Glacier National Park Geologic Resource Evaluation Report

Total Page:16

File Type:pdf, Size:1020Kb

Glacier National Park Geologic Resource Evaluation Report National Park Service U.S. Department of the Interior Geologic Resources Division Denver, Colorado Glacier National Park Geologic Resource Evaluation Report Glacier National Park Geologic Resource Evaluation Geologic Resources Division Denver, Colorado U.S. Department of the Interior Washington, DC Table of Contents List of Figures .............................................................................................................. iv Executive Summary ...................................................................................................... 1 Introduction ................................................................................................................... 3 Purpose of the Geologic Resource Evaluation Program ............................................................................................3 Geologic Setting .........................................................................................................................................................3 Glacial Setting ............................................................................................................................................................4 Geologic Issues............................................................................................................. 9 Economic Resources..................................................................................................................................................9 Mining Issues..............................................................................................................................................................9 Avalanche Hazards ..................................................................................................................................................10 Wetlands ..................................................................................................................................................................10 Cave Resource Issues .............................................................................................................................................10 Seismicity .................................................................................................................................................................11 Slope Processes.......................................................................................................................................................11 Glacier Formation .....................................................................................................................................................12 Paleontologic Potential .............................................................................................................................................12 Faulting and Deformation Processes........................................................................................................................12 Glacial Retreat..........................................................................................................................................................13 Water Issues.............................................................................................................................................................13 Streamflow, Channel Morphology and Sediment Load.............................................................................................14 Wind Erosion and Deposition ...................................................................................................................................14 General Geology ......................................................................................................................................................14 Geologic Features and Processes............................................................................. 16 Glacial Features .......................................................................................................................................................16 Glacial Retreat..........................................................................................................................................................17 Glaciers ....................................................................................................................................................................18 Short-lived Glacial Features .....................................................................................................................................18 The Belt Supergroup ................................................................................................................................................18 Faults at Glacier .......................................................................................................................................................19 Akamina Syncline .....................................................................................................................................................20 Formation Properties.................................................................................................. 29 Formation Properties Table ......................................................................................................................................20 Geologic History.......................................................................................................... 33 References................................................................................................................... 44 Appendix A: Geologic Map Graphic .......................................................................... 48 Appendix B: Scoping Summary................................................................................. 49 Appendix C: Geoindicators Scoping Report ............................................................ 52 Attachment 1: Digital Geologic Map (CD) GLAC Geologic Resource Evaluation Report iii List of Figures Figure 1: Map of Montana with physiographic features surrounding Glacier National Park ...........................................6 Figure 2: Map of structural features in Glacier National Park area.................................................................................7 Figure 3: Map showing location of Glacier National Park in relation to Pinedale glacier and ice sheets........................8 Figure 4: Photo of three hanging valleys......................................................................................................................21 Figure 5: Diagrammatic view of a retreating glacier .....................................................................................................22 Figure 6: Map of Glacier National Park showing locations of the largest glaciers present today .................................23 Figure 7: The aerial extent of Sperry Glacier ...............................................................................................................24 Figure 8: Short-lived surface features on glaciers........................................................................................................24 Figure 9: Formation of stromatolites.............................................................................................................................25 Figure 10: Location of Glacier National Park relative to the entire Belt Terrane...........................................................26 Figure 11: Structural features east of Glacier National Park ........................................................................................27 Figure 12: Prominent structural features inside Glacier National Park .........................................................................28 Figure 13: Map of present day structural features superimposed on preexisting features ...........................................37 Figure 14: Depositional environment of the Prichard-Altyn Formation .........................................................................38 Figure 15: Conceptual depositional environment of the Ravalli Group.........................................................................38 Figure 16: Middle Belt Carbonate depositional facies ..................................................................................................39 Figure 17: Conceptual depositional environment of the Missoula Group .....................................................................40 Figure 18: Inferred Proterozoic structure of the Belt basin during Missoula Group deposition.....................................41 Figure 19: Subaqueous and subaerial phases of Purcell Lava ....................................................................................41 Figure 20: Deposition of the Kishenehn Formation ......................................................................................................42 Figure 21: Geologic Time Scale...................................................................................................................................43 iv NPS Geologic Resources Division Executive Summary This report has been developed to accompany the digital geologic map produced by Geologic Resource Evaluation staff for Glacier National Park in Montana. It contains information relevant to resource management and scientific research. The story of Glacier National Park is the story of geology • Glacial retreat. The park was created to preserve and and ice: the
Recommended publications
  • Peaks-Glacier
    Glacier National Park Summit List ©2003, 2006 Glacier Mountaineering Society Page 1 Summit El Quadrangle Notes ❑ Adair Ridge 5,366 Camas Ridge West ❑ Ahern Peak 8,749 Ahern Pass ❑ Allen Mountain 9,376 Many Glacier ❑ Almost-A-Dog Mtn. 8,922 Mount Stimson ❑ Altyn Peak 7,947 Many Glacier ❑ Amphitheater Mountain 8,690 Cut Bank Pass ❑ Anaconda Peak 8,279 Mount Geduhn ❑ Angel Wing 7,430 Many Glacier ❑ Apgar Mountains 6,651 McGee Meadow ❑ Apikuni Mountain 9,068 Many Glacier ❑ Appistoki Peak 8,164 Squaw Mountain ❑ B-7 Pillar (3) 8,712 Ahern Pass ❑ Bad Marriage Mtn. 8,350 Cut Bank Pass ❑ Baring Point 7,306 Rising Sun ❑ Barrier Buttes 7,402 Mount Rockwell ❑ Basin Mountain 6,920 Kiowa ❑ Battlement Mountain 8,830 Mount Saint Nicholas ❑ Bear Mountain 8,841 Mount Cleveland ❑ Bear Mountain Point 6,300 Gable Mountain ❑ Bearhat Mountain 8,684 Mount Cannon ❑ Bearhead Mountain 8,406 Squaw Mountain ❑ Belton Hills 6,339 Lake McDonald West ❑ Bighorn Peak 7,185 Vulture Peak ❑ Bishops Cap 9,127 Logan Pass ❑ Bison Mountain 7,833 Squaw Mountain ❑ Blackfoot Mountain 9,574 Mount Jackson ❑ Blacktail Hills 6,092 Blacktail ❑ Boulder Peak 8,528 Mount Carter ❑ Boulder Ridge 6,415 Lake Sherburne ❑ Brave Dog Mountain 8,446 Blacktail ❑ Brown, Mount 8,565 Mount Cannon ❑ Bullhead Point 7,445 Many Glacier ❑ Calf Robe Mountain 7,920 Squaw Mountain ❑ Campbell Mountain 8,245 Porcupine Ridge ❑ Cannon, Mount 8,952 Mount Cannon ❑ Cannon, Mount, SW Pk. 8,716 Mount Cannon ❑ Caper Peak 8,310 Mount Rockwell ❑ Carter, Mount 9,843 Mount Carter ❑ Cataract Mountain 8,180 Logan Pass ❑ Cathedral
    [Show full text]
  • Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework Due Thursday Nov
    Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we’ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and erosional features of glaciers! 3. 3. Earth-Sun orbital parameters, relevance to interglacial periods ! A glacier is a river of ice. Glaciers can range in size from: 100s of m (mountain glaciers) to 100s of km (continental ice sheets) Most glaciers are 1000s to 100,000s of years old! The Snowline is the lowest elevation of a perennial (2 yrs) snow field. Glaciers can only form above the snowline, where snow does not completely melt in the summer. Requirements: Cold temperatures Polar latitudes or high elevations Sufficient snow Flat area for snow to accumulate Permafrost is permanently frozen soil beneath a seasonal active layer that supports plant life Glaciers are made of compressed, recrystallized snow. Snow buildup in the zone of accumulation flows downhill into the zone of wastage. Glacier-Covered Areas Glacier Coverage (km2) No glaciers in Australia! 160,000 glaciers total 47 countries have glaciers 94% of Earth’s ice is in Greenland and Antarctica Mountain Glaciers are Retreating Worldwide The Antarctic Ice Sheet The Greenland Ice Sheet Glaciers flow downhill through ductile (plastic) deformation & by basal sliding. Brittle deformation near the surface makes cracks, or crevasses. Antarctic ice sheet: ductile flow extends into the ocean to form an ice shelf. Wilkins Ice shelf Breakup http://www.youtube.com/watch?v=XUltAHerfpk The Greenland Ice Sheet has fewer and smaller ice shelves. Erosional Features Unique erosional landforms remain after glaciers melt.
    [Show full text]
  • Minimal Geological Methane Emissions During the Younger Dryas-Preboreal Abrupt Warming Event
    UC San Diego UC San Diego Previously Published Works Title Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event. Permalink https://escholarship.org/uc/item/1j0249ms Journal Nature, 548(7668) ISSN 0028-0836 Authors Petrenko, Vasilii V Smith, Andrew M Schaefer, Hinrich et al. Publication Date 2017-08-01 DOI 10.1038/nature23316 Peer reviewed eScholarship.org Powered by the California Digital Library University of California LETTER doi:10.1038/nature23316 Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event Vasilii V. Petrenko1, Andrew M. Smith2, Hinrich Schaefer3, Katja Riedel3, Edward Brook4, Daniel Baggenstos5,6, Christina Harth5, Quan Hua2, Christo Buizert4, Adrian Schilt4, Xavier Fain7, Logan Mitchell4,8, Thomas Bauska4,9, Anais Orsi5,10, Ray F. Weiss5 & Jeffrey P. Severinghaus5 Methane (CH4) is a powerful greenhouse gas and plays a key part atmosphere can only produce combined estimates of natural geological in global atmospheric chemistry. Natural geological emissions and anthropogenic fossil CH4 emissions (refs 2, 12). (fossil methane vented naturally from marine and terrestrial Polar ice contains samples of the preindustrial atmosphere and seeps and mud volcanoes) are thought to contribute around offers the opportunity to quantify geological CH4 in the absence of 52 teragrams of methane per year to the global methane source, anthropogenic fossil CH4. A recent study used a combination of revised 13 13 about 10 per cent of the total, but both bottom-up methods source δ C isotopic signatures and published ice core δ CH4 data to 1 −1 2 (measuring emissions) and top-down approaches (measuring estimate natural geological CH4 at 51 ±​ 20 Tg CH4 yr (1σ range) , atmospheric mole fractions and isotopes)2 for constraining these in agreement with the bottom-up assessment of ref.
    [Show full text]
  • Mineralogy and Geochemistry of Some Belt Rocks, Montana and Idaho
    Mineralogy and Geochemistry of Some Belt Rocks, Montana and Idaho By J. E. HARRISON and D. J. GRIMES CONTRIBUTIONS TO ECONOMIC GEOLOGY GEOLOGICAL SURVEY BULLETIN 1312-O A comparison of rocks from two widely separated areas in Belt terrane UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 75-607766 4- V For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Price 35 cents CONTENTS Page Abstract .................................................................................................................. Ol Introduction ............................:.................................... .......................................... 2 General geology ...............................................................;.'................................... 3 Methods of investigation ........................y .............................................................. 7 Sampling procedure ..............................:....................................................... 7 Analytical technique for mineralogy ...............:............................................ 11 Analytical technique and calculations for geochemistry................................ 13 Mineralogy of rock types........................................................................................ 29 Geochemistry .........................................................................................................
    [Show full text]
  • Montana Official 2018-2019 Visitor Guide
    KALISPELL MONTANA OFFICIAL 2018-2019 VISITOR GUIDE #DISCOVERKALISPELL 888-888-2308 DISCOVERKALISPELL.COM DISCOVER KALISPELL TABLE OF CONTENTS 4 DISCOVER KALISPELL 6 GETTING HERE 7 GLACIER NATIONAL PARK 10 DAY HIKES 11 SCENIC DRIVES 12 WILD & SCENIC 14 QUICK PICKS 23 FAMILY TIME 24 FLATHEAD LAKE 25 EVENTS 26 LODGING 28 EAT & DRINK 32 LOCAL FLAVOR 35 CULTURE 37 SHOPPING 39 PLAN A MEETING 41 COMMUNITY 44 RESOURCES CONNECTING WITH KALISPELL To help with your trip planning or to answer questions during your visit: Kalispell Visitor Information Center Photo: Tom Robertson, Foys To Blacktail Trails Robertson, Foys To Photo: Tom 15 Depot Park, Kalispell, MT 59901 406-758-2811or 888-888-2308 DiscoverKalispellMontana @visit_Kalispell DiscoverKalispellMontana Discover Kalispell View mobile friendly guide or request a mailed copy at: WWW.DISCOVERKALISPELL.COM Cover Photo: Tyrel Johnson, Glacier Park Boat Company’s Morning Eagle on Lake Josephine www.discoverkalispell.com | 888-888-2308 3 DISCOVER KALISPELL WELCOME TO KALISPELL Photos: Tom Robertson, Kalispell Chamber, Mike Chilcoat Robertson, Kalispell Chamber, Photos: Tom here the spirit of Northwest Montana lives. Where the mighty mountains of the Crown of the Continent soar. Where the cold, clear Flathead River snakes from wild lands in Glacier National Park and the Bob WMarshall Wilderness to the largest freshwater lake in the west. Where you can plan ahead for a trip of wonder—or let each new moment lead your adventures. Follow the open road to see what’s at the very end. Lay out the map and chart a course to its furthest corner. Or explore the galleries, museums, and shops in historic downtown Kalispell—and maybe let the bakery tempt you into an unexpected sweet treat.
    [Show full text]
  • Montana Forest Insect and Disease Conditions and Program Highlights
    R1-16-17 03/20/2016 Forest Service Northern Region Montata Department of Natural Resources and Conservation Forestry Division In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S.
    [Show full text]
  • Harry Butler Has Been Taken Into Custody for Violation of Donlan Law
    people,of Montana, out of the great­ hearted generosity that has ever char­ acterized them, respond as liberally as may be possible in this emergency for- the relief of suffering that is daily becoming more distressing. Contri­ The Scenic theater was practically butions may be made to any member packed to its doors last Friday night of the Montana state board of the at 7:30, one half hour before the ama­Harry Butler Has Been Taken Dilloninto Leads with Thirty-twoAmerican Red Cross, said board1 be­ teur performance began. Twelve num­ ing composed of the followingProposed citizens to Extend the Great bers were presented to an appreciativeCustody for Violation of Names, Wisdom next of this state: Edward J. Bowman, audience, Edward Hoffman receiving Anaconda, treasurer; Henry W. Row-Northern from Moccasin first prize, Miss Belle Holmes second Donlan Law. with Seven ley, Billings, secretary; F. S. Lusk, to the Capital and Miss Ruth Stoller third. The Missoula; T. A. Marlow, Helena; Ken­ SPEECH OF PATTERSON LIKED winner sang a song, little Miss HolmesSECURES VICTIMS WITH NOTES FIRST RAILROAD CASE MONDAY neth McLean, Miles City; W. M recited a poem and Miss Stoller sang Thornton, Great Falls. All fundsGILMORE thus & PITTSBURG LIKELY a song and then gave a fair imitationLuring Missives Will Be Used as received will be promptly remitted to Gives His Views on Roadways and Isof the skirt dance. The latter’s act Considerable Interest Manifested in A Portland Dispatch Says the G. A Interested in Park-to-Park Evidence Against Him in Com- These Cases—Burglary Trial the national treasurer of the Red CrossP.
    [Show full text]
  • Going-To-The-Sun Road Historic District, Glacier National Park
    National Park Service Cultural Landscapes Inventory 2002 Going-to-the-Sun Road Historic District Glacier National Park Table of Contents Inventory Unit Summary & Site Plan Concurrence Status Geographic Information and Location Map Management Information National Register Information Chronology & Physical History Analysis & Evaluation of Integrity Condition Treatment Bibliography & Supplemental Information Going-to-the-Sun Road Historic District Glacier National Park Inventory Unit Summary & Site Plan Inventory Summary The Cultural Landscapes Inventory Overview: CLI General Information: Purpose and Goals of the CLI The Cultural Landscapes Inventory (CLI), a comprehensive inventory of all cultural landscapes in the national park system, is one of the most ambitious initiatives of the National Park Service (NPS) Park Cultural Landscapes Program. The CLI is an evaluated inventory of all landscapes having historical significance that are listed on or eligible for listing on the National Register of Historic Places, or are otherwise managed as cultural resources through a public planning process and in which the NPS has or plans to acquire any legal interest. The CLI identifies and documents each landscape’s location, size, physical development, condition, landscape characteristics, character-defining features, as well as other valuable information useful to park management. Cultural landscapes become approved CLIs when concurrence with the findings is obtained from the park superintendent and all required data fields are entered into a national
    [Show full text]
  • Sea Level and Climate Introduction
    Sea Level and Climate Introduction Global sea level and the Earth’s climate are closely linked. The Earth’s climate has warmed about 1°C (1.8°F) during the last 100 years. As the climate has warmed following the end of a recent cold period known as the “Little Ice Age” in the 19th century, sea level has been rising about 1 to 2 millimeters per year due to the reduction in volume of ice caps, ice fields, and mountain glaciers in addition to the thermal expansion of ocean water. If present trends continue, including an increase in global temperatures caused by increased greenhouse-gas emissions, many of the world’s mountain glaciers will disap- pear. For example, at the current rate of melting, most glaciers will be gone from Glacier National Park, Montana, by the middle of the next century (fig. 1). In Iceland, about 11 percent of the island is covered by glaciers (mostly ice caps). If warm- ing continues, Iceland’s glaciers will decrease by 40 percent by 2100 and virtually disappear by 2200. Most of the current global land ice mass is located in the Antarctic and Greenland ice sheets (table 1). Complete melt- ing of these ice sheets could lead to a sea-level rise of about 80 meters, whereas melting of all other glaciers could lead to a Figure 1. Grinnell Glacier in Glacier National Park, Montana; sea-level rise of only one-half meter. photograph by Carl H. Key, USGS, in 1981. The glacier has been retreating rapidly since the early 1900’s.
    [Show full text]
  • Landform Studies in Mosedale, Northeastern Lake District: Opportunities for Field Investigations
    Field Studies, 10, (2002) 177 - 206 LANDFORM STUDIES IN MOSEDALE, NORTHEASTERN LAKE DISTRICT: OPPORTUNITIES FOR FIELD INVESTIGATIONS RICHARD CLARK Parcey House, Hartsop, Penrith, Cumbria CA11 0NZ AND PETER WILSON School of Environmental Studies, University of Ulster at Coleraine, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, Northern Ireland (e-mail: [email protected]) ABSTRACT Mosedale is part of the valley of the River Caldew in the Skiddaw upland of the northeastern Lake District. It possesses a diverse, interesting and problematic assemblage of landforms and is convenient to Blencathra Field Centre. The landforms result from glacial, periglacial, fluvial and hillslopes processes and, although some of them have been described previously, others have not. Landforms of one time and environment occur adjacent to those of another. The area is a valuable locality for the field teaching and evaluation of upland geomorphology. In this paper, something of the variety of landforms, materials and processes is outlined for each district in turn. That is followed by suggestions for further enquiry about landform development in time and place. Some questions are posed. These should not be thought of as being the only relevant ones that might be asked about the area: they are intended to help set enquiry off. Mosedale offers a challenge to students at all levels and its landforms demonstrate a complexity that is rarely presented in the textbooks. INTRODUCTION Upland areas attract research and teaching in both earth and life sciences. In part, that is for the pleasure in being there and, substantially, for relative freedom of access to such features as landforms, outcrops and habitats, especially in comparison with intensively occupied lowland areas.
    [Show full text]
  • 2480 ± 90 +1850 8570 NPL-72. Mockerkin Tarn, West Cumberland
    [RADIOCARBON, VOL. 8, 1966, P. 340-347] NATIONAL PHYSICAL LABORATORY RADIOCARBON MEASUREMENTS IV I. HASSALL W. J. CALLOW, M. J. BAKER and GERALDINE National Physical Laboratory, Teddington, England The following list comprises measurements made since those re- ported in NPL III and is complete to the end of November 1965. Ages are relative to A.D. 1950 and are calculated using a half-life of 5568 yr. The measurements, corrected for fractionation (quoted 6013 values are relative to the P.D.B. standard), are referred to 0.950 times the activity of the NBS oxalic acid as contemporary reference standard. The quoted uncertainty is one standard deviation derived from a proper combination of the parameter variances as described in detail in NPL III. These variances are those of the standard and background measure- ments over a rolling twenty week period, of the sample C14 and 8013 measurements and of the de Vries effect (assumed to add an additional uncertainty equivalent to a standard deviation of 80 yr). Any uncertainty in the half-life has been excluded so that relative C14 ages may be cor- rectly compared. Absolute age assessments, however, should be made using the accepted best value for the half-life and the appropriate un- certainty then included. If the net sample count rate is less than 4 times the standard error of the difference between the sample and background count rates, a lower limit to the age is reported corresponding to a net sample count rate of 4 times the standard error of this difference. The description of each sample is based on information provided by the person submitting the sample to the laboratory.
    [Show full text]
  • Characterization of Ecoregions of Idaho
    1 0 . C o l u m b i a P l a t e a u 1 3 . C e n t r a l B a s i n a n d R a n g e Ecoregion 10 is an arid grassland and sagebrush steppe that is surrounded by moister, predominantly forested, mountainous ecoregions. It is Ecoregion 13 is internally-drained and composed of north-trending, fault-block ranges and intervening, drier basins. It is vast and includes parts underlain by thick basalt. In the east, where precipitation is greater, deep loess soils have been extensively cultivated for wheat. of Nevada, Utah, California, and Idaho. In Idaho, sagebrush grassland, saltbush–greasewood, mountain brush, and woodland occur; forests are absent unlike in the cooler, wetter, more rugged Ecoregion 19. Grazing is widespread. Cropland is less common than in Ecoregions 12 and 80. Ecoregions of Idaho The unforested hills and plateaus of the Dissected Loess Uplands ecoregion are cut by the canyons of Ecoregion 10l and are disjunct. 10f Pure grasslands dominate lower elevations. Mountain brush grows on higher, moister sites. Grazing and farming have eliminated The arid Shadscale-Dominated Saline Basins ecoregion is nearly flat, internally-drained, and has light-colored alkaline soils that are Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and America into 15 ecological regions. Level II divides the continent into 52 regions Literature Cited: much of the original plant cover. Nevertheless, Ecoregion 10f is not as suited to farming as Ecoregions 10h and 10j because it has thinner soils.
    [Show full text]