Dual-Stack Architecture with Ipv6

Total Page:16

File Type:pdf, Size:1020Kb

Dual-Stack Architecture with Ipv6 Concepts & Examples ScreenOS Reference Guide Dual-Stack Architecture with IPv6 Release 6.3.0, Rev. 02 Published: 2012-12-10 Revision 02 Copyright © 2012, Juniper Networks, Inc. Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, California 94089 USA 408-745-2000 www.juniper.net Juniper Networks, Junos, Steel-Belted Radius, NetScreen, and ScreenOS are registered trademarks of Juniper Networks, Inc. in the United States and other countries. JunosE is a trademark of Juniper Networks, Inc. All other trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owners. Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice. Products made or sold by Juniper Networks or components thereof might be covered by one or more of the following patents that are owned by or licensed to Juniper Networks: U.S. Patent Nos. 5,473,599, 5,905,725, 5,909,440, 6,192,051, 6,333,650, 6,359,479, 6,406,312, 6,429,706, 6,459,579, 6,493,347, 6,538,518, 6,538,899, 6,552,918, 6,567,902, 6,578,186, and 6,590,785. Copyright © 2009, Juniper Networks, Inc. All rights reserved. Revision History December 2012—Revision 02 Content subject to change. The information in this document is current as of the date listed in the revision history. SOFTWARE LICENSE The terms and conditions for using this software are described in the software license contained in the acknowledgment to your purchase order or, to the extent applicable, to any reseller agreement or end-user purchase agreement executed between you and Juniper Networks. By using this software, you indicate that you understand and agree to be bound by those terms and conditions. Generally speaking, the software license restricts the manner in which you are permitted to use the software and may contain prohibitions against certain uses. The software license may state conditions under which the license is automatically terminated. You should consult the license for further details. For complete product documentation, please see the Juniper Networks Website at www.juniper.net/techpubs. END USER LICENSE AGREEMENT The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at http://www.juniper.net/support/eula.html. By downloading, installing or using such software, you agree to the terms and conditions of that EULA. ii Copyright © 2012, Juniper Networks, Inc. Abbreviated Table of Contents About This Guide . xvii Part 1 Dual-Stack Architecture with IPv6 Chapter 1 Internet Protocol Version 6 Introduction . 3 Chapter 2 IPv6 Configuration . 11 Chapter 3 Connection and Network Services . 35 Chapter 4 Static and Dynamic Routing . 53 Chapter 5 Address Translation . 81 Chapter 6 IPv6 in an IPv4 Environment . 95 Chapter 7 IPsec Tunneling . 107 Chapter 8 IPv6 XAuth User Authentication . 127 Part 2 Appendix Appendix A Switching . 163 Part 3 Index Index . 167 Copyright © 2012, Juniper Networks, Inc. iii Dual-Stack Architecture with IPv6 iv Copyright © 2012, Juniper Networks, Inc. Table of Contents About This Guide . xvii Document Conventions . xviii Document Feedback . xx Requesting Technical Support . xx Part 1 Dual-Stack Architecture with IPv6 Chapter 1 Internet Protocol Version 6 Introduction . 3 Overview . 3 IPv6 Addressing . 4 Notation . 4 Prefixes . 4 Address Types . 4 Unicast Addresses . 5 Anycast Addresses . 5 Multicast Addresses . 5 IPv6 Headers . 6 Basic Header . 6 Extension Headers . 7 IPv6 Packet Handling . 8 IPv6 Router and Host Modes . 9 IPv6 Tunneling Guidelines . 9 Chapter 2 IPv6 Configuration . 11 Overview . 11 Address Autoconfiguration . 11 Extended Unique Identifier . 12 Router Advertisement Messages . 12 Router Solicitation Messages . 12 Prefix Lists . 12 Neighbor Discovery . 13 Neighbor Cache Table . 13 Neighbor Unreachability Detection . 14 Neighbor Entry Categories . 14 Neighbor Reachability States . 14 How Reachability State Transitions Occur . 15 Enabling an IPv6 Environment . 18 Enabling IPv6 at the Device Level . 18 Disabling IPv6 at the Device Level . 19 Copyright © 2012, Juniper Networks, Inc. v Dual-Stack Architecture with IPv6 Configuring an IPv6 Host . 19 Binding the IPv6 Interface to a Zone . 19 WebUI . 19 CLI . 19 Enabling IPv6 Host Mode . 20 WebUI . 20 CLI . 20 Setting an Interface Identifier . 20 WebUI . 20 CLI . 20 Configuring Address Autoconfiguration . 20 WebUI . 20 CLI . 20 Configuring Neighbor Discovery . 21 WebUI . 21 CLI . 21 Configuring an IPv6 Router . 21 Binding the IPv6 Interface to a Zone . 21 WebUI . ..
Recommended publications
  • Ipv6 Multicast Layer 3 Features
    Chapter 13 IPv6 Multicast Support Prerequisites for IPv6 Multicast 13 IPv6 Multicast Support • Prerequisites for IPv6 Multicast, page 13-1 • Restrictions for IPv6 Multicast, page 13-1 • Information About IPv6 Multicast Support, page 13-2 • How to Configure IPv6 Multicast Support, page 13-4 • Verifying the IPv6 Multicast Layer 3 Configuration, page 13-4 Tip For additional information about Cisco Catalyst 6500 Series Switches (including configuration examples and troubleshooting information), see the documents listed on this page: http://www.cisco.com/en/US/products/hw/switches/ps708/tsd_products_support_series_home.html Participate in the Technical Documentation Ideas forum Prerequisites for IPv6 Multicast None. Restrictions for IPv6 Multicast • The PFC and DFCs provide hardware support for the following: – Completely switched IPv6 multicast flows – IPv6 PIM-Sparse Mode (PIM-SM) (S,G) and (*,G) forwarding – Multicast RPF check for IPv6 PIM-SM (S,G) traffic using the NetFlow table – Rate limiting of IPv6 PIM-SM (S,G) traffic that fails the multicast RPF check – Static IPv6 multicast routes – SSM Mapping for IPv6 (PIM-SSM) – IPv6 multicast forwarding information base (MFIB) using the NetFlow table – IPv6 distributed MFIB (dMFIB) using the NetFlow table – Link-local and link-global IPv6 multicast scopes – Egress multicast replication with the ipv6 mfib hardware-switching command – Ingress interface statistics for multicast routes (egress interface statistics not available) – RPR and RPR+ redundancy mode (see Chapter 9, “Route Processor Redundancy
    [Show full text]
  • Guidelines for the Secure Deployment of Ipv6
    Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks NIST Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Dr. Patrick D. Gallagher, Director GUIDELINES FOR THE SECURE DEPLOYMENT OF IPV6 Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-119 Natl. Inst. Stand. Technol. Spec. Publ. 800-119, 188 pages (Dec. 2010) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately.
    [Show full text]
  • Internet Address Space: Economic Considerations in the Management of Ipv4”, OECD Digital Economy Papers, No
    Please cite this paper as: OECD (2008-06-18), “Internet Address Space: Economic Considerations in the Management of IPv4”, OECD Digital Economy Papers, No. 145, OECD Publishing, Paris. http://dx.doi.org/10.1787/230461618475 OECD Digital Economy Papers No. 145 Internet Address Space ECONOMIC CONSIDERATIONS IN THE MANAGEMENT OF IPV4 OECD DSTI/ICCP(2007)20/FINAL FOREWORD The report provides an analysis of economic considerations associated with the transition from IPv4 to IPv6. It provides background analysis supporting the forthcoming ICCP-organised Ministerial-level meeting on ―The Future of the Internet Economy‖, to take place in Seoul, Korea on 17-18 June 2008. This report was prepared by Ms. Karine Perset of the OECD‘s Directorate for Science Technology and Industry. It was declassified by the ICCP Committee at its 54th Session on 5-7 March 2008. It is published under the responsibility of the Secretary-General of the OECD. This paper has greatly benefited from the expert input of Geoff Huston from APNIC, David Conrad from the IANA, Patrick Grossetête from CISCO Systems, Bill Woodcock from Packet Clearing House, Marcelo Bagnulo Braun from the University of Madrid, Alain Durand from Comcast, and Vincent Bataille from Mulot Déclic, although interpretations, unless otherwise stated, are those of the author. 2 DSTI/ICCP(2007)20/FINAL TABLE OF CONTENTS FOREWORD ................................................................................................................................................... 2 MAIN POINTS ..............................................................................................................................................
    [Show full text]
  • Ipv6-Only Deployment in Broadband and Cellular Networks Ipv4aas (As-A-Service)
    IPv6-only Deployment in Broadband and Cellular Networks IPv4aaS (as-a-Service) LACNIC 32 / LACNOG 2019 October, 2019 Panamá @JordiPalet ([email protected]) - 1 Transition / Co-Existence Techniques • IPv6 has been designed for easing the transition and coexistence with IPv4 • Several strategies have been designed and implemented for coexisting with IPv4 hosts, grouped in three categories: – Dual stack: Simultaneous support for both IPv4 and IPv6 stacks – Tunnels: IPv6 packets encapsulated in IPv4 ones • This has been the commonest choice • Today expect IPv4 packets in IPv6 ones! – Translation: Communication of IPv4-only and IPv6- only. Initially discouraged and only “last resort” (imperfect). Today no other choice! • Expect to use them in combination! - 2 Dual-Stack Approach • When adding IPv6 to a system, do not delete IPv4 – This multi-protocol approach is familiar and well-understood (e.g., for AppleTalk, IPX, etc.) – In the majority of the cases, IPv6 is be bundled with all the OS release, not an extra-cost add-on • Applications (or libraries) choose IP version to use – when initiating, based on DNS response: • if (dest has AAAA record) use IPv6, else use IPv4 – when responding, based on version of initiating packet • This allows indefinite co-existence of IPv4 and IPv6, and gradual app-by-app upgrades to IPv6 usage • A6 record is experimental - 3 Dual-Stack Approach IPv6 IPv6 IPv4 IPv4 Application Application Application Application TCP/UDP TCP/UDP TCP/UDP IPv6 IPv6 IPv4 IPv4 IPv6-only stack Dual-stack (IPv4 & IPv6) IPv4-only
    [Show full text]
  • Netsh Interface Ipv6
    IPv6 Startup ARIN XVI Los Angeles, US October, 2005 Miguel Angel Díaz ([email protected]) César Olvera ([email protected]) Jordi Palet ([email protected]) Alvaro Vives ([email protected]) - 1 Agenda 1. IPv6 setup in several Platforms (Windows XP/2003, Linux, BSD) 2. Basic Configuration, Stateless/Stateful Autoconfiguration, Privacy, Static Routes 3. Transition Mechanisms Configuration 4. Examples of Applications - 2 Part 1 IPv6 Setup in several Platforms (Windows XP/2003, Linux, BSD) - 3 IPv6 Setup: XP/2003 (1) • In a DOS Prompt: – ipv6 install to install IPv6 as Network Protocol • ipconfig or ipv6 if to check if IPv6 was installed - 4 IPv6 Setup: XP/2003 (2) • Another option to check if IPv6 was installed – Network Connections > Local Area Connection > Properties • Also it is possible to install/uninstall IPv6 from here - 5 IPv6 Setup: XP/2003 (3) In a Command Prompt: – ipv6 uninstall to delete IPv6 as Network Protocol • ipconfig or ipv6 if to check if IPv6 was uninstalled - 6 IPv6 Setup: Linux (1) • To check if IPv6 is installed: #test -f /proc/net/if_inet6 && echo “Current Kernel supports IPv6“ • Module Installation: #modprobe ipv6 • Module check: #lsmod |grep -w 'ipv6' && echo “IPv6 module loaded" • Automatic Load/Unload of Module (/etc/modules.conf o /etc/conf.modules ): alias net-pf-10 ipv6 #enables load on demand alias net-pf-10 off #disables load on demand - 7 IPv6 Setup: Linux (2) # ifconfig to check eth0 Link encap:Ethernet HWaddr 00:E0:81:05:46:57 inet addr:10.0.0.3 Bcast:10.0.0.255
    [Show full text]
  • Ipv6 TRANSITION TECHNOLOGIES
    IPv6 TRANSITION TECHNOLOGIES Alastair JOHNSON [email protected] April 2011 AGENDA 1. Introduction 2. Native IPv6 dual-stack 3. DS-Lite 4. NAT64 5. 6rd / 4rd 6. 464XLAT 7. IVI 8. Summary 3 COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. INTRODUCTION This presentation covers… • A look at some of the most common (or popular) IPv6 transition technologies and how they can be deployed • What technology is appropriate where, and what support looks like • A brief comparison of the technologies • Mostly focused on ISPs offering residential or consumer Internet services, however many technologies are applicable in other service environments • Mostly focusing on the access, aggregation, and edge components of the network – assumes core and other infrastructure is IPv6 ready 4 COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. INTRODUCTION LARGE SCALE NAT • Large Scale NAT (LSNAT), Carrier Grade NAT (CGNAT), or any other type of service provider IPv4-to-IPv4 based NAT platforms and technologies are not a transition mechanism to IPv6 • These technologies are IPv4 continuity solutions • LSNAT is one of several mechanisms that an operator may use to manage IPv4 exhaustion in their network while deploying IPv6 services • This presentation will not discuss LSNAT beyond this slide 5 COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. INTRODUCTION WHAT ARE TRANSITION TECHNOLOGIES • Transition technologies are mechanisms that allow operators to deploy and migrate their subscriber-base to IPv6 • These transition technologies have
    [Show full text]
  • Ipv6 User's Guide
    Embedding it better... µTasker Document IPv6 uTaskerIPv6.doc/1.01 Copyright © 2012 M.J.Butcher Consulting www.uTasker.com µTasker – Internet Protocol V6 Table of Contents 1. Introduction .....................................................................................................................3 2. Can your PC connect to the IPv6 Internet?.......................................................................4 3. Does your Internet Connection support IPv6? ..................................................................5 4. IPv6 Tunnelling ...............................................................................................................6 5. How 6in4 operates ...........................................................................................................7 6. Tunnel Broker Service and Configuring a Windows Vista PC ....................................... 10 7. Testing Tunnelled IPv6 Connectivity ............................................................................. 12 8. Introducing the 6in4 Relay Agent .................................................................................. 14 9. Installing and Configuring the Relay Agent ................................................................... 17 10. IPv6 Address Space ................................................................................................... 18 11. IPv6 Addresses .......................................................................................................... 19 12. Operating a TCP Server over IPv6 ............................................................................
    [Show full text]
  • D3.2 Analysis of Ipv4-Ipv6
    Ref. Ares(2021)1534648 - 28/02/2021 Alternative Bearers for Rail (AB4Rail) Ref. Ares 2020)3856873 - 22/07/2020 Alternative Bearers for Rail (AB4Rail) D3.2 Analysis of IPv4-IPv6 Document Manager Alessandro Vizzarri (RDL) Programme S2R-OC-IP2-02-2020 Project Name Alternative Bearers for Rail Project acronym: AB4RAIL Grant agreement no: 101014517 Project Coordinator RADIOLABS (RDL) WP leader RDL Deliverable ID: AB4Rail-WP3-D3.2-RDL-PU-v0.0-Analysis of IPv4-IPv6 Title: Analysis of IPv4-IPv6 Work Package: WP3 WP Duration (in months): 18 Actual submission date: 28 Feb. 2021 Dissemination level: PU Approval Status Romeo Giuliano (USGM), Prepared by: Alessandro Vizzarri (RDL), Franco Mazzenga (RDL) Approved by (WP Leader): Alessandro Vizzarri (RDL) Approved by Technical and Project Manager: Alessandro Vizzarri (RDL) Approved by (Project Coordinator): Franco Mazzenga (RDL) Alternative Bearers for Rail (AB4Rail) Ref. Ares 2020)3856873 - 22/07/2020 CONTRIBUTING PARTNERS Name Company/Organization Role/Title Romeo Giuliano Università degli Studi Document Manager/main drafter Guglielmo Marconi (USGM) Franco Mazzenga Radiolabs (RDL) Contributor Alessandro Vizzarri Radiolabs (RDL) Contributor REVISION TABLE Revision Date Modified pages Modified Sections Comments 0.0 28 Feb. 2021 DISTRIBUTION LIST Name Company/Organization Role/Title Franco Mazzenga RDL Project Coordinator Gorazd Marinic Shif2Rail Shif2Rail Programme Officer Disclaimers This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101014517. The information and views set out in this document are those of the author(s) and do not necessarily reflect the official opinion of Shift2Rail Joint Undertaking. The JU does not guarantee the accuracy of the data included in this article.
    [Show full text]
  • ETSI White Paper on Ipv6 Best Practices, Benefits, Transition
    ETSI White Paper No. 35 IPv6 Best Practices, Benefits, Transition Challenges and the Way Forward First edition – August 2020 ISBN No. 979-10-92620-31-1 ETSI 06921 Sophia Antipolis CEDEX, France Tel +33 4 92 94 42 00 [email protected] www.etsi.org Contributing organizations and authors CAICT Zhiruo Liu China Telecom Chongfeng Xie, Cong Li Cisco Patrick Wetterwald, Pascal Thubert, Francois Clad Hewlett-Packard Enterprise Yanick Pouffary Huawei Giuseppe Fioccola, Xipeng Xiao, Georgios Karagiannis, Shucheng(Will) Liu KPN Eduard Metz Luxembourg University Latif Ladid PT Telecom Jose Cananao, Jose Palma Post Luxembourg Sébastien Lourdez Telefonica Luis M. Contreras IPv6 Best Practices, Benefits, Transition Challenges and the Way Forward 2 Contents Contributing organizations and authors 2 Contents 3 Executive Summary 6 1 Background 8 1.1 Why should IPv6 become a priority again? 8 1.2 Goals of this White Paper 9 2 IPv6 progress in the last 5 years 10 2.1 Devices supporting IPv6 10 2.2 Content (web sites, cloud services) supporting IPv6 11 2.3 Networks supporting IPv6 12 2.4 Number of IPv6 users 12 2.5 Amount of IPv6 traffic 13 2.6 IPv6 standardization progress 14 3 IPv6 service design for Mobile, Fixed broadband and enterprises 14 3.1 IPv6 transition solutions from operator perspective 15 3.1.1 For IPv6 introduction 16 3.1.2 For IPv6-only service delivery 17 3.2 IPv6 prefix and address assignment at the CPEs 22 3.2.1 For MBB UEs 23 3.2.2 For FBB RGs 23 3.2.3 For Enterprise CPEs 23 3.3 IPv6 Packet Transport 24 3.4 IPv6 deployment inside enterprise
    [Show full text]
  • Global Mobile Ipv6 Addressing Using Transition Mechanisms
    Global Mobile IPv6 Addressing using Transition Mechanisms Edgard Jamhour , Simone Storoz and Carlos Maziero Graduate Program in Applied Computer Science, Pontifical Catholic University of Paraná, Brazil. [email protected] [email protected] [email protected] Abstract and cellular networks) [2]. However, in order to provide connectivity to the global Internet, one must consider the The adoption of the Internet Protocol in mobile and shortage of IP version 4 (IPv4) addresses. The use of private wireless technologies has considerably increased the IPv4 addresses [4] was considered a temporary solution to number of hosts that can potentially access the global the IPv4 address shortage problem until a new addressing Internet. IPv6 is considered the long term solution for the scheme, IPv6, would be adopted [5]. Private addresses are IPv4 address shortage problem, but the transition from not considered a final solution because they are not IPv4 to IPv6 is supposed to be very gradual. Therefore, uniquely addressable. That is, a host with a private IPv4 there will be a long time during which both protocol address can start a session with a host with a public address, versions will coexist. To facilitate transition, the IETF using an address translation mechanism such as Network has set up a work group called NGTRANS (Next Address Translation (NAT), but not the contrary [6]. Generation TRANSition) which specifies mechanisms for supporting interoperability between IPv4 and IPv6. This IPv6 solves this problem by offering a virtually unlimited paper describes a new approach for implementing mobile address space. However, there is expected to be a long networks with global Internet connectivity using transition period during which it will be necessary for IPv4 transition mechanisms.
    [Show full text]
  • Ts 103 443-5 V1.1.1 (2016-08)
    ETSI TS 103 443-5 V1.1.1 (2016-08) TECHNICAL SPECIFICATION Integrated broadband cable telecommunication networks (CABLE); IPv6 Transition Technology Engineering and Operational Aspects; Part 5: 464XLAT 2 ETSI TS 103 443-5 V1.1.1 (2016-08) Reference DTS/CABLE-00018-5 Keywords cable, HFC, IPv6 ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • NIST SP 800-119, Guidelines for the Secure Deployment of Ipv6
    Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks NIST Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Dr. Patrick D. Gallagher, Director GUIDELINES FOR THE SECURE DEPLOYMENT OF IPV6 Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-119 Natl. Inst. Stand. Technol. Spec. Publ. 800-119, 188 pages (Dec. 2010) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately.
    [Show full text]