab, Marina Akhmetshinab, Olga Zhurenkovaa, Ivan Kholodilovc, Galina Karganovac,d, Nina Smirnovaa,e, Yana Grigorevaa, Yanina Yankovskayaf, Marina Fyodorovaa a Central Research Institute of Epidemiology, Novogireevskaya st 3-A, 415, Moscow, 111123, Russia b Sсiеntifiс Rеsеarсh Disinfесtology Institutе, Nauchniy proezd st. 18, Moscow, 117246, Russia c Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), prem. 8, k.17, pos. Institut Poliomyelita, poselenie Moskovskiy, Moscow, 108819, Russia d Institute for Translational Medicine and Biotechnology, Sechenov University, Bolshaya Pirogovskaya st, 2, page 4, room 106, Moscow, 119991, Russia e Lomonosov Moscow State University, Leninskie Gory st. 1-12, MSU, Faculty of Biology, Moscow, 119991, Russia f Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow, 117997, Russia ARTICLE INFO ABSTRACT Keywords: Here, we report the first confirmed autochthonous tick-borne encephalitis case diagnosed in Moscow in2016 Tick-borne encephalitis virus and describe the detection of tick-borne encephalitis virus (TBEV) in ticks and small mammals in a Moscow park. Ixodes ricinus The paper includes data from two patients who were bitten by TBEV-infected ticks in Moscow city; one of Borrelia burgdorferi sensu lato these cases led to the development of the meningeal form of TBE. Both TBEV-infected ticks attacked patients in Vector-borne diseases the same area.
    [Show full text]
  • ESCCAP Guidelines Final
    ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ First Published by ESCCAP 2012 © ESCCAP 2012 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-40-1 ESCCAP Guideline 3 Control of Ectoparasites in Dogs and Cats Published: December 2015 TABLE OF CONTENTS INTRODUCTION...............................................................................................................................................4 SCOPE..............................................................................................................................................................5 PRESENT SITUATION AND EMERGING THREATS ......................................................................................5 BIOLOGY, DIAGNOSIS AND CONTROL OF ECTOPARASITES ...................................................................6 1. Fleas.............................................................................................................................................................6 2. Ticks ...........................................................................................................................................................10
    [Show full text]
  • THÈSE Docteur L'institut Des Sciences Et Industries Du Vivant Et De L
    N° /__/__/__/__/__/__/__/__/__/__/ THÈSE pour obtenir le grade de Docteur de l’Institut des Sciences et Industries du Vivant et de l’Environnement (Agro Paris Tech) Spécialité : Biologie de l’Evolution et Ecologie présentée et soutenue publiquement par ROY Lise le 11 septembre 2009 11 septembre 2009 ECOLOGIE EVOLUTIVE D’UN GENRE D’ACARIEN HEMATOPHAGE : APPROCHE PHYLOGENETIQUE DES DELIMITATIONS INTERSPECIFIQUES ET CARACTERISATION COMPARATIVE DES POPULATIONS DE CINQ ESPECES DU GENRE DERMANYSSUS (ACARI : MESOSTIGMATA) Directeur de thèse : Claude Marie CHAUVE Codirecteur de thèse : Thierry BURONFOSSE Travail réalisé : Ecole Nationale Vétérinaire de Lyon, Laboratoire de Parasitologie et Maladies parasitaires, F-69280 Marcy-L’Etoile Devant le jury : M. Jacques GUILLOT, PR, Ecole Nationale Vétérinaire de Maisons-Alfort (ENVA).…………...Président M. Mark MARAUN, PD, J.F. Blumenbach Institute of Zoology and Anthropology...…………...Rapporteur Mme Maria NAVAJAS, DR, Institut National de la Recherche Agronomique (INRA)..………... Rapporteur M. Roland ALLEMAND, CR, Centre national de la recherche scientifique (CNRS).……………Examinateur M. Thierry BOURGOIN, PR, Muséum National d’Histoire Naturelle (MNHN)......….... ………….Examinateur M. Thierry BURONFOSSE, MC, Ecole Nationale Vétérinaire de Lyon (ENVL)...……………..… Examinateur Mme Claude Marie CHAUVE, PR, Ecole Nationale Vétérinaire de Lyon (ENVL)…...………….. Examinateur L’Institut des Sciences et Industries du Vivant et de l’Environnement (Agro Paris Tech) est un Grand Etablissement dépendant du Ministère de l’Agriculture et de la Pêche, composé de l’INA PG, de l’ENGREF et de l’ENSIA (décret n° 2006-1592 du 13 décembre 2006) Résumé Les acariens microprédateurs du genre Dermanyssus (espèces du groupe gallinae), inféodés aux oiseaux, représentent un modèle pour l'étude d'association lâche particulièrement intéressant : ces arthropodes aptères font partie intégrante du microécosystème du nid (repas de sang aussi rapide que celui du moustique) et leurs hôtes sont ailés.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Vector-Borne Agents Detected in Fleas of the Northern White-Breasted Hedgehog
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 Vector-borne agents detected in fleas of the northern white-breasted hedgehog Hornok, Sándor ; Földvári, Gábor ; Rigó, Krisztina ; Meli, Marina L ; Tóth, Mária ; Molnár, Viktor ; Gönczi, Enikő ; Farkas, Róbert ; Hofmann-Lehmann, Regina Abstract: This is the first large-scale molecular investigation of fleas from a geographically widespread and highly urbanized species, the northern white-breasted hedgehog. In this study, 759 fleas (the majority were Archaeopsylla erinacei) collected from 134 hedgehogs were molecularly analyzed individually or in pools for the presence of three groups of vector-borne pathogens. All flea samples were positive for rickettsiae: In two samples (1.5%) Rickettsia helvetica and in 10% of the others a novel rickettsia genotype were identified. Additionally, Bartonella henselae (the causative agent of cat scratch disease in humans) was demonstrated in one flea (0.7%), and hemoplasmas of the hemofelis group were identified inseven other samples (5.2%). The findings of vector-borne agents not detected before in A. erinacei fleas broaden the range of those diseases of veterinary-medical importance, of which hedgehogs may play a role in the epidemiology. DOI: https://doi.org/10.1089/vbz.2013.1387 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-91493 Journal Article Published Version Originally published at: Hornok, Sándor; Földvári, Gábor; Rigó, Krisztina; Meli, Marina L; Tóth, Mária; Molnár, Viktor; Gönczi, Enikő; Farkas, Róbert; Hofmann-Lehmann, Regina (2014). Vector-borne agents detected in fleas of the northern white-breasted hedgehog.
    [Show full text]
  • Diverse Mite Family Acaridae
    Disentangling Species Boundaries and the Evolution of Habitat Specialization for the Ecologically Diverse Mite Family Acaridae by Pamela Murillo-Rojas A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Thomas F. Duda Jr, Chair Assistant Professor Alison R. Davis-Rabosky Associate Professor Johannes Foufopoulos Professor Emeritus Barry M. OConnor Pamela Murillo-Rojas [email protected] ORCID iD: 0000-0002-7823-7302 © Pamela Murillo-Rojas 2019 Dedication To my husband Juan M. for his support since day one, for leaving all his life behind to join me in this journey and because you always believed in me ii Acknowledgements Firstly, I would like to say thanks to the University of Michigan, the Rackham Graduate School and mostly to the Department of Ecology and Evolutionary Biology for all their support during all these years. To all the funding sources of the University of Michigan that made possible to complete this dissertation and let me take part of different scientific congresses through Block Grants, Rackham Graduate Student Research Grants, Rackham International Research Award (RIRA), Rackham One Term Fellowship and the Hinsdale-Walker scholarship. I also want to thank Fulbright- LASPAU fellowship, the University of Costa Rica (OAICE-08-CAB-147-2013), and Consejo Nacional para Investigaciones Científicas y Tecnológicas (CONICIT-Costa Rica, FI- 0161-13) for all the financial support. I would like to thank, all specialists that help me with the identification of some hosts for the mites: Brett Ratcliffe at the University of Nebraska State Museum, Lincoln, NE, identified the dynastine scarabs.
    [Show full text]
  • Borne Pathogens Tim R
    Hofmeester et al. Parasites & Vectors (2018) 11:600 https://doi.org/10.1186/s13071-018-3126-8 RESEARCH Open Access Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick- borne pathogens Tim R. Hofmeester1,2*, Aleksandra I. Krawczyk3, Arieke Docters van Leeuwen3, Manoj Fonville3, Margriet G. E. Montizaan4, Koen van den Berge5, Jan Gouwy5, Sanne C. Ruyts6, Kris Verheyen6 and Hein Sprong3* Abstract Background: Elucidating which wildlife species significantly contribute to the maintenance of Ixodes ricinus populations and the enzootic cycles of the pathogens they transmit is imperative in understanding the driving forces behind the emergence of tick-borne diseases. Here, we aimed to quantify the relative contribution of four mustelid species in the life-cycles of I. ricinus and Borrelia burgdorferi (sensu lato) in forested areas and to investigate their role in the transmission of other tick-borne pathogens. Road-killed badgers, pine martens, stone martens and polecats were collected in Belgium and the Netherlands. Their organs and feeding ticks were tested for the presence of tick-borne pathogens. Results: Ixodes hexagonus and I. ricinus were found on half of the screened animals (n = 637). Pine martens had the highest I. ricinus burden, whereas polecats had the highest I. hexagonus burden. We detected DNA from B. burgdorferi (s.l.)andAnaplasma phagocytophilum in organs of all four mustelid species (n = 789), and Neoehrlichia mikurensis DNA was detected in all species, except badgers. DNA from B. miyamotoi was not detected in any of the investigated mustelids. From the 15 larvae of I. ricinus feeding on pine martens (n = 44), only one was positive for B.
    [Show full text]