Electrification, Heat Pumps and Thermal Energy Storage by MARK M

Total Page:16

File Type:pdf, Size:1020Kb

Electrification, Heat Pumps and Thermal Energy Storage by MARK M TECHNICAL FEATURE ©ASHRAE www.ashrae.org. Used with permission from ASHRAE Journal at www.trane.com and www.calmac.com. This article may not be copied nor distributed in either paper or digital form without ASHRAE’s permission. For more information about ASHRAE, visit www.ashrae.org. Using Yesterday’s Waste Energy for Tomorrow’s Heating Electrification, Heat Pumps and Thermal Energy Storage BY MARK M. MACCRACKEN, P.E., LIFE MEMBER ASHRAE “Electrification” has recently become a widely accepted road map toward the goal of a low-carbon future. The concept is easily understood in the transportation sector: cars using fossil fuels as their onboard energy source can never be carbon free. However, an electric car charged by a carbon-free source can be carbon free. When applied to buildings, one method is to envision stopping the flow of fossil fuels to them and having all energy come from the carbon-free grid of the future. Some skeptics believe it is a pipe dream to have a carbon-free electric grid, but certainly you can’t have a carbon-free building if you are burning fossil fuels in them. Electrification will likely play a part in our low-carbon future, so understanding heat pumps, and thermal energy storage’s relationship to them, will be critical. After the architects have done their best to lower the Energy in Everything energy loads in buildings, many HVAC engineers, given Most engineers understand that the term “heat pump” the challenge to heat a building without fossil fuels, will is a misnomer, mainly because “heat” is a relative term. likely consider heat pumps. Whether the source is air, Ask Google the definition of “heat,” and you get “the water, “ground” or some other source, the press for elec- quality of being hot, high temperature;” but “high” trification will likely require the use of all sorts of heat compared to what? As we learned in our science classes, pumps to help decarbonize the world’s buildings. In there is thermal energy present at any temperature big buildings that means big heat pumps. Because heat above absolute zero, which is −459°F (-273°C). Using pumps are going to become critical to meeting carbon- Rankine or Kelvin as our temperature scales, absolute neutral goals, we need to clearly understand the basics. zero is 0°R or 0 K. Our natural body temperature is Mark M. MacCracken, P.E., is president of CALMAC Corp. He is a member of ASHRAE TC 6.9, Thermal Storage. 32 ASHRAE JOURNAL ashrae.org JULY 2020 TECHNICAL FEATURE FIGURE 1 Energy in everything above absolute zero. FIGURE 2 Water’s phase change (Btu). Steam Condenses (1,526) One British thermal unit (Btu) is the amount of energy that will raise the temperature of 1 lb 1,500 Vapor of water by 1°F. –1,000 Btu/lb A. B. Water Boils (526) 500 One Match Takes 144 Matches Takes 1 lb 1 lb of Water from of Water from 32°F Ice 32°F to 33°F to 32°F Water 400 Water Freezes (346) Liquid Btu/lb 300 144 Btu/lb One Match 144 Matches Ice Melts (202) 200 Typical TemperatureTypical Office to DehumidifyTemperature Solid °R 0 400 450 500 550 600 650 700 pumped from an outdoor airside evaporator to water- °F –460 32 44 72 212 side condenser; to cool the space, this is reversed, so H2O at 1 atm. energy can be pumped from the indoor waterside evap- Water goes through a major phase change, storing lots of energy, at almost exactly the orator to the outdoor condenser. The energy is pumped best temperature for human comfort conditioning. into or out of the space depending on the need. 558°R (98.6°F or 37°C), we like our buildings at 530°R Thermal Energy Storage (70°F or 21°C), we supply liquid to cool buildings at Society has stored thermal energy extensively for about 500°R, or 40°F (5°C). It’s hard to imagine “cold” thousands of years. Many HVAC systems use ice or 40°F (5°C) water as having a lot of energy in it, but at chilled water storage to cool buildings, but is freez- 500°F (277°C) above absolute zero, it clearly does. “Cold” ing a tank of water really storing energy? The accurate and “warm” are relative. Figure 1 illustrates two types answer is actually no. It’s the reverse. To demonstrate, of energy in materials, sensible and latent. Sensible let’s go back to basics. In Figure 2a you see 1 lb (0.5 kg) of energy is the energy absorbed or released by a mate- liquid water at 32°F (0°C) and a wooden match burn- rial as it changes temperature. In the case of H2O it is ing beneath it. about 0.5 Btu/lb (1.2 J/g) in the solid phase and 1.0 Btu/lb It turns out that a wooden match, when burned com- (2.3 J/g) in the liquid phase. Latent energy is the energy pletely, releases about 1 Btu (1055 J) worth of energy, needed to change the phase of a material (solid to liquid so, by definition, the heat from one match can raise or liquid to gas) without a change in temperature. the temperature of a pound of water by 1°F (0.6°C). So, A more accurate naming of “heat pumps” is “energy what happens when one has ice at 32°F (0°C)? H2O goes pumps,” because they extract energy from one tem- through a phase change at this temperature. In Figure 2b, perature level and elevate (pump) it to a higher tem- you see the same 1 lb (0.5 kg) of H2O, but in solid phase, perature level. And like water, energy naturally only so imagine 16 one-ounce (28 g) ice cubes at 32°F (0°C). flows “downhill” from a higher temperature to a lower If you burn the 144 matches, and all that energy goes temperature. into the ice, all the ice will melt. So as odd as it sounds, melting ice is actually absorbing, and storing, massive Big Chillers are Big Heat Pumps amounts of energy. Figure 3 shows the latent energy stor- Traditional heat pumps are reversible, so the heat age capacity of a typical thermal storage tank based on exchangers can be used as condensers or evaporators, water’s 144 Btu/lb (335 J/g). depending on which way you want the energy to go. Changing ice to water is not the only way to store ther- Chillers are heat pumps; the only fundamental differ- mal energy in association with heat pumps. The most ence is that they only pump the energy in one direc- common way is to store it in the ground, with either tion, from an evaporator to condenser. As an example, deep vertical pipes in wells or horizontal fields of bur- in a heat pump used to heat a building, energy can be ied pipe used to convey the stored heat from above- to JULY 2020 ashrae.org ASHRAE JOURNAL 33 TECHNICAL FEATURE FIGURE 3 Thermal energy storage tank capacity. FIGURE 4 A. “Free” cooling with no coincident heating load. B. Simultaneous heating with boiler and “free cooling.” C. Simultaneous heating and cooling with heat pump. Cooling Tower Cooling Tower Cooling Tower Interior and Interior and Perimeter Perimeter Zones Zones Perimeter Perimeter Zones in the Zones in the Building’s Building’s Shell Shell A. B. C. Boiler Chiller Boiler Chiller Boiler Chiller One Tank 8 ft 6 in. Tall by One New York City Project has 44 Tanks thermal energy to the atmosphere, you are burning 7 ft 6 in. Diameter 88,000,000 Btu fossil fuels to add energy (heat) to the perimeter zones 1,655 Gal of Water = 13,786 lb 616 Gal of Fuel Oil ($1,835) 13,786 lb × 144 Btu/lb ~2,000,000 Btu 880 Therms ($1,056) for portions of the day (Figure 4b). When this is evalu- 2,000,000 Btu = ~14 Gal of Fuel Oil 88 Mlb of Steam ($3,520) ated considering the goal of electrification with big heat ~20 Therms of Natural Gas ~7,000 Ton-Hours ~2,000 lb of Steam pumps in buildings to eliminate fossil fuel use, the prac- ~160 Ton-Hours tice seems illogical. To meet simultaneous heating and cooling needs in below ground or back. Because of the relatively low sen- a building, a heat pump can be used to simply pump sible heat capacity of the ground, this requires using a the energy from one area to another. Figure 4c shows a large mass of ground and having heat exchange tubing simplified schematic of a building that has simultane- embedded throughout the ground mass. Another option ous heating and cooling needs and a standard chiller is to put the energy in water, raising its temperature. being used as an energy pump to move excess energy Because no phase change is involved, either much more from the core zones to the perimeter zones. This is water or a very large temperature change would be a very efficient cycle with high heating and cooling needed, compared to using the phase change of H2O as COPs, is all electric and is reducing fossil fuel use at the the storage approach. building. Free Cooling is Wasting Energy (To the Atmosphere) Storing Yesterday’s Waste Energy for Tomorrow’s Heating During the fall, winter and spring, most large build- Using a free cooling cycle, by definition, is wasting ings in northern climates use “free cooling” or “water- energy by rejecting it to the atmosphere.
Recommended publications
  • Thermal Storage Impact on CHP Cogeneration Performance with Southwoods Case Study Edmonton, Alberta Michael Roppelt C.E.T
    Thermal Storage Impact on CHP Cogeneration Performance with Southwoods Case Study Edmonton, Alberta Michael Roppelt C.E.T. CHP Cogeneration Solar PV Solar Thermal Grid Supply Thermal Storage GeoExchange RenewableAlternative & LowEnergy Carbon Microgrid Hybrid ConventionalSystemSystem System Optional Solar Thermal Option al Solar PV CNG & BUILDING OR Refueling COMMUNITY Station CHP Cogeneration SCALE 8 DEVELOPMENT Hot Water Hot Water DHW Space Heating $ SAVINGS GHG OPERATING Thermal Energy Cool Water Exchange & Storage ElectricalMicro Micro-Grid-Grid Thermal Microgrid Moving Energy not Wasting Energy Natural Gas Combined Heat and Power (CHP) Cogeneration $350,000 2,500,000 kWh RETAILINPUT OUTPUT VALUE NATURAL GAS $400,000. $100,000.30,000 Gj (85% Efficiency) CHP $50,000 Cogeneration15,000 Energy Gj Technologies CHP Unit Sizing Poorly sized units will not perform optimally which will cancel out the benefits. • For optimal efficiency, CHP units should be designed to provide baseline electrical or thermal output. • A plant needs to operate as many hours as possible, since idle plants produce no benefits. • CHP units have the ability to modulate, or change their output in order to meet fluctuating demand. Meeting Electric Power Demand Energy Production Profile 700 Hourly Average 600 353 January 342 February 500 333 March 324 April 400 345 May 300 369 June 400 July 200 402 August 348 September 100 358 October 0 362 November 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Meeting Heat Demand with CHP Cogeneration Energy Production Profile Heat Demand (kWh) Electric Demand (kWh) Cogen Heat (kWh) Waste Heat Heat Shortfall Useable Heat CHP Performance INEFFICIENCY 15% SPACE HEATING DAILY AND HEAT 35% SEASONAL ELECTRICAL 50% IMBALANCE 35% 50% DHW 15% Industry Studies The IEA works to ensure reliable, affordable and clean energy for its 30 member countries and beyond.
    [Show full text]
  • A Comprehensive Review of Thermal Energy Storage
    sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources.
    [Show full text]
  • Energy Storage Analysis
    Energy Storage Analysis Chad Hunter, Evan Reznicek, Michael Penev, Josh Eichman, Sam Baldwin National Renewable Energy Laboratory Thursday, May 21, 2020 DOE Hydrogen and Fuel Cells Program 2020 Annual Merit Review and Peer Evaluation Meeting Project ID SA173 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Overview: Hydrogen grid energy storage analysis Timeline Barriers (4.5) Start: October 2019 A. Future Market Behavior End: June 2020 • Assessing competitiveness of hydrogen for grid storage C. Inconsistent Data, Assumptions & Guidelines 50% complete • Consistent modeling methodology using established DOE cost/price and performance targets D. Insufficient Suite of Models and Tools • Develop hydrogen grid storage techno-economic tool Budget Partners Total Project Funding: $155k Project Management EERE Strategic Priorities and Impacts Analysis (SPIA) • FY20: $155k Collaborators and Peer Reviewers (alphabetical) Total DOE funds received to Ballard, Bioenergy Technology Office, Fossil Energy, NREL (Paul Denholm, Wesley Cole), Office of date: $50k Electricity, Solar Energy Technology Office, Water Power Technology Office NREL | 2 Relevance (1/3): HFTO Systems Analysis Framework Hydrogen Grid Energy Storage Analysis • H2@Scale • DOE Fuel Cell • SPIA/HFTO hydrogen Technologies Office Integrates System Analysis Framework: energy storage • DOE Strategic • ANL bulk hydrogen Priorities and • Leverages and expands existing storage analysis Impacts Analysis systems analysis models • PNNL hydrogen
    [Show full text]
  • Grid Energy Storage
    Grid Energy Storage U.S. Department of Energy December 2013 Acknowledgements We would like to acknowledge the members of the core team dedicated to developing this report on grid energy storage: Imre Gyuk (OE), Mark Johnson (ARPA-E), John Vetrano (Office of Science), Kevin Lynn (EERE), William Parks (OE), Rachna Handa (OE), Landis Kannberg (PNNL), Sean Hearne & Karen Waldrip (SNL), Ralph Braccio (Booz Allen Hamilton). Table of Contents Acknowledgements ....................................................................................................................................... 1 Executive Summary ....................................................................................................................................... 4 1.0 Introduction .......................................................................................................................................... 7 2.0 State of Energy Storage in US and Abroad .......................................................................................... 11 3.0 Grid Scale Energy Storage Applications .............................................................................................. 20 4.0 Summary of Key Barriers ..................................................................................................................... 30 5.0Energy Storage Strategic Goals .......................................................................................................... 32 6.0 Implementation of its Goals ...............................................................................................................
    [Show full text]
  • Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends
    energies Review Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends Diana Enescu 1,2,* , Gianfranco Chicco 3 , Radu Porumb 2,4 and George Seritan 2,5 1 Electronics Telecommunications and Energy Department, University Valahia of Targoviste, 130004 Targoviste, Romania 2 Wing Computer Group srl, 077042 Bucharest, Romania; [email protected] (R.P.); [email protected] (G.S.) 3 Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, 10129 Torino, Italy; [email protected] 4 Power Engineering Systems Department, University Politehnica of Bucharest, 060042 Bucharest, Romania 5 Department of Measurements, Electrical Devices and Static Converters, University Politehnica of Bucharest, 060042 Bucharest, Romania * Correspondence: [email protected] Received: 31 December 2019; Accepted: 8 January 2020; Published: 10 January 2020 Abstract: Thermal energy systems (TES) contribute to the on-going process that leads to higher integration among different energy systems, with the aim of reaching a cleaner, more flexible and sustainable use of the energy resources. This paper reviews the current literature that refers to the development and exploitation of TES-based solutions in systems connected to the electrical grid. These solutions facilitate the energy system integration to get additional flexibility for energy management, enable better use of variable renewable energy sources (RES), and contribute to the modernisation of the energy system infrastructures, the enhancement of the grid operation practices that include energy shifting, and the provision of cost-effective grid services. This paper offers a complementary view with respect to other reviews that deal with energy storage technologies, materials for TES applications, TES for buildings, and contributions of electrical energy storage for grid applications.
    [Show full text]
  • Keep It Cool with Thermal Energy Storage Tomorrow's Energy Here Comes Summer
    U.S. Department of Energy Keep It Cool with Thermal Energy Storage Tomorrow's Energy Here comes summer. Temperatures are rising, but energy costs aren’t, Today thanks to an innovative way of storing nighttime off-peak energy for daytime peak use—cool thermal energy storage. for Cities and Counties In most states, demand for electrical imbalance between daytime need and power peaks during summer. Air- nighttime abundance. Although “cool conditioning is the main reason, in thermal energy” sounds like a contra- some areas accounting for as much as diction, the phrase “thermal energy 50% of power drawn during the hot storage” is widely used to describe midday hours when electricity is storage of both heating and cooling most expensive. But during the night, energy. Heating TES usually involves utilities have electricity to spare, and using inexpensive, off-peak power to this “off-peak” electricity is much add heat to a storage medium for cheaper. Now there’s a way to air- later use. condition during the day using elec- Patrons at the Pasadena Central tricity produced at night. In contrast, cool TES uses off-peak Library can enjoy a good book and power to provide cooling capacity cool air despite stifling summer Cool thermal energy storage (TES) by extracting heat from a storage temperatures. The library uses a cool has become one of the primary medium, such as ice, chilled water, or storage system to keep energy costs solutions to the electrical power “phase-change materials.” Typically, down during daytime peak use. a cool storage system uses refrigera- tion equipment at night to create a reservoir of cold material.
    [Show full text]
  • THERMAL ENERGY STORAGE in SUPERMARKETS Permits Fewer Compressors and Less On-Peak Operating Time...Provides Significant First Cost and Operating Cost Reduction
    INDUSTRY FOCUS: SUPERMARKETS ENERGY SAVINGS WITH CALMAC’S THERMAL STORAGE SYSTEMS THERMAL ENERGY STORAGE IN SUPERMARKETS Permits fewer compressors and less on-peak operating time...provides significant first cost and operating cost reduction Currently, low and medium temperature supermarket which creates zero on-peak electrical demand for the refrigeration is an inherently inefficient and expensive upper stage. The storage device is sized to absorb all of process. The extreme temperature the low stage condenser heat rejection, which is the total lifts involved dramatically of the evaporator and compressor energy. The medium increase the power required temperature compressors need enough capacity at night per ton (kw) of cooling to: recharge the thermal storage tank with ice; continue with correspondingly to meet the needs of the low temperature system; and high energy and provide for the normal medium temperature loads. electrical demand Additionally this allows the use of R-22 for low implications. temperature applications. Thermal energy 2 - A second alternative provides outstanding first cost storage devices, which have reduction as well as lower energy and demand charges. been so successfully applied in the The process is simple and requires substantially less commercial air conditioning business, have seen only space for storage tanks. In this approach, cooling, ® limited applications in supermarkets. One reason is that stored in conventional CALMAC ICE BANK the temperatures available from the ice based cooling tanks, is used to sub-cool the refrigerant storage are not capable of directly providing the lower condensed by the low temperature temperatures needed in these systems. However, compressors (See Figure 1). Each Btu or innovative application of existing technology, along with watt of stored cooling provides an equal recently developed storage materials, now allow increase in the refrigeration effect of the supermarkets to benefit from the use of thermal energy condensed refrigerant.
    [Show full text]
  • Low-Carbon Heating and Cooling: Overcoming One of World's Most Important Net Zero Challenges
    CLIMATE CHANGE : SCIENCE AND SOLUTIONS | BRIEFING 3 Low-carbon heating and cooling: overcoming one of world’s most important net zero challenges In brief Heating and cooling, or thermal energy, should be high and require scaling up, others are at the demonstration on the decarbonisation agenda as it is the world’s largest stage and require concentrated research, development form of energy end use and its largest source of carbon and deployment (RD&D). This briefing looks at routes to emissions when compared with power and transport. reduce emissions through increasing energy efficiency, Varied low-carbon solutions are available for heating and applying technology options to replace fossil fuel heating cooling in residential, commercial and industrial settings and cooling, and innovating in the storage and transport in all areas of the world. Some are in early adoption of thermal energy. INSIGHTS • Heating and cooling for homes, industry and • Many forms of low-carbon heating and cooling commercial premises, is a major source of carbon are in their infancy compared to fossil-based dioxide emissions and as such merits a prominent place systems and require significant demonstration and in net zero strategies, with its own dedicated targets. deployment to test their relative cost-effectiveness. • Differing national conditions and legacies will require a • Key areas for research, development and range of approaches to reduce carbon dioxide emissions deployment across low-carbon heating and from heating and cooling. However there is also scope cooling include: heat pumps, electric heaters, for greater international co-operation and networking. district systems, renewable heat and hydrogen. • Using less energy to heat or cool buildings • Interesting options are emerging to create new ways through improved insultation, heat reflection of providing heating and cooling whereby the thermal and other means should be the first target energy required is generated in one place, stored and of any decarbonisation programme.
    [Show full text]
  • Usaid Grid-Scale Energy Storage Technologies Primer
    USAID GRID-SCALE ENERGY STORAGE TECHNOLOGIES PRIMER www.greeningthegrid.org | www.nrel.gov/usaid-partnership USAID GRID-SCALE ENERGY STORAGE TECHNOLOGIES PRIMER Authors Thomas Bowen, Ilya Chernyakhovskiy, Kaifeng Xu, Sika Gadzanku, Kamyria Coney National Renewable Energy Laboratory July 2021 A companion report to the USAID Energy Storage Decision Guide for Policymakers www.greeningthegrid.org | www.nrel.gov/usaid-partnership Prepared by NOTICE This work was authored, in part, by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the United States Agency for International Development (USAID) under Contract No. IAG-17-2050. The views expressed in this report do not necessarily represent the views of the DOE or the U.S. Government, or any agency thereof, including USAID. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov. Front cover: photo from iStock 506609532; Back cover: photo from iStock 506611252 NREL prints on paper that contains recycled content. Acknowledgments The authors are greatly indebted to several individuals for their support and guidance. We wish to thank Dominique Bain, Marcus Bianchi, Nate Blair, Anthony Burrell, Paul Denholm, Greg Stark, and Keith Wipke at the National Renewable Energy Laboratory (NREL), and Oliver Schmidt at Imperial College London for their reviews. And we wish to thank Isabel McCan, Christopher Schwing, and Liz Breazeale for communications, design, and editing support.
    [Show full text]
  • Thermal Energy Storage Developing for a Decarbonized Society
    Mitsui & Co. Global Strategic Studies Institute Monthly Report February 2021 THERMAL ENERGY STORAGE DEVELOPING FOR A DECARBONIZED SOCIETY Yuji Inada Industry Innovation Department, Technology & Innovation Studies Division Mitsui & Co. Global Strategic Studies Institute SUMMARY Due to the spread of renewable energy and seasonal factors, more power is generated than demand, causing the surplus power problem. This has caused a need for mechanisms and technologies to store electricity power without throwing it away. There are various technologies such as batteries for storing power, and they each have their own appropriate scale and scope of use. Power generation using thermal energy storage is a technology suitable for large-scale energy storage over long periods of time made up of a combination of existing technologies, and is characterized by its high reliability and low cost. A shift is taking place from battery-based power storage in the past to practical application of thermal energy storage and hydrogen energy storage in the future. Energy business operators need to consider combinations of optimal power storage technologies from perspectives such as storage time and capacity, cost, demand and transmission grids, and location. WHY ARE ENERGY STORAGE AND POWER STORAGE NECESSARY? With the spread of renewable energy (renewables), power generation using renewables sometimes exceed demand temporarily when there are favorable conditions, which are ample sunlight for photovoltaic power generation and continuously moderate wind for wind power generation. This results in surplus power, which destabilizes power grids and can cause power outages. For the purpose of stabilizing power grids so that power surpluses may not arise, restrictions are applied in the form of power limits to suspend photovoltaic and wind power generation.
    [Show full text]
  • Chapter 7 on Energy Systems Gas (GHG) Emissions
    7 Energy Systems Coordinating Lead Authors: Thomas Bruckner (Germany), Igor Alexeyevich Bashmakov (Russian Federation), Yacob Mulugetta (Ethiopia / UK) Lead Authors: Helena Chum (Brazil / USA), Angel De la Vega Navarro (Mexico), James Edmonds (USA), Andre Faaij (Netherlands), Bundit Fungtammasan (Thailand), Amit Garg (India), Edgar Hertwich (Austria / Norway), Damon Honnery (Australia), David Infield (UK), Mikiko Kainuma (Japan), Smail Khennas (Algeria / UK), Suduk Kim (Republic of Korea), Hassan Bashir Nimir (Sudan), Keywan Riahi (Austria), Neil Strachan (UK), Ryan Wiser (USA), Xiliang Zhang (China) Contributing Authors: Yumiko Asayama (Japan), Giovanni Baiocchi (UK / Italy), Francesco Cherubini (Italy / Norway), Anna Czajkowska (Poland / UK), Naim Darghouth (USA), James J. Dooley (USA), Thomas Gibon (France / Norway), Haruna Gujba (Ethiopia / Nigeria), Ben Hoen (USA), David de Jager (Netherlands), Jessica Jewell (IIASA / USA), Susanne Kadner (Germany), Son H. Kim (USA), Peter Larsen (USA), Axel Michaelowa (Germany / Switzerland), Andrew Mills (USA), Kanako Morita (Japan), Karsten Neuhoff (Germany), Ariel Macaspac Hernandez (Philippines / Germany), H-Holger Rogner (Germany), Joseph Salvatore (UK), Steffen Schlömer (Germany), Kristin Seyboth (USA), Christoph von Stechow (Germany), Jigeesha Upadhyay (India) Review Editors: Kirit Parikh (India), Jim Skea (UK) Chapter Science Assistant: Ariel Macaspac Hernandez (Philippines / Germany) 511 Energy Systems Chapter 7 This chapter should be cited as: Bruckner T., I. A. Bashmakov, Y. Mulugetta, H. Chum, A. de la Vega Navarro, J. Edmonds, A. Faaij, B. Fungtammasan, A. Garg, E. Hertwich, D. Honnery, D. Infield, M. Kainuma, S. Khennas, S. Kim, H. B. Nimir, K. Riahi, N. Strachan, R. Wiser, and X. Zhang, 2014: Energy Systems. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R.
    [Show full text]
  • (PCM) Candidates for Thermal Energy Storage (TES) Applications Judith C
    High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications Judith C. Gomez NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Milestone Report NREL/TP-5500-51446 September 2011 Contract No. DE-AC36-08GO28308 High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications Judith C. Gomez Prepared under Task No. CP09.2201 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Milestone Report 1617 Cole Boulevard NREL/TP-5500-51446 Golden, Colorado 80401 September 2011 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]