Reflecting on the DARPA Red Balloon Challenge

Total Page:16

File Type:pdf, Size:1020Kb

Reflecting on the DARPA Red Balloon Challenge contributed articles Doi:10.1145/1924421.1924441 how more recent developments (such Finding 10 balloons across the U.S. illustrates as social media and crowdsourcing) could be used to solve challenging how the Internet has changed the way problems involving distributed geo- we solve highly distributed problems. locations. Since the Challenge was an- nounced only about one month before By John C. tanG, manueL Cebrian, nicklaus a. GiaCoBe, the balloons were deployed, it was not hyun-Woo Kim, taemie Kim, anD Douglas “BeaKeR” WickeRt only a timed contest to find the bal- loons but also a time-limited challenge to prepare for the contest. Both the dif- fusion of how teams heard about the Challenge and the solution itself dem- Reflecting onstrated the relative effectiveness of mass media and social media. The surprising efficiency of apply- ing social networks of acquaintances on the DaRPa to solve widely distributed tasks was demonstrated in Stanley Milgram’s celebrated work9 popularizing the no- tion of “six degrees of separation”; that is, it typically takes no more than six in- Red Balloon termediaries to connect any arbitrary pair of people. Meanwhile, the Internet and other communication technolo- gies have emerged that increase the Challenge ease and opportunity for connections. These developments have enabled crowdsourcing—aggregating bits of information across a large number of users to create productive value—as a popular mechanism for creating en- cyclopedias of information (such as ThE 2009 dARPA Red Balloon Challenge (also known Wikipedia) and solving other highly distributed problems.1 as the DARPA Network Challenge) explored how the The Challenge was announced at the Internet and social networking can be used to solve “40th Anniversary of the Internet” event a distributed, time-critical, geo-location problem. (http://www.engineer.ucla.edu/IA40/ index.html). On December 5, 2009, at Teams had to find 10 red weather balloons deployed 10:00 a.m. Eastern time, 10 numbered, at undisclosed locations across the continental U.S. eight-foot-diameter red weather bal- The first team to correctly identify the locations of loons were deployed at moored loca- all 10 would win a $40,000 prize. A team from the key insights Massachusetts Institute of Technology (MIT) won in Crowdsourcing, social networking, and traditional media enabled teams less than nine hours (http://networkchallenge.darpa. to quickly find 10 weather balloons mil/). Here, we reflect on lessons learned from the scattered across the u.s. a Besides finding the balloons, P strategies used by the various teams. dar distinguishing correct balloon sightings F The Challenge commemorated the 40th anniversary from misleading claims turned out to be an important part of the effort. of the first remote log-in to the ARPANet (October 29, Variations in the strategies of the h courtesy o P competing teams reflected differences ra 1969), an event widely heralded as the birth of the G in how social media can be tailored Internet. The Challenge was designed to identify to fit a given task. Photo 78 CommuniCations oF the aCm | April 2011 | vol. 54 | nO. 4 tions across the continental U.S. (see each balloon and an attendant at each fied the location of all of them in eight Figure 1). DARPA selected readily ac- balloon issuing certificates). Teams hours, 52 minutes, 41 seconds. A team cessible public sites where the balloons submitted their guesses to a DARPA from the Georgia Tech Research Insti- would be visible from nearby roads, Web site and were given feedback as to tute (GTRI) placed second by locating each staffed by a DARPA agent who which balloons had been identified cor- nine balloons within nine hours. Two would issue a certificate validating each rectly. While the balloons were sched- more teams found eight balloons, five balloon location. While general infor- uled to be taken down at 5:00 p.m. local teams found seven balloons, and the mation about the Challenge (such as time, DARPA was prepared to re-deploy iSchools team (representing Pennsyl- date and time of the deployment, with them a second day and leave the sub- vania State University, University of a picture of a balloon) had already been mission process open for up to a week Illinois at Urbana-Champaign, Univer- distributed, some details were not an- until a team identified all 10. sity of Pittsburgh, Syracuse University, nounced (such as DARPA’s banner on The team from MIT correctly identi- and University of North Carolina at april 2011 | vol. 54 | nO. 4 | CommuniCations oF the aCm 79 contributed articles platform for viral collaboration that used recursive incentives to align the public’s interest with the goal of win- ning the Challenge. This approach was inspired by the work of Peter S. Dodds et al.5 that found that success in us- ing social networks to tackle widely distributed search problems depends on individual incentives. The work of Mason and Watts7 also informed the use of financial incentives to motivate crowdsourcing productivity. The MIT team’s winning strategy was to use the prize money as a finan- cial incentive structure rewarding not only the people who correctly located balloons but also those connecting Figure 1. Locations in the DaRPa Red Balloon Challenge. the finder to the MIT team. Should the team win, they would allocate $4,000 Figure 2. example recursive incentive-structure process for the mit team. in prize money to each balloon. They promised $2,000 per balloon to the first person to send in the correct Alice wins $750 ALICE balloon coordinates. They promised Bob wins $500 $250 $1,000 to the person who invited that Carol wins $1,000 $500 balloon finder onto the team, $500 Dave wins $2,000 to whoever invited the inviter, $250 to whoever invited that person, and so on. Any remaining reward money would be donated to charity. BOB $1,000 $500 Figure 2 outlines an example of this recursive incentive structure. Alice joins the team and is given an invite link, like http://balloon.mit.edu/alice. Alice then emails her link to Bob, who Another CAROL balloon uses it to join the team as well. Bob $2,000 $1,000 found! gets a unique link, like http://balloon. mit.edu/bob, and posts it on Face- book. His friend Carol sees it, signs up, then twitters about http://balloon.mit. edu/carol. Dave uses Carol’s link to dAvE Balloon $2,000 join, then spots one of the DARPA bal- found! loons. Dave is the first person to report the balloon’s location to the MIT team, helping it win the Challenge. Once that happens, the team sends Dave Chapel Hill) finished tenth by locating balloon sightings, and the role of so- $2,000 for finding the balloon. Carol six balloons. cial networking tools in their process. gets $1,000 for inviting Dave, Bob gets Two months later, at the Comput- While the GTRI team was unavailable $500 for inviting Carol, and Alice gets er-Supported Cooperative Work Con- for this article, we report on what they $250 for inviting Bob. The remaining ference (http://www.cscw2010.org/) shared at the CSCW session and pub- $250 is donated to charity. in Savannah, GA, a special session lished elsewhere.6,11,12 The recursive incentive structure dedicated to lessons learned from the differed from the direct-reward op- Challenge brought together represen- mit team tion of giving $4,000 per balloon tatives from the winning MIT team, The MIT team learned about the Chal- found in two key ways: First, a direct the GTRI team, and the iSchools team lenge only a few days before the bal- reward might actually deter people to compare and contrast among the loons were deployed and developed a from spreading the word about the strategies and experiences across the strategy that emphasized both speed MIT team, as any new person recruit- teams. There, members of the MIT (in terms of number of people recruit- ed would be extra competition for the and iSchools teams reflected on their ed) and breadth (covering as much U.S. reward. Second, it would eliminate strategies, how they validated their geography as possible). They set up a people living outside the U.S., as there 80 CommuniCations oF the aCm | April 2011 | vol. 54 | nO. 4 contributed articles was no possibility of them spotting a used involved comparing the IP ad- Many submissions included pic- balloon. These two factors played a dress of the submission with where tures, some contrived to confirm mis- key role in the success of the MIT ap- a balloon was reported found; for ex- leading submissions. Most altered pic- proach, as illustrated by the fact that ample, one submission reporting a tures involved shots of a balloon from the depth of the tree of invites went up balloon in Florida came from an IP ad- a distance and lacked the DARPA agent to 15 people, and approximately one dress in the Los Angeles area. A simple holding the balloon and the DARPA of three tweets spreading information IP trace and common sense filtered banner (an unannounced detail). Fig- about the team originated outside the out such false submissions. ure 4 shows examples of authentic and U.S. Distributing the reward money more broadly motivated a much larger Figure 3. typical real (top) and false (bottom) locations of balloons, with bottom map depicting five submissions with identical locations. number of people (more than 5,000) to join the team, including some from outside of the U.S. who could be re- warded for simply knowing someone who could find a balloon. This strategy combined the incentive of personal gain with the power of social networks to connect people locating each bal- loon with the MIT team.
Recommended publications
  • Recursive Incentives and Innovation in Social Networks
    Recruiting Hay to Find Needles: Recursive Incentives and Innovation in Social Networks Erik P. Duhaime1, Brittany M. Bond1, Qi Yang1, Patrick de Boer2, & Thomas W. Malone1 1Massachusetts Institute of Technology 2University of Zurich Finding innovative solutions to complex problems is often about finding people who have access to novel information and alternative viewpoints. Research has found that most people are connected to each other through just a few degrees of separation, but successful social search is often difficult because it depends on people using their weak ties to make connections to distant social networks. Recursive incentive schemes have shown promise for social search by motivating people to use their weak ties to find distant targets, such as specific people or even weather balloons placed at undisclosed locations. Here, we report on a case study of a similar recursive incentive scheme for finding innovative ideas. Specifically, we implemented a competition to reward individual(s) who helped refer Grand Prize winner(s) in MIT’s Climate CoLab, an open innovation platform for addressing global climate change. Using data on over 78,000 CoLab members and over 36,000 people from over 100 countries who engaged with the referral contest, we find that people who are referred using this method are more likely than others both to submit proposals and to submit high quality proposals. Furthermore, we find suggestive evidence that among the contributors referred via the contest, those who had more than one degree of separation from a pre-existing CoLab member were more likely to submit high quality proposals. Thus, the results from this case study are consistent with the theory that people from distant networks are more likely to provide innovative solutions to complex problems.
    [Show full text]
  • Eliciting and Detecting Affect in Covert and Ethically Sensitive Situations
    ELICITING AND DETECTING AFFECT IN COVERT AND ETHICALLY SENSITIVE SITUATIONS by Philip Charles Davis B.S., Physics Brown University, 2000 B.A., Mathematics Brown University, 2000 Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning in Partial Fulfillment of the Requirements for the Degree of Master of Science in Media Arts and Sciences at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2005 © 2005 Massachusetts Institute of Technology. All Rights reserved Author Program in Media Arts & Sciences May 6, 2005 Certified by Dr. Rosalind W. Picard Associate Professor of Media Arts and Sciences Program in Media Arts and Sciences Thesis Supervisor Accepted by Dr. Andrew P. Lippman Chair, Departmental Committee on Graduate Students Program in Media Arts & Sciences 2 ELICITING AND DETECTING AFFECT IN COVERT AND ETHICALLY SENSITIVE SITUATIONS by Philip Charles Davis Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning on May 6, 2005, in partial fulfillment of the requirements for the degree of Master of Science Abstract There is growing interest in creating systems that can sense the affective state of a user for a variety of applications. As a result, a large number of studies have been conducted with the goals of eliciting specific affective states, measuring sensor data associated with those states, and building algorithms to predict the affective state of the user based on that sensor data. These studies have usually focused on recognizing relatively unambiguous emotions, such as anger, sadness, or happiness. These studies are also typically conducted with the subject’s awareness that the sensors are recording data related to affect.
    [Show full text]
  • Product Grammar: Constructing and Mapping Solution Spaces
    Product Grammar: Constructing and Mapping Solution spaces By Ryan C.C. Chin Master of Architecture MIT, 2000 Bachelor of Science in Architecture & Bachelor of Civil Engineering The Catholic University of America, 1997 SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES, SCHOOL OF ARCHITECTURE AND PLANNING, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2004 2004 Massachusetts Institute of Technology. All rights reserved. Signature of Author: __________________________________________________________________________ MIT Program in Media Arts and Sciences August 13, 2004 Certified by: __________________________________________________________________________________ William J. Mitchell Professor of Architecture and Media Arts and Sciences Academic Head, Program in Media Arts and Sciences, MIT Media Lab Accepted by: _________________________________________________________________________________ Andrew B. Lippman Chair, Departmental Committee on Graduate Students 2 Product Grammar: Constructing and Mapping Solution spaces By Ryan C.C. Chin Master of Architecture MIT, 2000 Bachelor of Science in Architecture & Bachelor of Civil Engineering The Catholic University of America, 1997 Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning on August 13, 2004 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Media Arts and Sciences ABSTRACT Developing a design methodology
    [Show full text]
  • Invited Talk Prof
    MCTS Munich Center for Technology in Society Technische Universität München Invited Talk Prof. Danielle Wood Head, Space Enabled Group Media Lab, Massachusetts Institute of Technology (MIT) Designing Complex Systems to Apply Space Technology for Sustainable Development The presentation outlines the research agenda of the new Space Enabled Research Group of the MIT Media Lab. Space Enabled is built on the premise that technology from the space sector has the potential to contribute profoundly to reaching the United Nations’ Sustainable Development Goals. Six space technologies are already being used to support sustainable development. The Space Enabled Research Group implements projects with development leaders at the multi-lateral, national, regional and local scale. During these projects, Space Enabled implements an integrated design process that includes techniques from engineering design, art, social science, complex systems modeling, satellite engineering and data science. This work includes creating new applications of space for development, new methods to apply complex systems modeling and new approaches within satellite engineering. Professor Danielle Wood serves as an Assistant Professor in the Program in Media Arts and Sciences within the Media Lab at the Massachusetts Institute of Technology. Within the Media Lab, Prof. Wood leads the Space Enabled Research Group which seeks to advance justice in earth's complex systems using designs enabled by space. Prof. Wood is a scholar of societal development with a background that includes satellite design, earth science applications, systems engineering, and technology policy. In her research, Prof. Wood applies these skills to design systems that harness space technology to address development challenges around the world. Most recently, Prof.
    [Show full text]
  • Dhruv Jain — CV Portfolio: Dhruvjain.Info/Portfolio
    Dhruv Jain | CV portfolio: dhruvjain.info/portfolio Contact Research Assistant, MS in Media Arts and Sciences Information Media Lab Massachusetts Institute of Technology Email: [email protected] Research Human Computer Interaction, Persuasive Computing, Design and Prototyping, Assistive Technology Interests Education and MIT Media Lab Sep 2014 { Jun 2016 Professional Masters, Media Arts and Sciences Advisor: Chris Schmandt, GPA: 5.0/5.0 Experience University of Maryland, College Park May 2014 { Aug 2014 Research Internship Advisors: Jon Froehlich, Leah Findlater Indian Institute of Technology Delhi May 2013 { Apr 2014 Research Associate Advisors: M. Balakrishnan, P.V.M. Rao Microsoft Research India, Bangalore Aug 2013 { Dec 2013 Research Internship Advisors: Kalika Bali, Bill Thies, Ed Cutrell David and Lucile Packard Foundation, Delhi Jun 2013 { Aug 2013 Desk Research Advisor: Aaditeshwar Seth Indian Institute of Technology Delhi Jul 2009 { May 2013 B.Tech, Computer Science and Engineering GPA: 9.231/10.0; Class Rank: 3/81 University of Wisconsin-Madison May 2012 { Aug 2012 Summer Internship Advisor: Vinay Ribeiro Stanford India Biodesign, AIIMS, Delhi Dec 2011 { Jan 2012 Visiting Researcher Publications Dhruv Jain and Chris Schmandt, \JogCall: Persuasive System for Couples to Jog Together", In and Poster Adjunct Proceedings of the 10th International Conference on Persuasive Technology Presentations (PERSUASIVE), 2015. Dhruv Jain, Leah Findlater, Jamie Gilkeson, Benjamin Holland, Ramani Duraiswami, Dmitry Zotkin, Christian Vogler and Jon Froehlich, \Head-Mounted Display Visualizations to Support Sound Awareness for the Deaf and Hard of Hearing", In Proceedings of the ACM Conference on Hu- man Factors in Computing Systems (CHI), 2015. Dhruv Jain, \Pilot Evaluation of a Path-Guided Indoor Navigation System for Visually Impaired in a Public Museum", In Poster Proceedings of the ACM SIGACCESS conference on Com- puters and accessibility (ASSETS), 2014.
    [Show full text]
  • A Survey of Systemic Risk Analytics
    OFFICE OF FINANCIAL RESEARCH U.S. DEPARTMENT OF THE TREASURY Office of Financial Research Working Paper #0001 January 5, 2012 A Survey of Systemic Risk Analytics 1 Dimitrios Bisias 2 Mark Flood 3 Andrew W. Lo 4 Stavros Valavanis 1 MIT Operations Research Center 2 Senior Policy Advisor, OFR, [email protected] 3 MIT Sloan School of Management, [email protected] 4 MIT Laboratory for Financial Engineering The Office of Financial Research (OFR) Working Paper Series allows staff and their co-authors to disseminate preliminary research findings in a format intended to generate discussion and critical comments. Papers in the OFR Working Paper Series are works in progress and subject to revision. Views and opinions expressed are those of the authors and do not necessarily represent official OFR or Treasury positions or policy. Comments are welcome as are suggestions for improvements, and should be directed to the authors. OFR Working Papers may be quoted without additional permission. www.treasury.gov/ofr A Survey of Systemic Risk Analytics∗ Dimitrios Bisias†, Mark Flood‡, Andrew W. Lo§, Stavros Valavanis¶ This Draft: January 5, 2012 We provide a survey of 31 quantitative measures of systemic risk in the economics and finance literature, chosen to span key themes and issues in systemic risk measurement and manage- ment. We motivate these measures from the supervisory, research, and data perspectives in the main text, and present concise definitions of each risk measure—including required inputs, expected outputs, and data requirements—in an extensive appendix. To encourage experimentation and innovation among as broad an audience as possible, we have developed open-source Matlab code for most of the analytics surveyed, which can be accessed through the Office of Financial Research (OFR) at http://www.treasury.gov/ofr.
    [Show full text]
  • BTO Peer Preview Speakers
    1 BTO Peer Preview MONDAY, NOVEMBER 16, 2020 VIRTUALLY AS GOOD AS THE REAL THI NG – REMOTE I NSPECTI O NS Steve Byers C EO , Ene rgyLogic St eve Byers is t he CEO of EnergyLogic, a Colorado based builder professional services company that specializes in energy, sust ainabilit y and risk management. He’s passionate about EnergyLogic and the impact it has t oday and will have t omorrow. He’s a graduate of the US Air Force Academy, started out wit h the Sout hface Institute and has served on a variety of indust ry boards and committees. His two daughters and his wife are all amazing humans that he loves very much. Jason Elton Senior Consultant, Earth Advantage Jason is a Senior Consultant at Earth Advantage. He helped create and implement Remote quality assurance and mentoring services at Earth Advantage. Jason has been actively working in the home performance industry for over 10 years. His field work includes energy audit ing, energy scoring, diagnostic testing, mentoring, t raining and qualit y assurance. Jason holds certifications from t he Building Performance Institute and is a qualified Home Energy Score Mentor. He and his wife are proud parents of three daughters and a yellow Lab. Valarie Evans Building Official, City of Las Vegas Valarie Evans is the City of North Las Vegas Building Official. Sh e is a Master Electrician and has been in the construction industry since 1985. A fun fact about Valarie is that she likes the crumbs at the bottom of the cereal box more than the cereal, and yes, she is all about the crust.
    [Show full text]
  • 2018Community Involvement Report
    MIT LINCOLN LABORATORY COMMUNITY 2018 INVOLVEMENT REPORT Contents MIT LINCOLN LABORATORY outreach // by the numbers 2018 Lincoln LaboratoryOUTREACH Outreach BY THE 2018 NUMBERS Scientists & engineers Hours per year supporting Donated to the American Military Fellows at volunteering STEM Heart Association Lincoln Laboratory 575 11,560 6,000 42 Care packages Dollars contributed to the Jimmy Dollars raised for Alzheimer Dollars raised by Laboratory sent to troops Fund by Laboratory cyclists in the Support Community since 2009 employees in 2018 Pan-Mass Challenge A MESSAGE FROM THE DIRECTOR 02 - 03 04 - 39 01 ∕ EDUCATIONAL OUTREACH 137 16,600 401,500 108,546 $ 06 K–12 Science, Technology, Engineering, and Mathematics (STEM) Outreach Charities receiving Lincoln Laboratory Students seeing Students touring 24 Partnerships with MIT STEM demonstrations Lincoln Laboratory donations K-12 STEM programs 30 Community Engagement 02 ∕ EDUCATIONAL COLLABORATIONS 40 - 59 18,000 42 University Student Programs 33 46 MIT Student Programs Toys donated to Summer Internships Staff in Lincoln 52 Military Student Programs 35 Toys for Tots drive Scholars 57 Technical Staff Programs 60 - 80 03 ∕ COMMUNITY GIVING 518 246 200 62 Helping Those in Need 3,600 69 Helping Those Who Help Others 72 Nourishing Mind, Soul, and Character A Message From the Director Community outreach and education programs are an important component of the Laboratory’s mission. From the beginning, our outreach initiatives have been inspired by employee desires to help people in need and to motivate student interest and participation in engineering and science. The Laboratory’s educational outreach provides in-classroom presentations and Science on Saturday demonstrations to regional K–12 schools.
    [Show full text]
  • Digital Fragments and Historiographies Data Mining the William J Mitchell Archive
    QUOTATION: What does history have in store for architecture today? Digital Fragments and Historiographies Data Mining the William J Mitchell Archive Peter Raisbeck The University of Melbourne Peter Neish The University of Melbourne Abstract The acceleration of digital design and production poses new problems for the architectural archivist, historian and theorist. Architectural history and theory has primarily been constructed on the quotation of fragments from physical archives. But, what can be said about architectural historiography if the quotation or fragment itself is a digital entity? The recently acquired Melbourne University archive of William J Mitchell, one of Melbourne University’s most distinguished graduates, poses these questions because the material culture of archive includes a diverse range of digital materials: audio-visual slides, electronic storage media and software. The Mitchell archive contains a number of 3.5 inch floppy disks related to Topdown. Topdown was a parametric program that was intended to create a large knowledge base and library of architectural fragments to be used in CAD. The review of Topdown raises issues about the archival logics and context of digital fragments; as well as, the tantalising fact that those fragments themselves are the result of attempts to codify the architectural fragment into a digital system. At a practical level the shift to digital practices, as exemplified in the Mitchell archive, indicates a need to revise principles governing architectural historiography, hybrid and digital media collections and conservation. This is because the logic of digital archives suggests a different order of so called metadata is needed. As a result, this situation suggests the need for architectural historians to develop new instruments and approaches to both architectural historiography and theory.
    [Show full text]
  • Angela N. Koehler
    Angela N. Koehler Koch Institute for Integrative Cancer Research at MIT Office: 617-324-7631 Department of Biological Engineering, MIT Email: [email protected] 76-361C Website: http://koehlerlab.org 77 Massachusetts Avenue Cambridge, MA 02139 Education Ph.D. Chemistry, Harvard University 2003 B.A. Biochemistry and Molecular Biology, Reed College 1997 Professional Appointments Associate Professor, Department of Biological Engineering, MIT 2019-present Institute Member, Broad Institute of MIT and Harvard 2019-present Founding Member, MIT Center for Precision Cancer Medicine 2018-present Goldblith Career Development Professor in Applied Biology 2018-2021 Intramural Faculty, Koch Institute for Integrative Cancer Research at MIT 2014-present Assistant Professor, Department of Biological Engineering, MIT 2014-2018 Karl Van Tassel (1925) Career Development Professor 2014-2017 Director, Transcriptional Chemical Biology, Chemical Biology Program, Broad Institute 2010-2013 Project & Center Manager, Broad NCI Cancer Target Discovery and Development (CTD2) Center Institute Fellow, Chemical Biology Program, Broad Institute 2003-2009 Director, Ligand Discovery, NCI Initiative for Chemical Genetics (ICG) at Harvard Research Training Graduate Student, Department of Chemistry and Chemical Biology, Harvard University 1998-2003 Laboratory of Professor Stuart L. Schreiber Committee: Professors Eric. N. Jacobsen, David R. Liu Thesis: Small molecule microarrays: A high-throughput tool for discovering protein-small molecule interactions Researcher, Department
    [Show full text]
  • MASSACHUSETTS INSTITUTE of TECHNOLOGY Faculty Personnel Record Date: September 27, 2020 Full Name: Rosalind Wright Picard Depart
    MASSACHUSETTS INSTITUTE OF TECHNOLOGY Faculty Personnel Record Date: September 27, 2020 Full Name: Rosalind Wright Picard Department: Program in Media Arts & Sciences 1. Date of Birth: May 17, 1962 2. Citizenship: U. S. Immigration Status: N/A 3. Education: Georgia Institute of Technology Bachelor of Electrical Engineering (w/highest honors) 1980 - 1984 Certificate in Computer Engineering 1983 - 1984 MIT S. M., Electrical Engineering and Computer Science 1984 - 1986 MIT Sc. D., Electrical Engineering and Computer Science 1987 - 1991 4. Title of Thesis for Most Advanced Degree: Texture Modeling: Temperature Effects on Markov/Gibbs Random Fields 5. Principal Fields of Interest: Affective Computing, Artificial Intelligence with Emotional Intelligence, Affective Machine Learning, Technology for Health & Wellbeing, Physiological Signal Processing, Autism Technology, Human- Computer Interaction, 6. Name and Rank of Other Departmental Faculty in Same Field: None 7. Name and Rank of Faculty of Other Departments in Same Field: None 8. Non-MIT Experience (including military service): Scientific Atlanta Technical Assistant, Satellite Communications 6/81 - 9/81 Hewlett Packard Sales Assistant, Technical Computers 6/82 - 9/82 IBM Junior Design Engineer 6/83 - 9/83 Georgia Institute of Technology Calculus Teaching Assistant 9/83 - 12/83 AT&T Bell labs Member of the Technical Staff 6/84 - 3/87 Boston College Visiting Scholar, Department of Psychology 7/05 - 6/06 Affectiva Chairman 1/10 - 12/12 Affectiva Chief Scientist 1/10 - 4/13 Physiio International,
    [Show full text]
  • Micah Eckhardt [email protected]
    60 Wadsworth Street Apt 3G Cambridge MA, 02142 Micah Eckhardt [email protected] Research Statement My research focuses on (1) the design and implementation of participatory learning technologies (2) immersive-interactive stories (3) language and social-emotional communication (4) assistive and learning technology for children diagnosed with autism. Education Massachusetts Institute of Technology,​ S​eptember 2008 - Present Doctor of Philosophy, Media Art and Science (MIT Media Lab), June 2015 Master’s of Science, Media Art and Science (MIT Media Lab), June 2010 Master’s Thesis: Eyes Up: Influencing Social Gaze Through Play Advisor: Rosalind Picard, Affective Computing University of California, San Diego,​ S​eptember 2003 - March 2006 Bachelor of Science, Cognitive Science Minors: Computer Science, Mathematics Employment Media Laboratory, Massachusetts Institute of Technology, MA 08/08 - Present Research Assistant, Affective Computing Group Primary responsibility is the creation and research of innovative technologies. I am also responsible for the mentoring, and managing of undergraduate researchers and a staff engineer. Furthermore, I have responsibility for helping maintain relations with high-level corporate sponsors of the MIT Media Lab. The following highlights my work. StoryScape Development of an interactive and immersive story platform capable of connecting the physical environment to the digital story world. Platform integrates mobile, web, and hardware technologies. Research on its use with a wide range of children, age and ability, with a particular focus on story co-creation with children diagnosed with autism. FrameIt: A blended digital-tangible puzzle game designed to help children diagnosed with autism look at faces and understand emotional expressions. Fabricated custom parts, electronics, and developed software.
    [Show full text]