Identification of Novel Monoamine Oxidase B Inhibitors from Ligand Based Virtual Screening

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Novel Monoamine Oxidase B Inhibitors from Ligand Based Virtual Screening Identification of novel monoamine oxidase B inhibitors from ligand based virtual screening A thesis submitted to Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Mohammed Alaasam August, 2014 Thesis written by Mohammed Alaasam B.S., University of Baghdad, 2007 M.S., Kent State University, 2014 Approved by Werner Geldenhuys , Chair, Master’s Thesis Committee Richard Carroll , Member, Master’s Thesis Committee Prabodh Sadana , Member, Master’s Thesis Committee Eric Mintz , Director, School of Biomedical Sciences James Blank , Dean, College of Arts and Sciences ii Table of Contents List of figure ...................................................................................................................... vi List of tables ..................................................................................................................... xiii Acknowledgments............................................................................................................ xiv Chapter one: Introduction ............................................................................................... 1 1.1.Parkinson's disease ....................................................................................................... 1 1.2.Monoamine oxidase enzymes ....................................................................................... 7 1.3.Structures of MAO enzymes ....................................................................................... 12 1.4.Three dimentiona structure of MAO-B enzyme ......................................................... 13 1.4.1. membrane binding domain ............................................................................ 14 1.4.2. FAD binding domain ..................................................................................... 16 1.4.2.1.Role of aromatic cage in MAO-B catalysis ........................................... 22 1.4.3. Substrate binding domain .............................................................................. 27 1.5.Structural comparison between human MAO-B and human MAO-A ....................... 34 1.5.1. Oligomeric state of MAO enzymes ............................................................... 35 1.5.2. Membrane binding domain structural differences ......................................... 36 1.5.3. FAD binding domain structural differences .................................................. 36 1.5.4. Substrate binding domain structural differences ........................................... 36 1.6.Neuroprotective effect of MAO-B inhibitors ............................................................. 39 iii 1.7.Oxidative deamination reaction of MAO enzymes .................................................... 41 1.7.1. Reductive half reaction .................................................................................. 42 1.7.1.1.Proposed mechanisms of Cα—H cleavage ............................................ 44 1.7.1.2.Polar nucleophilic mechanism ............................................................... 47 1.7.2. Oxidative half reaction .................................................................................. 49 1.8.Structural mechanism of MAO inhibtion ................................................................... 49 1.9.LSD1 enzyme .............................................................................................................. 54 1.9.1. Three dimensional structure of LSD1 ........................................................... 56 1.9.2. Substrate specificity of LSD1 enzyme .......................................................... 58 Chapter two: Methods and Materials ........................................................................... 62 2.1.Overview ..................................................................................................................... 62 2.2.Monoamine oxidase inhibition assay .......................................................................... 68 2.3.LSD1 inhibitor screening assay .................................................................................. 71 2.4.Docking studies ........................................................................................................... 73 2.5.Bovine serum albumin binding assay ......................................................................... 73 2.6.Parallel Artificial Membrane Permeability Assay (PAMPA) ..................................... 75 Chapter three: Results .................................................................................................... 78 3.1.MAO inhibition assay results...................................................................................... 78 3.1.1. MAO-B inhibition assay results .................................................................... 84 iv 3.1.2. MAO-A inhibition assay results .................................................................... 84 3.2. MAO-B docking studies results ............................................................................... 90 3.3. LSD1 inhibition assay results ................................................................................ 102 3.4. LSD1 docking studies results................................................................................. 104 3.5. Bovine serum albumin binding assay results ......................................................... 115 3.6. Parallel artificial membrane permeability assay results ......................................... 118 Chapter four: ................................................................................................................. 121 4.1.Discussion................................................................................................................. 121 4.2.Structure activity relationships ................................................................................. 140 Bibliography .................................................................................................................. 147 v List of figures Figure (1): Simple oxidative deamination reaction ............................................................ 9 Figure (2): MAO enzyme specifities for amine substrates. .............................................. 10 Figure 3: 3D structure of MAO-A as monomer and MAO-B as dimer ........................... 13 Figure (4): Three dimensional structure of MAO-B enzyme ........................................... 15 Figure (5): Covalent binding of MAO enzyme to isoalloxazine ring of FAD cofactor ... 16 Figure (6): Two dimesional representation of FAD incorporation in MAO-B enzyme ... 18 Figure (7): Three dimensional demonstration of phenolic side chain of Tyr398 in perpendicular position to flavin ring of MAO-B enzyme. ............................ 20 Figure (8): Covalent flavinylation of MAO-B enzyme .................................................... 21 Figure (9): Three dimensional representation of aromatic cage in MAO-B enzyme crystal structure (top view) ........................................................................................ 22 Figure (10): Proposed nucleophilic mechanism of reductive phase of MAO catalysis .... 23 Figure (11): Three dimensional representation of bent form of reduced flavin ring of MAO-B crystal structure ............................................................................... 24 Figure (12): Simplified demonstration of suggested role of aromatic cage in MAO-B catalysis .......................................................................................................... 25 Figure (13): P-nitrobenzylamine and P-nitrophenethylamine structures .......................... 26 Figure (14): Three dimentional image of MAO-B enzyme crystal to illustrate loop99-112, gating residues, entrance and substrate cavities ............................................ 28 Figure (15): Three dimensional reoresentation of Ile199 and Tyr326 .............................. 29 vi Figure (16): Three dimensional representation of (A) open and (B) close conformation of Ile199 side chain of MAO-B enzyme ............................................................................... 31 Figure (17): Comparison of MAO-A monopartite and MAO-B dipartite active sites cavities ........................................................................................................... 33 Figure (18): Metabolic pathway of dopamine with its precursors and metabolites .......... 40 Figure (19): Metabolic action of MAO-B enzyme on MPTP ........................................... 41 Figure (20): Oxidation-reduction reaction of flavin ring of FAD cofactor ...................... 42 Figure (21):Oxidative deamination reaction mediated by MAO enzymes ....................... 43 Figure (22): Proposed hydride mechanism of Cα—H cleavage reaction of reductive half reaction in flavoenzymes ............................................................................... 44 Figure (23): Proposed heterolytic proton abstraction (single electron transfer) of Cα—H cleavage reaction of reductive half reaction in flavoenzymes ....................... 45 Figure (24): Proposed heterolytic hydrogen abstraction of Cα—H cleavage reaction of reductive half reaction in flavoenzymes ........................................................ 46 Figure (25): Proposed polar nucleophilic mechanism of reductive half reaction in MAO enzymes catalysis ........................................................................................... 48 Figure (26): Rasagiline,
Recommended publications
  • Novel Neuroprotective Compunds for Use in Parkinson's Disease
    Novel neuroprotective compounds for use in Parkinson’s disease A thesis submitted to Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Ahmed Shubbar December, 2013 Thesis written by Ahmed Shubbar B.S., University of Kufa, 2009 M.S., Kent State University, 2013 Approved by ______________________Werner Geldenhuys ____, Chair, Master’s Thesis Committee __________________________,Altaf Darvesh Member, Master’s Thesis Committee __________________________,Richard Carroll Member, Master’s Thesis Committee ___Eric_______________________ Mintz , Director, School of Biomedical Sciences ___Janis_______________________ Crowther , Dean, College of Arts and Sciences ii Table of Contents List of figures…………………………………………………………………………………..v List of tables……………………………………………………………………………………vi Acknowledgments.…………………………………………………………………………….vii Chapter 1: Introduction ..................................................................................... 1 1.1 Parkinson’s disease .............................................................................................. 1 1.2 Monoamine Oxidases ........................................................................................... 3 1.3 Monoamine Oxidase-B structure ........................................................................... 8 1.4 Structural differences between MAO-B and MAO-A .............................................13 1.5 Mechanism of oxidative deamination catalyzed by Monoamine Oxidases ............15 1 .6 Neuroprotective effects
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0253056A1 Nemas Et Al
    US 20130253 056A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0253056A1 Nemas et al. (43) Pub. Date: Sep. 26, 2013 (54) CONTINUOUS ADMINISTRATION OF (60) Provisional application No. 61/179,511, filed on May LEVODOPA AND/OR DOPA 19, 2009. DECARBOXYLASE INHIBITORS AND COMPOSITIONS FOR SAME Publication Classification (71) Applicant: NEURODERM, LTD., Ness-Ziona (IL) (51) Int. Cl. A63L/216 (2006.01) (72) Inventors: Mara Nemas, Gedera (IL); Oron (52) U.S. Cl. Yacoby-Zeevi, Moshav Bitsaron (IL) CPC .................................... A6 IK3I/216 (2013.01) USPC .......................................................... 514/538 (73) Assignee: Neuroderm, Ltd., Ness-Ziona (IL) (57) ABSTRACT (21) Appl. No.: 13/796,232 Disclosed herein are for example, liquid aqueous composi (22) Filed: Mar 12, 2013 tions that include for example an ester or salt of levodopa, or an ester or salt of carbidopa, and methods for treating neuro Related U.S. Application Data logical or movement diseases or disorders such as restless leg (63) Continuation-in-part of application No. 12/961,534, syndrome, Parkinson's disease, secondary parkinsonism, filed on Dec. 7, 2010, which is a continuation of appli Huntington's disease, Parkinson's like syndrome, PSP. MSA, cation No. 12/836,130, filed on Jul. 14, 2010, now Pat. ALS, Shy-Drager syndrome, dystonia, and conditions result No. 7,863.336, which is a continuation of application ing from brain injury including carbon monoxide or manga No. 12/781,357, filed on May 17, 2010, now Pat. No. nese intoxication, using Substantially continuous administra 8,193,243. tion of levodopa and/or carbidopa or ester and/or salt thereof.
    [Show full text]
  • Screening of a Composite Library of Clinically Used Drugs and Well
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Pharmacol Manuscript Author Res. Author Manuscript Author manuscript; available in PMC 2017 November 01. Published in final edited form as: Pharmacol Res. 2016 November ; 113(Pt A): 18–37. doi:10.1016/j.phrs.2016.08.016. Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer Nadiya Druzhynaa, Bartosz Szczesnya, Gabor Olaha, Katalin Módisa,b, Antonia Asimakopoulouc,d, Athanasia Pavlidoue, Petra Szoleczkya, Domokos Geröa, Kazunori Yanagia, Gabor Töröa, Isabel López-Garcíaa, Vassilios Myrianthopoulose, Emmanuel Mikrose, John R. Zatarainb, Celia Chaob, Andreas Papapetropoulosd,e, Mark R. Hellmichb,f, and Csaba Szaboa,f,* aDepartment of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA bDepartment of Surgery, The University of Texas Medical Branch, Galveston, TX, USA cLaboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece dCenter of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece eNational and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece fCBS Therapeutics Inc., Galveston, TX, USA Abstract Cystathionine-β-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no
    [Show full text]
  • Parkinson Disease-Associated Cognitive Impairment
    PRIMER Parkinson disease-associated cognitive impairment Dag Aarsland 1,2 ✉ , Lucia Batzu 3, Glenda M. Halliday 4, Gert J. Geurtsen 5, Clive Ballard 6, K. Ray Chaudhuri 3 and Daniel Weintraub7,8 Abstract | Parkinson disease (PD) is the second most common neurodegenerative disorder, affecting >1% of the population ≥65 years of age and with a prevalence set to double by 2030. In addition to the defining motor symptoms of PD, multiple non-motor symptoms occur; among them, cognitive impairment is common and can potentially occur at any disease stage. Cognitive decline is usually slow and insidious, but rapid in some cases. Recently, the focus has been on the early cognitive changes, where executive and visuospatial impairments are typical and can be accompanied by memory impairment, increasing the risk for early progression to dementia. Other risk factors for early progression to dementia include visual hallucinations, older age and biomarker changes such as cortical atrophy, as well as Alzheimer-type changes on functional imaging and in cerebrospinal fluid, and slowing and frequency variation on EEG. However, the mechanisms underlying cognitive decline in PD remain largely unclear. Cortical involvement of Lewy body and Alzheimer-type pathologies are key features, but multiple mechanisms are likely involved. Cholinesterase inhibition is the only high-level evidence-based treatment available, but other pharmacological and non-pharmacological strategies are being tested. Challenges include the identification of disease-modifying therapies as well as finding biomarkers to better predict cognitive decline and identify patients at high risk for early and rapid cognitive impairment. Parkinson disease (PD) is the most common movement The full spectrum of cognitive impairment occurs in disorder and the second most common neurodegenera­ individuals with PD, from subjective cognitive decline tive disorder after Alzheimer disease (AD).
    [Show full text]
  • The Self-Inhibitory Nature of Metabolic Networks and Its Alleviation Through Compartmentalization
    ARTICLE Received 30 Oct 2016 | Accepted 23 May 2017 | Published 10 Jul 2017 DOI: 10.1038/ncomms16018 OPEN The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization Mohammad Tauqeer Alam1,2, Viridiana Olin-Sandoval1,3, Anna Stincone1,w, Markus A. Keller1,4, Aleksej Zelezniak1,5,6, Ben F. Luisi1 & Markus Ralser1,5 Metabolites can inhibit the enzymes that generate them. To explore the general nature of metabolic self-inhibition, we surveyed enzymological data accrued from a century of experimentation and generated a genome-scale enzyme-inhibition network. Enzyme inhibition is often driven by essential metabolites, affects the majority of biochemical processes, and is executed by a structured network whose topological organization is reflecting chemical similarities that exist between metabolites. Most inhibitory interactions are competitive, emerge in the close neighbourhood of the inhibited enzymes, and result from structural similarities between substrate and inhibitors. Structural constraints also explain one-third of allosteric inhibitors, a finding rationalized by crystallographic analysis of allosterically inhibited L-lactate dehydrogenase. Our findings suggest that the primary cause of metabolic enzyme inhibition is not the evolution of regulatory metabolite–enzyme interactions, but a finite structural diversity prevalent within the metabolome. In eukaryotes, compartmentalization minimizes inevitable enzyme inhibition and alleviates constraints that self-inhibition places on metabolism. 1 Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK. 2 Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. 3 Department of Food Science and Technology, Instituto Nacional de Ciencias Me´dicas y Nutricio´n Salvador Zubira´n, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico.
    [Show full text]
  • Gait Analysis in Advanced Parkinson's Disease – Effect of Levodopa And
    ORIGINAL ARTICLE Gait Analysis in Advanced Parkinson’s Disease – Effect of Levodopa and Tolcapone Din-E Shan, Shwn-Jen Lee, Ling-Yi Chao, and Shyh-Ing Yeh ABSTRACT: Objective: To determine the therapeutic effect of levodopa/benserazide and tolcapone on gait in patients with advanced Parkinson’s disease. Methods: Instrumental gait analysis was performed in 38 out of 40 patients with wearing-off phenomenon during a randomized, double-blind, placebo- controlled trial of tolcapone. R e s u l t s : Gait analysis disclosed a significant improvement by levodopa/benserazide in walking speed, stride length and the range of motion of hip, knee and ankle joints. At the end of the study, both the UPDRS motor scores during off-period and the percentage of off time improved significantly using tolcapone. However, gait analysis could not confirm this improvement. With respect to levodopa/benserazide effect, the reduction in rigidity correlated with improved angular excursion of the ankle, whereas the decreased bradykinesia correlated with improved stride length and angular excursion of the hip and knee joints. Conclusion: The results of our gait analysis confirmed that in parkinsonian patients with fluctuating motor symptoms levodopa/benserazide, but not tolcapone, produced a substantial improvement. RÉSUMÉ: Analyse de la démarche chez les patients en phase avancée de la maladie de Parkinson – Effet de la lévodopa et du tolcapone. Objectif: Le but de cette étude était de déterminer l’effet thérapeutique de la lévodopa/bensérazide et du tolcapone sur la démarche, chez les patients en phase avancée de la maladie de Parkinson. Méthodes: Une analyse instrumentale de la démarche a été réalisée chez 38 de 40 patients ayant un phénomène de détérioration de fin de dose pendant un essai randomisé, en double insu, contrôlé par placebo, du tolcapone.
    [Show full text]
  • Plant Protease Inhibitors: a Defense Strategy in Plants
    Biotechnology and Molecular Biology Review Vol. 2 (3), pp. 068-085, August 2007 Available online at http://www.academicjournals.org/BMBR ISSN 1538-2273 © 2007 Academic Journals Standard Review Plant protease inhibitors: a defense strategy in plants Huma Habib and Khalid Majid Fazili* Department of Biotechnology, The University of Kashmir, P/O Naseembagh, Hazratbal, Srinagar -190006, Jammu and Kashmir, India. Accepted 7 July, 2007 Proteases, though essentially indispensable to the maintenance and survival of their host organisms, can be potentially damaging when overexpressed or present in higher concentrations, and their activities need to be correctly regulated. An important means of regulation involves modulation of their activities through interaction with substances, mostly proteins, called protease inhibitors. Some insects and many of the phytopathogenic microorganisms secrete extracellular enzymes and, in particular, enzymes causing proteolytic digestion of proteins, which play important roles in pathogenesis. Plants, however, have also developed mechanisms to fight these pathogenic organisms. One important line of defense that plants have to fight these pathogens is through various inhibitors that act against these proteolytic enzymes. These inhibitors are thus active in endogenous as well as exogenous defense systems. Protease inhibitors active against different mechanistic classes of proteases have been classified into different families on the basis of significant sequence similarities and structural relationships. Specific protease inhibitors are currently being overexpressed in certain transgenic plants to protect them against invaders. The current knowledge about plant protease inhibitors, their structure and their role in plant defense is briefly reviewed. Key words: Proteases, enzymes, protease inhibitors, serpins, cystatins, pathogens, defense. Table of content 1.
    [Show full text]
  • 210913Orig1s000 CLINICAL PHARMACOLOGY REVIEW(S)
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 210913Orig1s000 CLINICAL PHARMACOLOGY REVIEW(S) Office of Clinical Pharmacology Review NDA Number 212489 Link to EDR \\cdsesub1\evsprod\nda212489 Submission Date 04/26/2019 Submission Type 505(b)(1) NME NDA (Standard Review) Brand Name ONGENTYS Generic Name opicapone Dosage Form/Strength and Capsules: 25 mg and 50 mg Dosing Regimen 50 mg administered orally once daily at bedtime Route of Administration Oral Proposed Indication Adjunctive treatment to levodopa/carbidopa in patients with Parkinson’s Disease experiencing “OFF” episodes Applicant Neurocrine Biosciences, Inc. (NBI) Associated IND IND (b) (4) OCP Review Team Mariam Ahmed, Ph.D. Atul Bhattaram, Ph.D. Sreedharan Sabarinath, Ph.D. OCP Final Signatory Mehul Mehta, Ph.D. 1 Reference ID: 4585182 Table of Contents 1. EXECUTIVE SUMMARY .............................................................................................................................................................. 4 1.1 Recommendations ..................................................................................................................................................... 4 1.2 Post-Marketing Requirements and Commitments ......................................................................................... 6 2. SUMMARY OF CLINICAL PHARMACOLOGY ASSESSMENT ............................................................................................. 6 2.1 Pharmacology and Clinical Pharmacokinetics ..................................................................................................
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0165511 A1 Lederman Et Al
    US 2013 O165511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0165511 A1 Lederman et al. (43) Pub. Date: Jun. 27, 2013 (54) TREATMENT FOR COCANE ADDICTION Publication Classification (75) Inventors: Seth Lederman, NEW York, NY (US); (51) Int. Cl. Herbert Harris, Chapel Hill, NC (US) A63/37 (2006.01) A63/6 (2006.01) (73) Assignee: TONIX Pharmaceuticals Holding (52) U.S. Cl. Corp, New York, NY (US) CPC ............... A61K 31/137 (2013.01); A61K3I/I6 (2013.01) (21) Appl. No.: 13/820,338 USPC ........................................... 514/491; 514/654 (22) PCT Fled: Aug. 31, 2011 (57) ABSTRACT (86) PCT NO.: PCT/US11/O1529 A novel pharmaceutical composition is provided for the con S371 (c)(1), trol of stimulant effects, in particular treatment of cocaine (2), (4) Date: Mar. 1, 2013 addiction, or further to treatment of both cocaine and alcohol dependency, including simultaneous therapeutic dose appli Related U.S. Application Data cation or a single dose of a combined therapeutically effective (60) Provisional application No. 61/379,095, filed on Sep. composition of disulfiram and selegiline compounds or phar 1, 2010. maceutically acceptable non-toxic salt thereof. US 2013/01655 11 A1 Jun. 27, 2013 TREATMENT FOR COCANE ADDCTION the United States in 2005. In the sense of this invention the term “addiction' may be defined as a compulsive drug taking CROSS-REFERENCE TO RELATED or abuse condition related to “reward’ system of the afflicted APPLICATIONS: patient. The treatment of cocaine addiction or dependency 0001. The present application which claims priority from has targeted a lowering of dopaminergic tone to help decrease U.S.
    [Show full text]
  • Effect of Statins and ACE Inhibitors Alone and in Combination on Clinical Outcome in Patients with Coronary Heart Disease
    Journal of Human Hypertension (2004) 18, 781–788 & 2004 Nature Publishing Group All rights reserved 0950-9240/04 $30.00 www.nature.com/jhh ORIGINAL ARTICLE Effect of statins and ACE inhibitors alone and in combination on clinical outcome in patients with coronary heart disease VG Athyros1, DP Mikhailidis3, AA Papageorgiou2, VI Bouloukos1, AN Pehlivanidis1, AN Symeonidis4 and M Elisaf5, for the GREACE Study Collaborative Group 1Atherosclerosis Unit, Aristotelian University, Hippocration Hospital, Thessaloniki, Greece; 2Department of Clinical Biochemistry, Royal Free Hospital, Royal Free and University College Medical School, Pond Street, London, UK; 32nd Propedeutic Department of Internal Medicine, Aristotelian University, Hippocration Hospital, Thessaloniki, Greece; 4Greek Society of General Practitioners, Thessaloniki, Greece; 5Department of Internal Medicine, Medical School, University of Ioannina, Greece We assessed the ‘synergy’ of statins and angiotensin- point in group A was 31%, (95% CI À48 to À6%, P ¼ 0.01) converting enzyme inhibitors (ACEI) in reducing vascu- in comparison to group B, 59% (95% CI À72 to À48%, lar events in patients with coronary heart disease (CHD). Po0.0001) to group C and 63% (95% CI À74 to À51%, The GREek Atorvastatin and CHD Evaluation (GREACE) Po0.0001) to group D. There was no significant Study, suggested that aggressive reduction of low difference in RRR between groups C and D (9%, CI density lipoprotein cholesterol to 2.59 mmol/l À27–10%, P ¼ 0.1). Other factors (eg the blood pressure) (o100 mg/dl) significantly reduces morbidity and mor- that can influence clinical outcome did not differ tality in CHD patients, in comparison to undertreated significantly between the four treatment groups.
    [Show full text]
  • Azilect, INN-Rasagiline
    SCIENTIFIC DISCUSSION 1. Introduction AZILECT is indicated for the treatment of idiopathic Parkinson’s disease (PD) as monotherapy (without levodopa) or as adjunct therapy (with levodopa) in patients with end of dose fluctuations. Rasagiline is administered orally, at a dose of 1 mg once daily with or without levodopa. Parkinson’s disease is a common neurodegenerative disorder typified by loss of dopaminergic neurones from the basal ganglia, and by a characteristic clinical syndrome with cardinal physical signs of resting tremor, bradikinesia and rigidity. The main treatment aims at alleviating symptoms through a balance of anti-cholinergic and dopaminergic drugs. Parkinson’s disease (PD) treatment is complex due to the progressive nature of the disease, and the array of motor and non-motor features combined with early and late side effects associated with therapeutic interventions. Rasagiline is a chemical inhibitor of the enzyme monoamine oxidase (MAO) type B which has a major role in the inactivation of biogenic and diet-derived amines in the central nervous system. MAO has two isozymes (types A and B) and type B is responsible for metabolising dopamine in the central nervous system; as dopamine deficiency is the main contributing factor to the clinical manifestations of Parkinson’s disease, inhibition of MAO-B should tend to restore dopamine levels towards normal values and this improve the condition. Rasagiline was developed for the symptomatic treatment of Parkinson’s disease both as monotherapy in early disease and as adjunct therapy to levodopa + aminoacids decarboxylase inhibitor (LD + ADI) in patients with motor fluctuations. 2. Quality Introduction Drug Substance • Composition AZILECT contains rasagiline mesylate as the active substance.
    [Show full text]
  • 3 Drugs That May Cause Delirium Or Problem Behaviors CARD 03 19 12 JUSTIFIED.Pub
    Drugs that May Cause Delirium or Problem Behaviors Drugs that May Cause Delirium or Problem Behaviors This reference card lists common and especially problemac drugs that may Ancholinergics—all drugs on this side of the card. May impair cognion cause delirium or contribute to problem behaviors in people with demena. and cause psychosis. Drugs available over‐the‐counter marked with * This does not always mean the drugs should not be used, and not all such drugs are listed. If a paent develops delirium or has new problem Tricyclic Andepressants Bladder Anspasmodics behaviors, a careful review of all medicaons is recommended. Amitriptyline – Elavil Darifenacin – Enablex Be especially mindful of new medicaons. Clomipramine – Anafranil Flavoxate – Urispas Desipramine – Norpramin Anconvulsants Psychiatric Oxybutynin – Ditropan Doxepin – Sinequan Solifenacin – VESIcare All can cause delirium, e.g. All psychiatric medicaons should be Imipramine – Tofranil Tolterodine – Detrol Carbamazepine – Tegretol reviewed as possible causes, as Nortriptyline – Aventyl, Pamelor Gabapenn – Neuronn effects are unpredictable. Trospium – Sanctura Anhistamines / Allergy / Leveracetam – Keppra Notable offenders include: Insomnia / Sleep Valproic acid – Depakote Benzodiazepines e.g. Cough & Cold Medicines *Diphenhydramine – Sominex, ‐Alprazolam – Xanax *Azelasne – Astepro Pain Tylenol‐PM, others ‐Clonazepam – Klonopin *Brompheniramine – Bromax, All opiates can cause delirium if dose *Doxylamine – Unisom, Medi‐Sleep ‐Lorazepam – Avan Bromfed, Lodrane is too high or
    [Show full text]