Suppression of Fusarium Patch by Phosphite in Cool Season Turfgrasses

Total Page:16

File Type:pdf, Size:1020Kb

Suppression of Fusarium Patch by Phosphite in Cool Season Turfgrasses Centre for Research in Biosciences Suppression of Fusarium patch by Phosphite in cool season turfgrasses John Dempsey BSc(Hons) Centre for Research in Biosciences, Bristol, UK Greenkeeper since mid 1980’s Course manager at Curragh Golf Course since 1993 BSc in Turfgrass science – Myerscough college, UK Currently carrying out postgraduate research for a PhD in turfgrass pathology – The mechanism by which phosphite reduces susceptibility to Microdochium nivale Todays talk- • Phosphite - what is it, its history and current usage • Does phosphite suppress Microdochium nivale in turfgrasses? • By what means does suppression occur? • Microdochium infection process • Turfgrass responses Two components of this research Microdochium nivale Phosphite What is Microdochium nivale? Ascomycete fungus - Fusarium patch or Pink snow-mould Most common pathogen in cool-season turfgrass Microdochium active on Poa annua Microdochium active on turfgrass Reliance on fungicides- Expensive Inhibition of beneficial organisms Legislative controls Scope for alternative means of disease control Phosphite is one possible method Phosphite? Form of Phosphorous (P) a major nutrient of plant growth Taken up as Phosphate - Phosphoric acid (H3PO4) Phosphite - Phosphorous acid (H3PO3) Phosphite use • Phosphite derived from Phosphorous acid – (H3PO3) pH 2.2 - has to be modified with an alkali salt to usable pH • First used in 1980’s - Rhone- Poulenc fosetyl Al (aluminum tris (O- ethyl phosphonate)) • Potassium hydroxide (KOH) - Forms Potassium dihydrogen phosphite (KH2PO3) or dipotassium hydrogen phosphite (K2HPO3) Potassium phosphite Ammonium Hydroxide, Magnesium phosphites and Calcium phosphites Phosphite not metabolised in plants Phosphite should not be applied to plants in sub-optimal phosphate conditions Phosphite only converts to phosphate by means of soil organisms Bacteria can metabolise Phosphite to Phosphate - Escherichia coli, Pseudomonas stutzeri, Alcaligenes faecalis and Xanthobacter flavus Half-life for oxidation in soil is approximately 12–16 weeks (Adams and Conrad 1953). Suppresses phytopathogens Pythium and Phytophthora Oomycete pathogens Anthracnose Microdochium in cereals Improved turf quality No research into Phosphite and Microdochium nivale Performance of Phosphonate Fertilizers and Fungicides on Pythium Blight Development on a Perennial Ryegrass Golf Course Fairway. — 2007. Horvath, B.J. and D.S. McCall, Virginia Tech University In vitro mycelial growth rate of Microdochium majus measured on PDA amended with potassium phosphite solution – Hofgaard et al 2010 BSc Study at Myerscough Dr. Andy Owen • Establish Agrostis stolonifera swards • Apply a range of phosphite treatments • Assess treated and untreated controls Growth Turf quality Disease occurrence Methodology Agrostis stolonifera established in Greenhouses Trial plots Treatments • 0.35g/m2 Phosphite • 0.525g/m2 • 0.70g/m2 • 0.35g/m2 Phosphate • 0.525g/m2 • 0.70g/m2 Control • Nil Applied every 3 weeks - Replicated 6 times Assessments - Growth Shoots Crowns Collected dried and weighed Results - shoot Growth Results – shoot and crowns Control Phosphite December 2008 Assessments –Turf Quality Turf quality- greenhouse and trial plots Visually assessed 2 weekly intervals Scale of- 1 – 10 Results – Turf quality Turf quality –Trial plots Assessments –Disease Occurrence Disease assessments- Greenhouse and trial plots Visually assessed 2 weekly intervals Rated on percentage of disease occurrence Results –Greenhouse Results –Trial plots Control Phosphite January 2009 Phosphate Phosphite November 2008 Control Phosphite December 2008 Phosphite treated plants – January 2009 Control plants – January 2009 Conclusions of the Myerscough Study Not metabolised Improved Phosphite turfgrass quality treatment- Reduced disease European Turfgrass Society 2nd Conference Angers, France 2010 Centre for Research in Biosciences PhD Research objectives - Phosphite reduce Microdochium? Means of reduction? Field trials Laboratory studies Curragh golf course –field trials Three turfgrass species • Agrostis canina canina • Agrostis stolonifera • Poa annua Range of phosphite treatments and assessments Published Trials – Griggs and Turfcare PK Plus 20L ha-1 3- -2 (PO3 0.37g/m ) -1 PK Plus 20L ha +Ultraplex 10L ha-1 Trials running since Sept 2010 Chipco 20L ha-1 Treatments applied bi-weekly Iprodione 20L ha-1 Disease incidence assessed monthly -1 Chipco 20L ha -1 +PK Plus 20L ha NPK Control (3:7:18 20l ha-1) Untreated Control Disease Assessments –Poa Plots Poa annua plots - mean disease incidence over two years (n=5), letters indicate significant differences at p< 0.01 Agrostis stolonifera plots mean disease incidence over one year (n=5), bars represent standard error, letters indicate significant differences at p< 0.01 Agrostis canina canina plots Agrostis canina canina plots mean disease incidence over two years (n=5), bars represent standard error, letters indicate significant differences at p< 0.01 Mean disease incidence over two years (n=5), bars represent standard error, letters indicate significant differences at p< 0.01 PK Plus Chipco Chipco NPK Control Control +Ultraplex +PK Plus Assessment of Turf quality – 2010 to 2012 Turf quality average over two years 10.00 P. annua A. canina canina 9.00 a a a a a a 8.00 7.00 6.00 b 5.00 b b b 4.00 b b 3.00 2.00 1.00 0.00 PK Plus Pk Plus + Ultraplex Chipco Green Chipco Green + PK NPK control Control Plus Agrostis canina canina plots – January 2012 Agrostis canina canina plots – January 2012 Poa annua plots – January 2011 Poa annua plots – October 2011 CONTROL PHOSPHITE Poa annua plot 5 – Phosphite Poa annua plot 16 - Control Agrostis stolonifera plot 7 – Phosphite Agrostis stolonifera plot 5 – Control Agrostis canina plot 9 – Phosphite Agrostis canina plot 3 - Control Field trial conclusions • Sequential applications of phosphite significantly reduced Microdochium nivale incidence • The addition of phosphite to iprodione significantly enhanced suppression of Microdochium nivale • Significant improvement in turfgrass quality Means of suppression Direct • Inhibits pathogen Indirect • Stimulates plants defences Combination of both In Vitro Study- Assess the effect phosphite has on the mycelial growth of Microdochium nivale Microdochium propagated from infected turfgrass Grown on and used for in vitro study To assess inhibition of mycelial growth Amended growth media Amended PDA Range of phosphite and phosphate From 0.5 μg/ml to 1000 μg/ml Compared with unamended controls Control + 4 days Phosphate - 100 μg/ml + 4 days Phosphite - 100 μg/ml + 4 days Mycelial Growth on Amended PDA Phosphite 100µg/ml Phosphate 100µg/ml Control Hyphal morphology Unamended 75µg/ml Phosphite Hyphal morphology Unamended 75µg/ml Phosphite Fungicide or Fungistat? Does phosphite kill the pathogen? Or just inhibits the growth? Immersed the mycelium in a range of phosphite and phosphate concentrations for 10 days Extracted, washed and placed them on fresh PDA Observed the effects on re-growth Mycelial growth after immersion for 10 days M. nivale mycelial growth - four days post inoculation 100 90 80 70 mm - 60 50 40 Radial Radial growth 30 20 10 0 Control 50µM 100µM 500µM 1mM 5mM Control PO4 PO3 In vitro conclusions • Inhibits mycelial growth and conidial germination • Disrupts hyphal morphology In the plant – • Slows the growth of the pathogen • Causes release of stress metabolites • Allows for increased time for the plant to initiate defence responses What happens when phosphite is applied to turfgrass? • Measure assimilation rate • Track translocation Targets • Determine accumulation amounts • Assess the fate • Treat turfgrass • Collect samples Methods • Six week period • Analyse using HPIC ppm Phosphite accumulation in Agrostis stolonifera 6000 4889 5000 4205 3876 4000 3334 3193 3000 2561 2000 1000 715 639 492 393 376 338 265 111 120 116 126 0 55 0 0h 1h 6h 12h 24h 48h 1wk 2wk 4wk 6wk Time post-application Leaf phosphite Root phosphite HPIC Results –Phosphate ppm Phosphate accumulation in Agrostis stolonifera 12000 10000 8000 6000 4000 2000 0 0h 1h 6h 12h 24h 48h 1wk 2wk 4wk 6wk Time post-application Leaf phosphate Root phosphate Leaf phosphate -Control Root phosphate -Control HPIC Results –Phosphite +Phosphate Long term results – 4 weeks post application ppm 1250 ppm in first study 1600 1493 1400 715 ppm in first study 1200 1104 1055 1000 802 800 600 338 ppm in first study 400 183 200 156 0 Leaf Crown Root 6 months 4 wks pa 12 months 4 wks pa Samples taken – January and July 2012 Long term results – 8 weeks post application ppm 500 450 400 350 300 250 200 150 134 119 126 100 42 44 50 34 0 Leaf Crown Root 6 months 8 wks pa 12 months 8 wks pa Samples taken – January and July 2012 HPIC Conclusions • Phosphite is rapidly assimilated by turfgrass • Translocates throughout the plant • Accumulates in the leaf tissues • 3-4 week application period maintains levels within the leaf • Long term applications show metabolic rate effects accumulation period in tissue • Slight increase in meristematic areas • Effect on soil P amounts yet to be calculated Does Phosphite enhance the defence responses in infected turfgrass? Need to understand the infection process and turfgrass responses Using pot samples and infected greens Fluorescent microscopy and stains • Inoculum in the soil – conidia, mycelium • Infection first in the crown and sheath area • Moves to the leaf and enters plant through stomata • The plant recognises the pathogen, this leads to induction of defence responses • Hydrogen peroxide • Nitric oxide
Recommended publications
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Novel Antifungal Activity of Lolium-Associated Epichloë Endophytes
    microorganisms Article Novel Antifungal Activity of Lolium-Associated Epichloë Endophytes Krishni Fernando 1,2, Priyanka Reddy 1, Inoka K. Hettiarachchige 1, German C. Spangenberg 1,2, Simone J. Rochfort 1,2 and Kathryn M. Guthridge 1,* 1 Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; [email protected] (K.F.); [email protected] (P.R.); [email protected] (I.K.H.); [email protected] (G.C.S.); [email protected] (S.J.R.) 2 School of Applied Systems Biology, La Trobe University, Bundoora, 3083 Victoria, Australia * Correspondence: [email protected]; Tel.: +61390327062 Received: 27 May 2020; Accepted: 19 June 2020; Published: 24 June 2020 Abstract: Asexual Epichloë spp. fungal endophytes have been extensively studied for their functional secondary metabolite production. Historically, research mostly focused on understanding toxicity of endophyte-derived compounds on grazing livestock. However, endophyte-derived compounds also provide protection against invertebrate pests, disease, and other environmental stresses, which is important for ensuring yield and persistence of pastures. A preliminary screen of 30 strains using an in vitro dual culture bioassay identified 18 endophyte strains with antifungal activity. The novel strains NEA12, NEA21, and NEA23 were selected for further investigation as they are also known to produce alkaloids associated with protection against insect pests. Antifungal activity of selected endophyte strains was confirmed against three grass pathogens, Ceratobasidium sp., Dreschlera sp., and Fusarium sp., using independent isolates in an in vitro bioassay. NEA21 and NEA23 showed potent activity against Ceratobasidium sp.
    [Show full text]
  • Turfgrass Pest Management
    MSUE Pesticide Education Program TurfgrassTurfgrass PestPest ManagementManagement TrainingTraining forfor CommercialCommercial PesticidePesticide ApplicatorsApplicators Category 3A Developed by Greg Patchan, Julie Stachecki, and Kay Sicheneder MSUE Pesticide Education Program PrinciplesPrinciples ofof PestPest ManagementManagement Chapter 1 A pesticide applicator doesn’t just apply pesticides. Social and legal responsibilities accompany the use of toxic materials. MSUE Pesticide Education Program Pesticide application must protect plant material from pest injury without endangering nontarget organisms. MSUE Pesticide Education Program Integrated Pest Management MSUE Pesticide Education Program IPMIPM n Use of all available strategies to manage pests. n Achieve acceptable yield and quality. n Least environmental disruption. MSUE Pesticide Education Program IPMIPM PestPest ControlControl StrategiesStrategies n Resistant varieties n Cultural practices n Natural enemies n Mechanical controls n Pesticides n IPM is NOT anti-pesticide IPMIPM waswas developeddeveloped forfor agricultureagriculture because....because.... n No one method achieves long term pest management. n Pest management is a part of plant care. n Reduce costs. n Failures, resistance, pollution were the lessons. MSUE Pesticide Education Program IPMIPM StepsSteps forfor TurfgrassTurfgrass n Detection of what is injuring turfgrass. n Identification of agents injuring turfgrass. n Economic significance. n Selection of methods. n Evaluation. MSUE Pesticide Education Program Detection-MonitoringDetection-Monitoring
    [Show full text]
  • Genetic and Pathogenic Differences Between Microdochium Nivale and Microdochium Majus
    Genetic and Pathogenic Differences Between Microdochium nivale and Microdochium majus by Linda Elizabeth Jewell A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Environmental Science Guelph, Ontario, Canada © Linda Elizabeth Jewell, December, 2013 ABSTRACT GENETIC AND PATHOGENIC DIFFERENCES BETWEEN MICRODOCHIUM NIVALE AND MICRODOCHIUM MAJUS Linda Elizabeth Jewell Advisor: University of Guelph, 2013 Professor Tom Hsiang Microdochium nivale and M. majus are fungal plant pathogens that cause cool-temperature diseases on grasses and cereals. Nucleotide sequences of four genetic regions were compared between isolates of M. nivale and M. majus from Triticum aestivum (wheat) collected in North America and Europe and for isolates of M. nivale from turfgrasses from both continents. Draft genome sequences were assembled for two isolates of M. majus and two of M. nivale from wheat and one from turfgrass. Dendograms constructed from these data resolved isolates of M. majus into separate clades by geographic origin. Among M. nivale, isolates were instead resolved by host plant species. Amplification of repetitive regions of DNA from M. nivale isolates collected from two proximate locations across three years grouped isolates by year, rather than by location. The mating-type (MAT1) and associated flanking genes of Microdochium were identified using the genome sequencing data to investigate the potential for these pathogens to produce ascospores. In all of the Microdochium genomes, and in all isolates assessed by PCR, only the MAT1-2-1 gene was identified. However, unpaired, single-conidium-derived colonies of M. majus produced fertile perithecia in the lab.
    [Show full text]
  • Perennial Ryegrass Lolium Perenne
    Perennial ryegrass Lolium perenne Owing to its high commercial availability, fast establishment rate, and deep and fibrous root system that reduces erosion, perennial ryegrass is used extensively as a nurse grass in establishing grass mixtures. It is therefore often incorporated into roadside grass mixtures. Despite these excellent attributes, perennial ryegrass receives one of the poorest ratings (Poor = D) as a turfgrass for roadside management owing to a variety of management concerns: Erosion Control Perennial ryegrass is exceptionally poor in providing ecosystem benefits. The species is non-native and Ease of Ecosystem non-persistent with some cultivars exhibiting high Maintenance Benefits leaching potential. Perennial ryegrass is also an aggressive competitor and hence a biodiversity reducer. D Commercial Rate of Availability Establishment and cost Mowing requirements for perennial ryegrass can be A Excellent substantial. The species requires fertilization and Resilience B Good irrigation to maintain turf quality beyond the first year of C Fair growth. Poor Drought D Acidity F Very poor Perennial ryegrass has very poor freezing and Freezing Salinity drought tolerances and requires fertile soils to persist. It is highly disease prone. Hence, resilience of NPK Low perennial ryegrass along roadsides is only fair. Fertility Competition Wear Western Central A Excellent B Good Perennial ryegrass is not recommended for C Fair D Poor use along roadsides in any part of Maryland Southern F Very poor owing to its sensitivity to freezing as well as Eastern Shore drought. 50 0 50 100 150 200 km Proven perennial ryegrass cultivars for Maryland in 2016 include Apple GL, Apple SGL, ASP6004, Banfield, Charismatic II GLSR, Fiesta 4, Grandslam GLD, Homerun, Line Drive GLS, Octane, Palmer V, Paragon GLR, Rio Vista, Soprano, Stellar GL, Stellar 3GL, and Uno.
    [Show full text]
  • Snow Molds of Turfgrasses, RPD No
    report on RPD No. 404 PLANT July 1997 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN SNOW MOLDS OF TURFGRASSES Snow molds are cold tolerant fungi that grow at freezing or near freezing temperatures. Snow molds can damage turfgrasses from late fall to spring and at snow melt or during cold, drizzly periods when snow is absent. It causes roots, stems, and leaves to rot when temperatures range from 25° to 60°F (-3° to 15°C). When the grass surface dries out and the weather warms, snow mold fungi cease to attack; however, infection can reappear in the area year after year. Snow molds are favored by excessive early fall applications of fast release nitrogenous fertilizers, Figure 1. Gray snow mold on a home lawn (courtesy R. Alden excessive shade, a thatch greater than 3/4 inch Miller). thick, or mulches of straw, leaves, synthetics, and other moisture-holding debris on the turf. Disease is most serious when air movement and soil drainage are poor and the grass stays wet for long periods, e.g., where snow is deposited in drifts or piles. All turfgrasses grown in the Midwest are sus- ceptible to one or more snow mold fungi. They include Kentucky and annual bluegrasses, fescues, bentgrasses, ryegrasses, bermudagrass, and zoysiagrasses with bentgrasses often more severely damaged than coarser turfgrasses. Figure 2. Pink snow mold or Fusarium patch. patches are 8-12 There are two types of snow mold in the inches across, covered with pink mold as snow melts (courtesy R.W. Smiley). Midwest: gray or speckled snow mold, also known as Typhula blight or snow scald, and pink snow mold or Fusarium patch.
    [Show full text]
  • Rapid Blight: a New Plant Disease
    Feature July 2005 Rapid Blight: A New Plant Disease L. J. Stowell Pace Turfgrass Research Institute 12 67 Diamond St. San Diego, CA 92109 [email protected] S. B. Martin (corresponding author) Pee Dee Research & Education Center Clemson University 2200 Pocket Road Florence, S.C. 29506 [email protected] M. Olsen Division of Plant Pathology and Microbiology Department of Plant Science, Forbes 204 The University of Arizona Tucson, AZ 85721 [email protected] D. Bigelow Division of Plant Pathology and Microbiology Department of Plant Science, Forbes 204 The University of Arizona Tucson, AZ 85721 [email protected] M. Kohout Division of Plant Pathology and Microbiology Department of Plant Science, Forbes 204 The University of Arizona Tucson, AZ 85721 [email protected] P. D. Peterson Pee Dee Research & Education Center Clemson University 2200 Pocket Road Florence, S.C. 29506 [email protected] J. Camberato Pee Dee Research & Education Center Clemson University 2200 Pocket Road Florence, S.C. 29506 [email protected] W. D. Gelernter Pace Turfgrass Research Institute 12 67 Diamond St. San Diego, CA 92109 [email protected] APSnet Features www.apsnet.org The discovery of rapid blight is the story of a new plant disease whose unusual biology, inconspicuous morphology and apparently low economic impact nearly consigned it to oblivion. It is also a story of what can be so rewarding about plant pathology — the excitement of discovery, the appeal of unraveling the complex interactions among plant, pathogen and environment, and the joy of collaboration. For it was only through a cooperative effort among a privately funded researcher, publicly funded university and USDA researchers, and the golf course industry that the identity of a new terrestrial pathogen was discovered, its economic impact better understood and strategies for its management developed.
    [Show full text]
  • Activated Resistance of Bentgrass Cultivars to Microdochium Nivale Under Predicted Climate Change Conditions
    Activated Resistance of Bentgrass Cultivars to Microdochium nivale under Predicted Climate Change Conditions by Sara Marie Stricker A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Masters of Science in Environmental Science Guelph, Ontario, Canada © Sara Marie Stricker, September, 2017 ABSTRACT ACTIVATED RESISTANCE OF BENTGRASS CULTIVARS TO MICRODOCHIUM NIVALE UNDER PREDICTED CLIMATE CHANGE CONDITIONS Sara Marie Stricker Advisor: University of Guelph, 2017 Professor Dr. Tom Hsiang The potential impact of predicted climate change on Microdochium nivale, which causes Microdochium patch on turfgrasses was investigated. Turfgrasses exposed to temperature fluctuations exhibited increased yellowing caused by M. nivale compared to a constant lower temperature incubation. The effect of increased CO2 (from 400 ppm to 800 ppm) on M. nivale hyphal growth, percent yellowing, and biochemical response was assessed for Agrostis spp. and Poa annua cultivars. The efficacy of the resistance activator, Civitas + Harmonizer, was assessed under conditions of increased CO2, two temperatures, and field conditions. Civitas + Harmonizer often decreased disease symptoms, and suppression varied by cultivar and environmental conditions. Elevated CO2 did not affect the growth of M. nivale, although evidence from growth room trials suggests it may decrease Microdochium patch disease severity in the future. However, the interactive effects of temperature, snow cover conditions, and moisture availability in the field under future conditions is unknown. ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor Dr. Tom Hsiang for welcoming me back into his lab and for his guidance, patience, and wry witticisms that kept me going. I am also very grateful for the opportunities I have had to participate in conferences and educational experiences throughout my time as a master’s student.
    [Show full text]
  • Nitrogen and Iron Sulfate Affect Microdochium Patch Severity and Turf Quality on Annual Bluegrass Putting Greens
    Published October 26, 2016 RESEARCH Nitrogen and Iron Sulfate Affect Microdochium Patch Severity and Turf Quality on Annual Bluegrass Putting Greens Clint M. Mattox,* Alec R. Kowalewski, Brian W. McDonald, John G. Lambrinos, Brian L. Daviscourt, and Jay W. Pscheidt C.M. Mattox, A.R. Kowalewski, B.W. McDonald, J.G. Lambrinos, ABSTRACT and B.L. Daviscourt, Dep. of Horticulture, 4017 Agricultural and Microdochium patch is an important turfgrass Life Sciences Building, Oregon State Univ., Corvallis, OR 97331; disease in cool-humid regions and is caused J.W. Pscheidt Dep. of Botany and Plant Pathology, 1089 Cordley by the pathogen Microdochium nivale (Fries) Hall, Oregon State Univ., Corvallis, OR 97331. Received 24 Feb. Samuels & Hallett. Control of the pathogen is 2016. Accepted 28 July 2016. *Corresponding author (Clint.Mattox@ necessary to provide acceptable putting-green- oregonstate.edu). Assigned to Associate Editor Douglas Soldat. quality turf, and fungicide applications are the Abbreviations: AUDPC, area under disease control progress curve. predominant method of control. Increasing pesticide restrictions have generated interest in alternative management techniques of Micro- icrodochium patch is a turfgrass disease caused by the dochium patch. This research evaluated the Mfungal pathogen Microdochium nivale (Fries) Samuels & Hal- effects of three nitrogen and five iron sulfate lett and is most active in the field when temperatures are between rates on Microdochium patch development on 8 and 17°C and when there are more than 20 h of ³90% humid- a trafficked, sand-based, annual bluegrass Poa( ity (Dwyer, 2004). These conditions are common in the Pacific annua L.) putting green in Corvallis, OR for over Northwest and northern Europe, where Microdochium patch is 2 yr in the absence of fungicides.
    [Show full text]
  • Turfgrass Diseases and Their Control
    THE UNIVERSITY OF TENNESSEE AGRICULTURAL EXTENSION SERVICE 123456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 2345678901234567890123456789012123456789012345678901234567890121234PB842 5 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345 1 23456789012345678901234567890121234567890123456789012345678901212345
    [Show full text]
  • Turfgrass Disease Identification Guide for Golf TABLE of CONTENTS
    Turfgrass Disease Identification Guide for Golf TABLE OF CONTENTS TURFGRASS DISEASE IDENTIFICATION Ectotrophic Root Infecting Fungi Necrotic Ring Spot ......................................................... 4 Spring Dead Spot ........................................................... 6 Summer Patch ............................................................... 8 Take-all Patch .............................................................. 10 Fairy Rings Fairy Ring ..................................................................... 12 Superficial Fairy Ring .................................................... 14 Mildew Diseases Yellow Tuft (Downy Mildew) .......................................... 16 Powdery Mildew ........................................................... 18 Pythium Diseases Pythium Blight .............................................................. 20 Pythium Root Rot (Root Dysfunction) ........................... 22 Rhizoctonia Diseases Brown Patch, cool-season turf ..................................... 24 Large Patch, warm-season turf .................................... 26 Rust and Smut Diseases Rusts (Crown, Leaf, Stem, and Stripe) ......................... 28 Stripe Smut .................................................................. 30 Syngenta would like to acknowledge the following individuals for their contribution to the development of this turf guide: Pete Dernoeden, PhD, University of Maryland, and Bruce Clarke, PhD, Rutgers University. 2 Snow Molds Gray Snow Mold............................................................32
    [Show full text]
  • Perennial Ryegrass Lolium Perenne L. Tom Cook OSU Horticulture Dept
    Perennial ryegrass Lolium perenne L. Tom Cook OSU Horticulture Dept. Introduction: The first turf-type perennial ryegrasses were released in the USA in the early 1960’s. Since that time it has become the most widely planted turfgrass in all of western Oregon, western Washington, and the lower portion of western British Columbia in Canada. It is also used extensively in the interior portions of the Pacific Northwest. From home lawns to athletic fields to golf course tees, fairways, and rough areas this is an important grass for all turf managers. This guide will cover botany, history, cultural requirements, and strengths and weaknesses of this fascinating grass. Botanical Characteristics and Identification: Perennial ryegrass is a cool season (C-3 metabolism) perennial bunchgrass best adapted to mild climate areas. As a bunchgrass, it produces only tillers and has limited ability to spread. Turf type perennial ryegrass has a diploid chromosome count of 14. Forage types are either 14 (diploid) or 28 (tetraploid). It has an annual root system, meaning the majority of its roots are replaced annually during the spring flush growth period. Vernation: New leaves are distinctly folded as they emerge from surrounding leaf sheathes as opposed to annual ryegrass, which has rolled vernation. Young leaf folded in shoot Leaf tips: Leaf tips are intermediate between pointed and distinct boat shaped tips typical of the bluegrasses. I refer to them as speedboats, but I normally don’t bother with this characteristic. Speedboat Leaf tip Leaf morphology: The upper surface (adaxial) is distinctly ridged. These can be seen easily with the naked eye.
    [Show full text]