High precision experiments on antiprotonic helium at CERN, ASACUSA Anna Sótér
[email protected] Eötvös Loránd University, Budapest, Hungary and Max-Planck-Institut für Quantenoptik, Garching, Germany Zimányi 2008 Winter School on Heavy Ion Physics, Budapest Outline (And the big questions of Life...) brief history of antiprotonic helium (what?) motivations in investigating matter-antimatter systems (why?) CERN Antiproton Decelerator (AD) (where?) ASACUSA @ CERN AD (who?) instrumentation and experiments of ASACUSA (how?) results up to 2007 (was it worthy?) outlook (what will we do tomorrow?) Anna Sótér: High precision experiments on antiprotonic helium, Zimányi 2008 Winter School, Budapest Discovery of antiprotonic helium In matter the lifetime of antiprotons ∼ 1 ps Delayed annihilation in liquid helium: E < 25 eV Discovered in 1991 at KEK (Japan) Iwasaki et al., Phys. Rev. Lett. 67 (1991) 1246 The antiprotonic helium ± after collisions ± reaches thermal equilibrium in 1 ns. The electron is on 1s ground state, while the antiproton occupies a large n~38 state (same bounding energy than the other electron had before!) Anna Sótér: High precision experiments on antiprotonic helium, Zimányi 2008 Winter School, Budapest Reasons for investigating antiprotonic helium I. Curiosity... Antiprotonic helium is a metastable system which contains matter and antimatter. It might give an answer about a few basic question. Why can©t we see antimatter in the Universe? No antimatter signatures have been observed in diffuse cosmic gamma rays, charged cosmic rays, or cosmic microwave background. No trace of ªantigalaxiesº within 3 billion light years... ● the word is ªbarionically asymmetricº ● CP violation is not enough strong to explain it: we have to find an other explanation...