Twas Anniversary 3 Y E a R 2 0 0 8 Vol.20 No.3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chun Li Bai Prof. BAI Chunli, a Chemist and An
Chun Li Bai Chinese Academy of Sciences President Prof. BAI Chunli, a chemist and an expert in nanoscience, is President of the Chinese Academy of Sciences (CAS), and Chairman of the Presidium of the Academic Divisions of CAS. He is also President of The World Academy of Sciences for the advancement of science in developing countries (TWAS), the Honorary President of the University of Science and Technology of China (USTC), and the Honorary President of the University of Chinese Academy of Sciences (UCAS). Prof. BAI graduated from the Department of Chemistry, Peking University in 1978 and received his M.Sc. and Ph.D. degrees from CAS Institute of Chemistry in 1981 and 1985, respectively. From 1985 to 1987, he worked at California Institute of Technology in US as a visiting scholar. After coming back to China in 1987, he continued his research at CAS Institute of Chemistry. From 1991 to 1992, he worked as a visiting professor at Tohoku University in Japan. In 1996, he was appointed as Vice President of CAS ; in 2004, he was appointed as Executive Vice President of CAS (full ministerial level). Prof. BAI’s research areas include organic molecular crystal structure, EXAFS, molecular nanostructure, and scanning tunneling microscopy. He has been elected member or foreign member of world-known academies of sciences or engineering in approximately 20 countries and territories, including CAS, TWAS, National Academy of Sciences of US, the American Academy of Arts and Sciences, the Royal Society of UK, the European Academy of Sciences, and the Russian Academy of Sciences. He also serves as the Honorary President of the Chinese Society of Micro-Nano Technology, the Chief Scientist for the National Steering Committee for Nanoscience and Technology, Vice Chairman of Academic Degrees Committee of the State Council, Vice Chairman of the National Committee for Science & Technology Awards, member of the Central Leading Group for Education, and member of the National Leading Group for Science and Technology. -
Global Agenda Council Reports 2010 Gl Global Agenda Council O
Global Agenda Council Reports 2010 Global Agenda Council 2010 Reports Global Agenda Council Reports 2010 .weforum.org) ofit; it is tied to no political, no to tied is it ofit; -pr national organization committed to improving the improving committed to organization national The World Economic Forum is an independent an is Forum Economic World The inter partnerships in leaders engaging by world the of state and industry agendas. to shape global, regional in based and 1971, in a foundation as Incorporated is Forum Economic World the Switzerland, Geneva, not-for and impartial partisan or national interests. (www partisan or national interests. Global_Agenda_SRO_Layout 1 13.01.10 10:29 Page3 Global Agenda Council Reports 2010 Summaries of Global Agenda Council Discussions from the Summit on the Global Agenda 2009 Global_Agenda_SRO_Layout 1 13.01.10 10:29 Page4 This publication is also available in electronic form on the World Economic Forum’s website at the following address: The Global Agenda 2010 Web version: www.weforum.org/globalagenda2010 (HTML) The book is also available as a PDF: www.weforum.org/pdf/globalagenda2010.pdf Other specific information on the Network of Global Agenda Councils can be found at the following links: www.weforum.org/globalagenda2010 www.weforum.org/globalagenda2009/interviews www.weforum.org/globalagenda2009/reports www.weforum.org/globalagenda2009/webcasts The opinions expressed and data communicated in this publication are those of Global Agenda Council Members and do not necessarily reflect the views of the World Economic Forum. World Economic Forum 91-93 route de la Capite CH-1223 Cologny/Geneva Switzerland Tel.: +41 (0)22 869 1212 Fax: +41 (0)22 786 2744 E-mail: [email protected] www.weforum.org © 2010 World Economic Forum All rights reserved. -
TWAS an Rep IMP
TWAS gratefully acknowledges the financial support for its 2008 TWAS, the academy of sciences for the developing world, is an activities provided mainly by the following: autonomous international organization that promotes scientific capacity • the Ministry of Foreign Affairs, Italy and excellence in the South. Founded in 1983 by a group of eminent • the Swedish International Development Agency (Sida) scientists under the leadership of the late Nobel laureate Abdus Salam • illycaffè, S.p.A., Trieste, Italy of Pakistan, TWAS was officially launched in Trieste, Italy, in 1985, • the Mexican Academy of Sciences by the secretary-general of the United Nations. • Microsoft Research Ltd., UK • the European Union, Seventh Framework Programme (FP7) TWAS has 909 members from some 90 countries, more than 70 of which • the Kuwait Foundation for the Advancement of Sciences (KFAS) are developing countries. A Council of 13 members is responsible for • the Wellcome Trust, UK supervising all Academy affairs. It is assisted in the administration and coordination of programmes by a secretariat, headed by the executive director. The secretariat is located on the premises of the Abdus Salam International Centre for Theoretical Physics (ICTP) in Trieste, Italy. The administration and financial operation of TWAS is undertaken by T W the United Nations Educational, Scientific and Cultural Organization (UNESCO) in accordance with an agreement signed by the two A S organizations. A major portion of TWAS funding is provided by the annual report Ministry of Foreign -
Prof. BAI Chunli, a Well-Known Chemist and Leading Scientist in Nanoscience, Is the President of the Chinese Academy of Sciences (CAS)
Prof. BAI Chunli, a well-known chemist and leading scientist in nanoscience, is the President of the Chinese Academy of Sciences (CAS). He is also the President of the Presidium of the Academic Divisions of CAS, and the President of the World Academy of Sciences for the Advancement of Science in Developing Countries (TWAS). Prof. BAI graduated from the Department of Chemistry, Peking University in 1978 and received his M.Sc. and Ph.D. degrees from the CAS Institute of Chemistry in 1981 and 1985 respectively. From 1985 to 1987, he worked with the US California Institute of Technology in the field of physical chemistry as a post-doctoral associate and visiting scholar. After back to China in 1987, he continued his research at the CAS Institute of Chemistry. From 1991 to 1992, he worked as a visiting professor at Tohoku University in Japan. His research areas include the structure and properties of polymer catalysts, X-ray crystallography of organic compounds, molecular mechanics and EXAFS research on electro-conducting polymers. In the mid-1980s, he shifted his research to the fields of scanning tunneling microscopy and molecular nanotechnology. Prof. BAI has a long list of scientific publications and has won more than twenty prestigious awards and prizes for his academic achievements, including UNESCO Medal of “Contributions to Development of Nanoscience and Nanotechnology”. He has been elected member or foreign member of world-known academies of science or engineering, including the CAS, TWAS, US National Academy of Sciences (NAS), the Royal Society, the Russian Academy of Sciences (RAS), the Australian Academy of Science (AAS), the Indian Academy of Sciences (IAS), the German Academy of Science and Engineering (acatech), the Royal Danish Academy of Sciences and Letters, Honorary Fellow of the Royal Society of Chemistry, Honorary Member of the Chemical Society of Japan (CSJ), and Honorary Doctor or professor of several foreign universities. -
Professor BAI Chunli Citation Written and Delivered by Professor LIU Chain-Tsuan
Honorary Doctor of Science Professor BAI Chunli Citation written and delivered by Professor LIU Chain-tsuan Chancellor: It is my great honour to present to you Professor Bai Chunli, President of the Chinese Academy of Sciences (CAS), who is not only one of China’s most eminent scientists and an outstanding nanotechnological pioneer but a highly accomplished science and technology leader. Born in 1953 in the city of Dandong, Liaoning Province, Professor Bai received his bachelor’s degree from Peking University in 1978. He continued his studies at the Chinese Academy of Science’s Institute of Chemistry, where he received his MSc and PhD degrees in 1981 and 1985 respectively. From 1985 to 1987, he undertook postdoctoral research at the famous California Institute of Technology in the United States, after which he returned to China to join the Academy. From then until now he has been conducting research and providing leadership there, with the exception of 1991-1992 when he was a visiting professor at Tohoku University in Japan. He was promoted to the CAS Vice-Presidency in 1996, was elected to membership of the Academy in 1997, and has been President of its Graduate School since 2001. He was promoted to CAS Executive Vice-President in 2004, then CAS President and Chairman of the Presidium of the Academic Divisions of the CAS in 2011. With a big honour, he was selected as the new President of the Academy of Sciences for the Developing World in September this year. At this point please allow me to offer a brief review of the development of scientific education in contemporary China, since this forms the background to Professor Bai’s exceptional career. -
An Overview of the State of Chinese Nanoscience and Technology
SMALL SCIENCE IN BIG CHINA An overview of the state of Chinese nanoscience and technology. Conducted in collaboration between Springer Nature, the National Center for Nanoscience and Technology, China, and the National Science Library of the Chinese Academy of Sciences. Ed Gerstner The National Center for Nanoscience and Springer Nature, China Minghua Liu Technology, China National Center for The National Center for Nanoscience and Technology, China (NCNST) was established in December 2003 by the Nanoscience and Chinese Academy of Science (CAS) and the Ministry of Education as an institution dedicated to fundamental and Technology, China applied research in the field of nanoscience and technology, especially those with important potential applications. Xiangyang Huang NCNST is operated under the supervision of the Governing Board and aims to become a world-class research National Science Library, centre, as well as public technological platform and young talents training centre in the field, and to act as an Chinese Academy of important bridge for international academic exchange and collaboration. Sciences The NCNST currently has three CAS Key Laboratories: the CAS Key Laboratory for Biological Effects of Yingying Zhou Nanomaterials & Nanosafety, the CAS Key Laboratory for Standardization & Measurement for Nanotechnology, Nature Research, Springer and the CAS Key Laboratory for Nanosystem and Hierarchical Fabrication. Besides, there is a division of Nature, China nanotechnology development, which is responsible for managing the opening and sharing of up-to-date instruments and equipment on the platform. The NCNST has also co-founded 19 collaborative laboratories with Zhiyong Tang Tsinghua University, Peking University, and CAS. National Center for The NCNST has doctoral and postdoctoral education programs in condensed matter physics, physical Nanoscience and chemistry, materials science, and nanoscience and technology. -
A Glimpse of Materials Research in China a Report from an Interagency Study Team on Materials Visiting China from June 19, 1995 to June 30, 1995
NATL INST. OF STAND ^JECH Rrf^ I PUBLICATIONS mill nil nil I II A111Q4 7T2m3 United States Department of Commerce Technology Administration National Institute of Standards and Technology NIST Special Publication 893 A Glimpse of Materials Research in China A Report From an Interagency Study Team on Materials Visiting China From June 19, 1995 to June 30, 1995 Stephen M. Hsu and Lyle H. Schwartz^ Editors QC 100 ,U57 NO. 893 1995 Jhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their principal activities are listed below. -
Notices of the American Mathematical Society
Society c :s ~ CALENDAR OF AMS MEETINGS THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meet ings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meeting. Abstracts should be submitted on special forms which are available in many depart ments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for abstracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meet· ing announcement and the Jist of organizers of special sessions. MEETING ABSTRACT NUMBER DATE PLACE DEADLINE ISSUE 779 August 18-22, 1980 Ann Arbor, -
Research Report China's New Scientific Elite: Distinguished
Research Report China’s New Scientific Elite: Distinguished Young Scientists, the Research Environment and Hopes for Chinese Science* Cong Cao and Richard P. Suttmeier The health of the scientific research enterprise in any country is critically dependent upon young scientists. In most fields, the period of greatest creativity and productivity comes early in a career. Young scientists hold together the generational structure of a country’s scientific community by linking the established scientific elite with a rising generation of graduate students. They also play a critical role in maintaining the community’s normative structure. The generational structure of the scientific community in China is characterized by a major discontinuity. The years of the Cultural Revol- ution, from 1966 to 1976, seriously disrupted university education and postgraduate training. Thus, just as the new Deng Xiaoping-led regime began stressing the importance of scientific and technological develop- ment for China’s modernization, China entered the post-Mao era in the late 1970s with a missing cohort of rising young scientists. Recognizing the generational gap in the technical community, China’s leaders set about re-establishing and reforming the system of higher education, and began to send large numbers of students and scholars abroad for advanced training and graduate education. Although only about one-third of the 380,000 who went abroad over the past 20 years have gone back to China,1 those who have returned have come to play important roles in implementing the ambitious policies for scientific research and high technology development which have unfolded in the post-Mao period. -
On Floris Takens and Our Joint Mathematical Work
Available online at www.sciencedirect.com Indagationes Mathematicae 22 (2011) 144–146 www.elsevier.com/locate/indag On Floris Takens and our joint mathematical work Jacob Palis∗ Instituto Matematica´ Pura e Aplicada (IMPA), Estrada Dona Castorina, 110 Jardim Botanico, 22460-320 Rio de Janeiro, RJ, Brazil A Remarkable Personality Floris was one of the finest mathematicians of his generation: very creative and elegant inhis writings and expositions. His presence in mathematical meetings and, in general, mathematical circles, was always to be much noticeable due to his intellectual brilliance and assertive personality. At the same time, he was a sensitive human being and a wonderful friend for life. He certainly influenced many mathematicians worldwide, especially in Europe and Latin America, and, in this last case, Brazil. His frequent visits to IMPA, The National Institute for Pure and Applied Mathematics, certainly represented an invaluable contribution to create and to consolidate at the institute a magical mathematical research ambiance, particularly for young talents. Several other Brazilian centers shared the privilege of his presence. In recognition, the Brazilian Academy of Sciences has elected him as a Foreign Member in 1981, when he was just forty years old. He was also a Member of the Royal Dutch Academy of Arts and Sciences. A Glimpse on Our Joint Work It is no surprise that I first heard about Floris and actually met him at the IHES — Institut des Hautes Etudes´ Scientifique, the scientific home of Rene´ Thom and David Ruelle. I was invited to visit IHES by Thom, a good friend of Mauricio Peixoto and IMPA, but I was introduced to Floris by Ruelle, that later would become another special friend of IMPA. -
Currículo Resumido
CURRICULUM VITAE MARIA JOSÉ PACIFICO FULL PROFESSOR, FEDERAL UNIVERSITY OF RIO DE JANEIRO, 1. Birth and Citizenship April, 21, 1952 in Guariba, São Paulo. Brazilian and Italian. 2. Education [1976 - 1980] PhD in Mathematics, Instituto Nacional de Matemática Pura e Aplicada, IMPA, Brasil. Advisor: Welington Celso de Melo. [1974 - 1976] Master Degree Instituto Nacional de Matemática Pura e Aplicada, IMPA, Brasil. Advisor: Manfredo Perdigão do Carmo. [1970 - 1973] Bachelor in Mathematics Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP, Brasil. 3. Afilliation Full Professor, Federal University of Rio de Janeiro. Profissional Address: Instituto de Matemática, Av. Athos da Silveira Ramos, 149. CEP 21941-909, Rio de Janeiro, Brazil. Contact: [email protected], www.im.ufrj.br/pacifico 4. Administration Services UFRJ-Federal University of Rio de Janeiro: Coordinator of the Graduation Program in Mathe matics, 2010–2017, 2020-current. TWAS World Academy of Sciences: Member of the Selection Committee for TWAS Prizes, 2017-current. ICTP International Center of Theoretical Physics Abdus Salam: Member Selection Ramanujan Prize, 2012–2016. CNPq: Member of the Assessor Committee for Research Grants, 2012–202015, 2017–current. Congresso de Matemática das Américas 2013: Member of the Committee for Americas Prize. 5. Selected Conference Organization Academical Bridges: celebrating Jacob Palis 80th anniversary, Chair of the Scientific Committee, Brazilian Academy of Sciences, Rio de Janeiro, 2020. First Joint Meeting Brazil France in Mathematics, Chair of the Scientific Committee, IMPA, 2019. 1 2 MARIA JOSÉ PACIFICO FULL PROFESSOR, FEDERAL UNIVERSITY OF RIO DE JANEIRO, First Joint Meeting Brazil Italy in Mathematics, Chair of the Scientific Committee, IMPA, 2016. -
The Big Down
FROM GENOMES TO ATOMS THE BIG DOWN Atomtech: Technologies Converging at the Nano-scale FROM GENOMES TO ATOMS THE BIG DOWN Atomtech: Technologies Converging at the Nano-scale January 2003 5 Summary: Atomtech on a Page 6 Context: Converging Technologies 6 Historical Cue i 9 etc Evaluation Table of Contents 10 Section I • What is Atomtech? 20 Section II • Four (risky) steps down 22 stepping down 1 Bulk nano Nanoparticle Production 24 What are the Risks? 25 etc Evaluation 26 stepping down 2 Nanofabrication Building from Atomic Scratch 26 What are the Risks? 26 etc Evaluation 27 stepping down 3 Molecular Manufacture Invisible Goliaths 30 What are the Risks? 31 stepping down 4 Atom and Eve Gray Goo and Green Goo? 32 Historical Cue ii Feats of Clay 35 What are the Risks? 35 etc Evaluation 38 Section III • Will Atomtechnologies work? 39 Look who’s talking 1 41 Look who’s patenting 2 41 Look who’s paying 3 42 Look what’s (already) happening 4 43 etc Evaluation 46 Section IV • Who and where will it impact? 48 Materials & Manufacturing 50 Electronics, Energy & Informatics 51 Pharmaceuticals & Health Care 51 Military 52 Agriculture 53 Food Processing 54 Not if but when 54 etc Evaluation 56 Section V • Who cares? 57 Nano-nerds Scientific Institutions 57 Nano-nichers Nano Start-ups 60 Nano-nabobs Multinational Matter Moguls 60 Nano-buddies Government Backers 66 Nano-watchdogs Civil Society Organizations 70 Section VI • Conclusions and Policy Recommendations 73 etc Evaluation 74 Sources and Resources: Appendices 75 a. Nano-Net 77 b. NanoGrammar 80 About ETC Group ISSUE: The key technologies of the past that underpin all animate and inanimate matter.