Plug-In Electric Bus Depot Charging with PV and ESS and Their Impact on LV Feeder
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improving Storage Efficiency in Electric Buses by Mike Rycroft, Features Editor
Improving storage efficiency in electric buses by Mike Rycroft, features editor The development of battery powered electric vehicles has been focused mainly on private passenger vehicles, while public transport seems to have been neglected. A reassessment of the journeys public transport vehicles make has led to the development of battery powered buses and bus rapid transit (BRT) systems. Several trial systems are in successful operation at various locations around the world, and there is a growing interest in this sector of the electric vehicle (EV) market. Electric powered public mass transport lanes, and electric vehicle technology is batteries and super- and ultra-capacitors has been in use for many years in the finding an increasing application in the than would be possible in a private vehicle. form of trams, trolley buses, subway battery driven electric bus (BDEB) public If the electric car has been successfully trains and other forms of transport, and transport sector. developed to replace the liquid fuel the components and controls for such vehicle, should the same not be applied The electric passenger car was developed vehicles are well developed. Tram-type to buses to give an all-electric public to have the same freedom of travel as vehicles are confined to routes which transport system? the liquid fuel version, i.e. it can be driven allow permanent connection to the supply anywhere as long as there was fuel in Battery powered public transport of electricity, mainly by overhead wires, the tank, and the EVs storage battery which have all the associated problems was developed to allow this. -
UNIVERSITY of CALIFORNIA, IRVINE Development of the Plug-In
UNIVERSITY OF CALIFORNIA, IRVINE Development of the Plug-in Electric Vehicle Charging Infrastructure via Smart-Charging Algorithms DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mechanical and Aerospace Engineering by Edgar De Jesus Ramos Muñoz Dissertation Committee: Professor Faryar Jabbari Professor Gregory Washington Professor G. Scott Samuelsen 2019 © 2019 Edgar De Jesus Ramos Muñoz DEDICATION To my family, friends, and mentors ii TABLE OF CONTENTS TABLE OF CONTENTS ....................................................................................................... iii LIST OF FIGURES ................................................................................................................ vi LIST OF TABLES ................................................................................................................... x ACKNOWLEDGMENTS ..................................................................................................... xii CURRICULUM VITAE ....................................................................................................... xiii ABSTRACT OF THE DISSERTATION ........................................................................... xviii 1 Introduction ...................................................................................................................... 1 1.1 Overview and Goal ................................................................................................... 1 1.2 Literature Review..................................................................................................... -
Analysing the Usage and Evidencing the Importance of Fast Chargers for the Adoption of Battery Electric Vehicles
INL/JOU-16-39570 Accepted Manuscript Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles Myriam Neaimeh, Shawn D. Salisbury, Graeme A. Hill, Philip T. Blythe, Don R. Scoffield, James E Francfort September 2017 This is an accepted manuscript of a paper intended for publication in a journal. This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the United States Government or the sponsoring agency. Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles. Myriam Neaimeha*, Shawn D. Salisburyb, Graeme A. Hilla, Philip T. Blythea, Don R. Scoffieldb, James E Francfortb a Transport Operations Research Group, Newcastle University, UK b Advanced Transportation Group, Idaho National Laboratory, US *Corresponding author. [email protected]. Tel.: +44 (0)1912084903 Abstract An appropriate charging infrastructure is one of the key aspects needed to support the mass adoption of battery electric vehicles (BEVs), and it is suggested that publically available fast chargers could play a key role in this infrastructure. -
Driving Down Emissions: How to Clean up Road Transport?
Driving Down Emissions How to clean up road transport? Richard Howard, Matthew Rooney, Zoe Bengherbi, and David Charlesworth Driving Down Emissions How to clean up road transport? Richard Howard, Matthew Rooney, Zoe Bengherbi, and David Charlesworth Policy Exchange is the UK’s leading think tank. We are an educational charity whose mission is to develop and promote new policy ideas that will deliver better public services, a stronger society and a more dynamic economy. Registered charity no: 1096300. Policy Exchange is committed to an evidence-based approach to policy development. We work in partnership with academics and other experts and commission major studies involving thorough empirical research of alternative policy outcomes. We believe that the policy experience of other countries offers important lessons for government in the UK. We also believe that government has much to learn from business and the voluntary sector. Trustees Diana Berry, Candida Gertler, Greta Jones, Edward Lee, Charlotte Metcalf, Krishna Rao, Andrew Roberts, George Robinson, Robert Rosenkranz, Peter Wall. About the Authors Richard Howard joined Policy Exchange in 2014 as Head of the Environment & Energy Unit. He has since produced a number of influential reports on topics including: energy policy and regulation, new energy technologies, fuel poverty, waste management, air quality, and industrial strategy. Richard has more than 10 years’ experience in energy and environmental policy, economics, and government affairs. His last role was as Chief Economist at The Crown Estate, and prior to that he worked as an economic consultant. He has a BSc in Economics from the University of Bristol and an MSc in Sustainability, Planning and Environmental Policy from Cardiff University, where he has been a visiting lecturer since 2009. -
Intelligent Transportation Systems Benefits, Costs, and Lessons Learned 2017 Update Report
Intelligent Transportation Systems Benefits, Costs, and Lessons Learned 2017 Update Report www.its.dot.gov/index.htm Final Report — March 2017 Publication Number: FHWA-JPO-17-500 1.1.1.1.1.1 Produced by Noblis, Inc. U.S. Department of Transportation ITS Joint Program Office Notice This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The U.S. Government is not endorsing any manufacturers, products, or services cited herein and any trade name that may appear in the work has been included only because it is essential to the contents of the work. Cover Photo Credit: Top Row (Left to right) – ThinkStock, U.S. DOT, ThinkStock Middle Row (Left to Right) – U.S. DOT, ThinkStock, ThinkStock Bottom Row (Left to Right) – U.S. DOT, ThinkStock, ThinkStock Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-JPO-17-500 4. Title and Subtitle 5. Report Date Intelligent Transportation Systems Benefits, Costs, and Lessons Learned: March 2017 2017 Update Report 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Greg Hatcher, Drennan Hicks , Cheryl Lowrance, Mike Mercer, Mike Brooks, Kathy Thompson, Alexa Lowman, Amy Jacobi, Rachel Ostroff (ICF), Nayel Urena Serulle (ICF), Amanda Vargo (ICF) 9. Performing Organization Name And Address 10. Work Unit No. (TRAIS) Noblis 600 Maryland Ave., SW, Suite 700E Washington, DC 20024 11. Contract or Grant No. DTFH61-11-D-00018 12. Sponsoring Agency Name and Address 13. -
Master Thesis Master's Programme in Industrial Management and Innovation, 60 Credits
Master Thesis Master's Programme in Industrial Management and Innovation, 60 credits Status of The Technology for Electrical Road Focusing on Wireless Charging International Outlook Thesis in Industrial Management and Innovation, 15 Credits Halmstad 2020-06-14 Padma Kumar Parameswaran Thampi, Thomas Paul Thodukulam Poulose HALMSTAD UNIVERSITY Abstract The transportation sector has a vital role in today’s society and accounts for 20 % of our global total energy consumption. It is also one of the most greenhouse gas emission intensive sectors as almost 95 % of its energy originates from petroleum-based fuels. Due to the possible harmful nature of greenhouse gases, there is a need for a transition to more sustainable transportation alternatives. A possible alternative to the conventional petroleum- based road transportation is, implementation of Electric Road Systems (ERS) in combination with electric vehicles (Evs). There are currently three proven ERS technologies, namely, conductive power transfer through overhead lines, conductive power transfer from rails in the road and inductive power transfer through the road. The wireless charging or inductive charging electric vehicles (EV) are a type of EVs with a battery which is charged from a charging infrastructure and using the wireless power transfer technology. The wireless charging EVs are classified as stationary or dynamic charging EVs. The stationary charging EVs charge wirelessly when they are parked as well as dynamic charging EVs can charge while they are in motion. Number of studies have reported that, one of the main benefits of dynamic charging is, it allows smaller as well as lighter batteries to be used due to the frequent charging using in the charging infrastructure embedded under roads. -
Comparing Electric and Gas Vehicles: Cost to Fill up and Drive
Comparing Electric and Gas Vehicles: Cost to Fill Up and Drive Your charging station needs to make charging an electric vehicle less expensive than refueling a gas vehicle. This worksheet will help you calculate those costs based on how much fuel (electricity or gas) a car can store and how many miles it can travel on a full battery (or tank). Key Terms • Capacity: how much fuel (electricity or gas) the car can hold • Kilowatt hours (kWh): a unit of electricity, like gallons of gas • Efficiency: a ratio that tells you how much fuel, such as gas or electricity, a car uses to travel some number of miles Example car: Standard Range Tesla Model 3 • Battery Capacity: 50 kWh • Efficiency: 26 kWh per 100 miles Step 1: How much does it cost to fill up the battery? Electric companies charge you for each kWh that you use. In 2019, the cost of electricity in North Carolina was $0.1165 per kWh. (April, 2019 - https://www.chooseenergy.com/electricity- rates-by-state/). If 1 kWh costs $0.1165, how much will 50 kWh cost? Complete the ratio box to find out: Electricity (kWh) Cost ($) Cost of 1 kWh 1 0.1165 Cost of 50 kWh 50 ___?____ Step 2: How far can you drive on a full battery (or tank)? Car companies list the fuel efficiency of their cars. The Tesla Model 3 can travel 100 miles on 26 kWh. If a full battery holds 50 kWh, how far can the car travel on a full battery? Complete the ratio box to find out. -
Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms
Energies 2014, 7, 2449-2475; doi:10.3390/en7042449 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms Monica Alonso 1, Hortensia Amaris 1,*, Jean Gardy Germain 2 and Juan Manuel Galan 2 1 Department of Electrical Engineering, University Carlos III of Madrid, Avda de la Universidad 30, Madrid 28911, Spain; E-Mail: [email protected] 2 Gas Natural Fenosa, Avda. San Luis 77, Madrid 28033, Spain; E-Mails: [email protected] (J.G.G.); [email protected] (J.M.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-916-245-994; Fax: +34-916-249-430. Received: 30 January 2014; in revised form: 10 April 2014 / Accepted: 14 April 2014 / Published: 17 April 2014 Abstract: Transportation electrification has become an important issue in recent decades and the large scale deployment of electric vehicles (EVs) has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems. In this paper, an optimisation algorithm to coordinate the charging of EVs has been developed and implemented using a Genetic Algorithm (GA), where thermal line limits, the load on transformers, voltage limits and parking availability patterns are taken into account to establish an optimal load pattern for EV charging-based reliability. -
Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Plug-In Electric Vehicle Handbook for Public Charging Station Hosts
Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Plug-In Electric Vehicle Handbook for Public Charging Station Hosts Photo from George Beard, Portland State University, NREL/PIX 18564 Clean Cities Helps Establish PEV Table of Contents Charging Stations Introduction . 3 Establishing plug-in electric vehicle (PEV) PEV Basics . 4 charging stations requires unique knowledge Charging Basics . 6 and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the Benefits and Costs of U .S . Department of Energy’s flagship alterna- Hosting a Charging Station . 9 tive-transportation deployment initiative . It is Charging Station supported by a diverse and capable team of Locations and Hosts . 12 stakeholders from private companies, utilities, government agencies, vehicle manufacturers, Ownership and Payment Models . 14 national laboratories, and other transporta- Installing and Maintaining tion-related organizations . These stakehold- Charging Stations . 15 ers, organized into nearly 100 Clean Cities Electrifying the Future . 19 coalitions nationwide, are ready to help with specific charging station challenges . Contact your local coordinator by visiting the Clean Acknowledgement Cities website at www.cleancities.energy.gov . Thanks to the Electric Vehicle Infrastructure Training Program for assisting with the production of this handbook . See www.eere.energy.gov/cleancities/evitp.html . Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government . Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights . -
Wait the Opportunities Around Electric Vehicle Charge Points in the UK Contents
Hurry up and… wait The opportunities around electric vehicle charge points in the UK Contents 1. Executive summary 01 2. Introduction 02 3. How many chargers will be needed? 04 4. Charging segments 05 5. DC or not DC? That is the question 07 6. The infrastructure value chain 09 7. Models seen elsewhere 12 8. Next steps 14 9. Appendix: Investment calculations 15 10. Key contacts 17 Hurry up and… wait | The opportunities around electric vehicle charge points in the UK 1. Executive summary How quickly electric vehicles (EVs) will become The EV charging infrastructure market is young and fragmented, a major form of transport is a source of much and companies from a variety of different sectors are entering it. Those looking to get into this market need to act fast, but then be debate. A shortage of public charge points will prepared to wait: it is expected to become profitable only when deter adoption. EVs make up at least five per cent of vehicles in circulation, or about two million units. The key question for participants is where to play We modelled three scenarios for what the UK market will need to and what activity areas to be part of. 2030: a low case if uptake is slower than expected (two million EV units); the central case; and a high uptake case if the EV adoption We expect to see three business models prevail in the UK in the coming rate exceeds expectations (10.5 million units). In our central years. A public model, where government bodies offer funding that estimates, we assume seven million EVs in circulation, requiring private companies use to recover at least a portion of the investment around 28,000 public charging points, and capital expenditure of costs. -
Public Transport Bus Can Be Charged Wirelessly On-The-Go
Innovation > Telecommunications > Public transport bus can be charged wirelessly on-the-go PUBLIC TRANSPORT BUS CAN BE CHARGED WIRELESSLY ON-THE- GO TELECOMMUNICATIONS Researchers at the Korea Advanced Institute of Science and Technology have developed the OLEV, an electric bus designed for mass transit that can be charged wirelessly, while stationary or moving. Although vehicles such as the lightweight Navia shuttle have shown the feasibility of electric vehicles as public transport, researchers at the Korea Advanced Institute of Science and Technology (KAIST) have now developed the OLEV, an electric bus designed for mass transit that can be charged wirelessly, while stationary or moving. Standing for Online Electric Vehicle, the idea for the OLEV was inspired by previous transportation devices such as commercial trams and shuttle buses created at KAIST. Where the trams use overhead power cables to run, a new route located in the city of Gumi in South Korea includes magnetic field resonance cables buried under the road surface. These cables are able to charge the batteries of the OLEV as it runs along the route through inductive charging. This means that the vehicle can travel along the 24-kilometer route without having to stop to be recharged, which in turn allows the developers to use a battery that is one-third of the size of those included in typical electric cars, reducing the weight of the vehicle. The transport option was launched to the public in August and the team behind the OLEV want to introduce ten more buses by 2015. Could this idea provide the basis for more viable electricity- based public and private transport in the future? 12th September 2013 Website: www.kaist.edu Contact: www.twitter.com/KAISTofficial . -
Electric Vehicle Charging Infrastructure Analysis
Electric Vehicle Charging Infrastructure Analysis by Sabrina Liu Jack Mercer Zeynep Seker Electric Vehicle Charging Infrastructure Analysis An Interactive Qualifying Project submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfilment of the requirements for the degree of Bachelor of Science by Sabrina Liu Jack Mercer Zeynep Seker Date: 03/09/2020 Report Submitted to: Craig Putnam Brad Miller Paul Mathisen Worcester Polytechnic Institute This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. ii ABSTRACT Widespread and convenient charging infrastructure is an important catalyst for electric vehicle (EV) adoption, and colleges and universities are particularly well-suited to encourage EV ownership by offering workplace charging. However, the absence of standard procedures and the collective lack of experience, combined with future uncertainty in the EV market, makes it difficult for these institutions to ensure campus charging infrastructure keeps pace with demand. This project uses EV ownership projections, interviews, surveys and utilization data analysis to develop an evaluation model. This model is then applied to Worcester Polytechnic Institute (WPI) to produce short-term recommendations. iii ACKNOWLEDGEMENTS We would like to thank Liz Tomaszewski, WPI Associate Director of Sustainability, for her contributions as de facto project advisor. She helped connect us to other Worcester institutions, provided information on WPI’s charging station usage, capabilities, and policies, and shared WPI’s future EV infrastructure plans.