Neural Network Control of Autoclave Curing of Composite Materials

Total Page:16

File Type:pdf, Size:1020Kb

Neural Network Control of Autoclave Curing of Composite Materials NEURAL NETWORK CONTROL OF AUTOCLAVE CURING OF COMPOSITE MATERIALS Thesis Submitted to The School of Engineering UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree Master of Science in Chemical Engineering by Maria Claudia Baptista UNIVERSITY OF DAYTON Dayton, Ohio December, 1994 ABSTRACT NEURAL NETWORK CONTROL OF AUTOCLAVE CURING OF COMPOSITE MATERIALS Baptista, Maria Claudia University of Dayton, 1994 Advisor: Dr. C. William Lee A back propagation neural network has been developed to determine the temperature cure cycle of a fiber reinforced epoxy matrix composite material in an autoclave. The self-directed neural network controller performed temperature control by adjusting the set-point of the autoclave based on five sensor inputs. The curing process was simulated by a one-dimensional heat transfer model that included heat source and convective boundary conditions. These two programs, the simulator and the controller, were installed on two separate computers. The neural network controller was developed using NeuroWindows™ in the Visual Basic™ environment. The neural network controller used for testing consists of an input layer with five neurons that represent the process and material states, one hidden layer with six neurons, and an output layer with a single neuron for temperature set point adjustment. The neural network controller, when trained by a cure cycle for a given thickness panel, was able to 111 THESIS 35 08892 NEURAL NETWORK CONTROL OF AUTOCLAVE CURING OF COMPOSITE MATERIALS Approved by: C. William Lee, Ph.D. Professor Committee Chairperson Tony E. Saliba, Ph.D. Kevif{J. Myers, D.Sc., P.E. Associate Professor Associate Professor Committee Member Committee Member Donald L. Moon, Ph.D. Joseph Lestingi, D.Eng.^B.E. Associate Dean Dean Graduate Engineering Programs School of Engineering & Research School of Engineering 11 cure the same thickness panel. This was verified by two cases. When a network was trained by a cycle for a thin panel, it was unable to satisfactorily control the cure of a thick panel, and vice versa. When the two training sets are combined to train a network, the resulting controller was unable to interpolate to control the cure of a panel of an intermediate thickness. It is surmised that the back propagation neural network is capable of capturing an operator's decision mechanism on temperature control of a heat transfer process as it was able to carry out a cure cycle having been given only randomized instances of the process state. The five process variables chosen as the input vector can only represent a particular case of heat transfer process and are not enough for the network to generalize. IV ACKNOWLEDGMENTS I wish to acknowledge and express my appreciation to the members of the committee, Dr. Kevin J. Myers and Dr. Tony E. Saliba. My gratitude goes also to Dr. Ronald A. Servais and Dr. Sarwan Sandhu for their encouragement. In addition, special thanks are due to my advisor, Dr. C. William Lee for his precious guidance and patience during this work. I thank Fulbright Commission, Encyclopedia Britannica, American Chamber of Commerce in Sao Paulo, University of Dayton Department of Chemical and Materials Engineering, and Rhodia S.A. for the financial support provided during my master’s program at the University of Dayton. I also would like to thank my family and my many friends for their help and encouragement. And finally to my grandparents, Adelia and Benedicto Gomes, to whom this work is dedicated. v PREFACE Artificial Intelligence has stimulated the interest of researchers in various fields of knowledge. Some are very interested in finding the analogy with the physiology of physical systems, in understanding how human brain processes information, how learning occurs, where the information is stored and how memory works. There are so many questions surrounding the field and very few answers. The development of simplified mathematical models also interested engineers looking for new tools to solve practical problems. The interest in applying Artificial Intelligence to solve Chemical Engineering problems has increased substantially lately. Some problems in the Chemical Process Industries cannot be solved by standard mathematical techniques or their solutions can be complicated, costly, and time consuming. In order to solve such problems, alternative methods have been developed. One of the proposed methods is Artificial Neural Networks. It can be applied in problems where the knowledge about the process is available but there is no mathematical model to represent it. An application of neural networks to process control is presented in this work. vi TABLE OF CONTENTS ABSTRACT ....................................................................................................................... iii ACKNOWLEDGMENTS ............................................................................................. v PREFACE .......................................................................................................................... vi TABLE OF CONTENTS ............................................................................................. vii LIST OF ILLUSTRATIONS .......................................................................................... ix LIST OF TABLES ........................................................................................................... xi LIST OF SYMBOLS/ABBREVIATIONS .................................................................... xii CHAPTER I. INTRODUCTION .................................................................................. 1 II. LITERATURE REVIEW ...................................................................... 3 Autoclave Curing of Composite Materials .......................................... 3 Artificial Neural Networks ..................................................................... 7 Back Propagation Neural Network Learning Algorithm ................... 11 Applicationsof Neural Networks in Chemical Engineering Processes 14 III. NEURAL NETWORK CONTROLLER DEVELOPMENT ........... 16 Neural Network Controller .................................................................... 16 Autoclave Process Simulator ................................................................. 20 Process Monitoring ................................................................................. 21 vii IV. TRAINING AND TESTING OF THE NEURAL NETWORK CONTROLLER ...................................................................................... 25 Neural Network Controller Training .................................................... 25 Neural Network Controller Testing ..................................................... 29 Case 1 Training ....................................................................................... 30 Case 1 Testing ......................................................................................... 38 Case 2 Training ....................................................................................... 40 Case 2 Testing ......................................................................................... 43 Case 3 Training ....................................................................................... 43 Case 3 Testing ......................................................................................... 49 V. SUMMARY AND CONCLUSIONS ................................................... 54 REFERENCES ................................................................................................................. 58 APPENDICES .................................................................................................................. 62 APPENDIX A Source Code Listing of Neural Network Controller (NNC) ............................. 63 APPENDIX B Thin Panel (32 plies) Training Set ..................................................................... 95 Thick Panel (256 plies) Training Set .................................................................. 100 APPENDIX C Physical Properties Used ..................................................................................... 110 Panel Thicknesses Used ...................................................................................... Ill viii LIST OF ILLUSTRATIONS 2.1. Schematic of the Prepreg Lay-up ....................................................................... 4 2.2. Conventional, Rule-Based/Expert System, and Neural Network Controller 7 2.3. A Neuron-Like Structure .................................................................................... 9 2.4. Sigmoidal Activation Function ........................................................................... 10 2.5. Back Propagation Neural Network Architecture ............................................. 11 3.1. NNC Graphical User Interface ........................................................................... 19 3.2 Lay-Up and Temperature Sensor Locations ....................................................... 22 3.3. Closed-Loop Self-Directed Neural Network Control System ......................... 24 4.1 Neural Network Controller Development Procedure ....................................... 26 4.2. Case 1 Training Using Cure Cycle for 32-Ply Laminate ................................. 31 4.3. Case 1 RMS Error Variation During Training ................................................... 33 4.4. Back Propagation Neural Network Architecture Used ................................... 35 4.5. Weight Variations During Training
Recommended publications
  • A Process Control Primer
    A Process Control Primer Sensing and Control Copyright, Notices, and Trademarks Printed in U.S.A. – © Copyright 2000 by Honeywell Revision 1 – July 2000 While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customer. In no event is Honeywell liable to anyone for any indirect, special or consequential damages. The information and specifications in this document are subject to change without notice. Presented by: Dan O’Connor Sensing and Control Honeywell 11 West Spring Street Freeport, Illinois 61032 UDC is a trademark of Honeywell Accutune is a trademark of Honeywell ii Process Control Primer 7/00 About This Publication The automatic control of industrial processes is a broad subject, with roots in a wide range of engineering and scientific fields. There is really no shortcut to an expert understanding of the subject, and any attempt to condense the subject into a single short set of notes, such as is presented in this primer, can at best serve only as an introduction. However, there are many people who do not need to become experts, but do need enough knowledge of the basics to be able to operate and maintain process equipment competently and efficiently. This material may hopefully serve as a stimulus for further reading and study. 7/00 Process Control Primer iii Table of Contents CHAPTER 1 – INTRODUCTION TO PROCESS
    [Show full text]
  • Performance of Feedback Control Systems
    Performance of Feedback Control Systems 13.1 □ INTRODUCTION As we have learned, feedback control has some very good features and can be applied to many processes using control algorithms like the PID controller. We certainly anticipate that a process with feedback control will perform better than one without feedback control, but how well do feedback systems perform? There are both theoretical and practical reasons for investigating control performance at this point in the book. First, engineers should be able to predict the performance of control systems to ensure that all essential objectives, especially safety but also product quality and profitability, are satisfied. Second, performance estimates can be used to evaluate potential investments associated with control. Only those con trol strategies or process changes that provide sufficient benefits beyond their costs, as predicted by quantitative calculations, should be implemented. Third, an engi neer should have a clear understanding of how key aspects of process design and control algorithms contribute to good (or poor) performance. This understanding will be helpful in designing process equipment, selecting operating conditions, and choosing control algorithms. Finally, after understanding the strengths and weak nesses of feedback control, it will be possible to enhance the control approaches introduced to this point in the book to achieve even better performance. In fact, Part IV of this book presents enhancements that overcome some of the limitations covered in this chapter. Two quantitative methods for evaluating closed-loop control performance are presented in this chapter. The first is frequency response, which determines the 410 response of important variables in the control system to sine forcing of either the disturbance or the set point.
    [Show full text]
  • Automation Studio Standardization Paves the Way to the Future HMI Systems What Goes Around, Comes Around Process Control APROL – for Stepwise Migration
    05.15 The B&R Technology Magazine Process and factory automation Take control of every process mapp technology Full focus on innovation Automation Studio Standardization paves the way to the future HMI systems What goes around, comes around Process control APROL – For stepwise migration editorial As environmental regulations and demographic chang- publishing information es continue to shape the future of the process manu- facturing industry, one of the most prominent themes will be plant modularization. The challenge of the mod- ular plant will be how to quickly and effectively inte- automotion: grate intelligent units into a complex production line The B&R technology magazine, Volume 16 without excessive engineering overhead, yet retaining www.br-automation.com/automotion the ability to satisfy customers' individual requirements and requests. Media owner and publisher: Bernecker + Rainer Industrie-Elektronik Ges.m.b.H. B&R Strasse 1, 5142 Eggelsberg, Austria In spite of all this newly gained flexibility, there is no Tel.: +43 (0) 7748/6586-0 room for compromise with regard to product quality, [email protected] seamless documentation and traceability, and sustain- able production methods. Managing Director: Hans Wimmer B&R's APROL process control system satisfies the requirements of flexible and modular Editor: Alexandra Fabitsch process manufacturing plants without neglecting the high demands on availability Editorial staff: Craig Potter Authors in this edition: Eugen Albisser, and data consistency. This innovative distributed control system already facilitates Yvonne Eich, Vitor Hayakawa, Stefan Hensel, the design of machinery and plants that meet the needs of Industry 4.0 production. Peter Kemptner, Jana Otevrelova, Franz Joachim Roßmann, Jaehoon Sa, Huazhen Song APROL has taken the next step in this direction with a fully integrated business intel- ligence solution that gives users powerful and convenient reporting functions that Graphic design, layout & typesetting: allow for exploratory analysis of plant and production data.
    [Show full text]
  • Process Control and Automation
    Introduction to Process Control & Automation University of Nottingham – Andrew Mieleniewski Industrial Food Manufacture – Process Control & Automation - Agenda 1. Introductions 2. Introduction to batch process control 3. Control system hardware (overview only) 4. System software terminology and concepts Why Automate? University of Nottingham – Andrew Mieleniewski Introduction Automation is complex, expensive, and can be full of jargon and acronyms! So why do we do it? Three key points: Improvements in quality (improved repeatability and increased precision) Reduction in human intervention (redeploy personnel or allow more to be done for similar manual input). Because the underlying technology requires it (speed of response or complexity difficult for a human to provide). Example – Storage Tank Farm Valve Matrix Example – Storage Tank Farm Valve Matrix Matrix Valve Actuator Control Top Digital control signals Open feedback signal Actuator Closed feedback signal Air-to-open Energise signal Spring-to-close Solenoid Valve (small electrically operated valve) Compressed Air Open Closed Position Position System Hardware ► PLC (Programmable Logic Controllers) ► HMI (Human Machine Interface) University of Nottingham – Andrew Mieleniewski PLC Based Control System SCADA Terminal Food & Drink Automation HMI Program Mainly batch sequence processing Terminal Panel Other PLCs Using Programmable Logic Controllers (PLC) Modular Rack/chassis ERP Power Supply Unit (PSU) System MES Central Processing Unit (CPU) System Networks Network Modules (Ethernet)
    [Show full text]
  • Digital Transformation in Process Distributed Control Systems (DCS)
    Digital Transformation in Process Distributed Control Systems (DCS) Discover how our customers and some of your process skids builders realized significant benefits through digitalization of their production processes. www.rockwellautomation.com Dear reader, Therefore, we have assembled a mix of different examples in different industries showcasing how customers’ issues turned into an improvements for their business. To achieve our customers’ goals, it’s clear that a digital plant is no longer contained within the walls of the plant itself, but instead stretches to the complete supply chain – from raw materials to the shops where consumers can order or buy their products. When looking at a digital plant, it is clear that a separate DCS system is no longer an option, instead an integrated digital DCS is required to I’m inviting you to discover how we, at not only quickly meet these flexible production Rockwell Automation, are enabling the industry demands, but also to play a much larger role in to realize the benefits from digitalizing their the digital factory of the future. This is backed factories and process skids. up by one customer, who told us “doing the The need to adopt digitalization in the face same we did five years ago would set us back of ever-changing consumer behaviour puts 20 years, so we need to digitalize our plants increased pressure on manufacturers of tomorrow.” products and their suppliers. While we provide a better insight in some A key market trend is that consumers demand key industry trends, we trust you also find it greater variety and more intuitive tailored beneficial to read through the different blogs Product selection combined with instant highlighting our solutions to respond to delivery.
    [Show full text]
  • Instrumentation & Process Control Automation Guidebook – Part 3
    PDHonline Course E444 (7 PDH) _____________________________________________________ Instrumentation & Process Control Automation Guidebook – Part 3 Instructor: Jurandir Primo, PE 2014 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDH Course E444 www.PDHonline.org INSTRUMENTATION & PROCESS CONTROL AUTOMATION GUIDEBOOK – PART 3 CONTENTS: 1. INTRODUCTION 2. INSTRUMENTATION & CONTROL SYSTEMS 3. INSTRUMENTATION DESCRIPTION & APPLICATION 4. PROCESS CONTROL INSTRUMENTATION 5. CONDUCTIVITY & ANALYTICAL INSTRUMENTATION 6. CONTROL VALVES & INSTRUMENTATION 7. STANDARD & CONTROL VALVES APPLICATION 8. VALVES ACTUATORS, POSITIONERS & TRANSDUCERS 9. CONTROL SYSTEMS & FIELDBUS TECHNIQUES 10. DIAGNOSTICS & COMMUNICATION INTERFACES 11. HAZARDOUS CLASSIFICATION & PROTECTION TYPES 12. PROCESS & PIPING INSTRUMENTATION DIAGRAMS 13. PROCESS CONTROL & SOFTWARE SIMULATIONS 14. REFERENCES & LINKS ©2014 Jurandir Primo Page 1 of 91 www.PDHcenter.com PDH Course E444 www.PDHonline.org 1. INTRODUCTION: Instrumentation is the science of automated measurement and control, or can be defined as the sci- ence that applies and develops techniques for measuring and controls of equipment and industrial processes. Process control has a broad concept and may be applied to any automated systems such as, a complex robot or to a common process control system as a pneumatic valve controlling the flow of water, oil or steam in a pipe. A basic instrument consists of three elements: Sensor or Input Device Signal Processor Receiver or Output Device To measure a quantity, usually is transmitted a signal representing the required quantity to an indi- cating or computing device where either human or automated action takes place. If the controlling action is automated, the computer sends a signal to a final controlling device which then influences the quantity being measured.
    [Show full text]
  • Fieldbus Networks Topic in Instrumentation and Control Systems Courses
    2006-1830: FIELDBUS NETWORKS TOPIC IN INSTRUMENTATION AND CONTROL SYSTEMS COURSES Sri Kolla, Bowling Green State University Sri Kolla is a Professor in the Electronics and Computer Technology Program at the Bowling Green State University, Ohio, since 1993. He worked as a Guest Researcher at the Intelligent Systems Division, National Institute of Standards and Technology, Gaithersburg, MD, 2000-‘01. He was an Assistant Professor at the Pennsylvania State University, 1990-‘93. He got a Ph.D. in Engineering from the University of Toledo, Ohio, 1989. His teaching and research interests are in electrical engineering/technology area with specialization in artificial intelligence, control systems, computer networking and power systems. He is a senior member of IEEE and ISA. Joseph Mainoo, Bowling Green State University Joseph Mainoo is a graduate student in the Master of Industrial Technology degree at the Bowling Green State University, Ohio. He received his B.S. in Electronics and Computer Technology from the Bowling Green State University, Ohio, in 2004. He also has a Diploma in Management Information Systems from the Institute for the Management of Information Systems, London, UK. His academic interests are in the areas of information technology and electronics. He is a student member of ISA. Page 11.642.1 Page © American Society for Engineering Education, 2006 Fieldbus Networks Topic in Instrumentation and Control Systems Courses Abstract Fieldbus networks are digital, two-way, multi-drop communication links that are used to connect intelligent control devices. These are currently introduced in the industry to replace the traditional 4-20 mA point-to-point connections. It is important to integrate fieldbus networks topic in technology courses to align the curriculum with the current industrial practices.
    [Show full text]
  • Interfacing Industrial Process Control Systems to LEP/LHC
    Interfacing Industrial Process Control systems to LEP/LHC Michel Rabany CERN CH-1211 Geneva 23 Abstract solutions. One may profit today of this opportunity, in our new era of restricted human and financial resources. Modem industrial process control systems nave developed to meet the needs of industry to increase the production while II. THE COMPONENTS OF AN ACCELERATOR decreasing the costs. Although panicle accelerators designers have pioneered in control systems during Ibe seventies, it has A. Inventory of components now become possible to them to profit of industrial solutions in substitution of, or in complement with the more traditional Components may be classified into two categories home made ones. Adapting and integrating such industrial depending whether or not they actively participate in the systems to the accelerator control area will certainly benefit to production of panicles: the first category will be referenced as the field in terms of finance, human resources and technical active in this paper and the second as passive (see figure 1). facilities offered off-the-shelf by the widely experienced Magnets, RF cavities, electrostatic separators, power industrial controls community; however this cannot be done conveners, beam instrumentation are active components. All without slightly affecting die overall accelerator control play an active role in keeping an accelerator slate as well as in architecture. The paper briefly describes the industrial controls performing the transitions from one state to anodier. arena and takes example on an industrial process control Electricity, vacuum, cooling & ventilation, cryogenics, system recently installed at CERN to discuss in detail the personnel protection, site access are passive components.
    [Show full text]
  • IT Security for Industrial Control Systems
    IT Security for Industrial Control Systems Joe Falco, Keith Stouffer, Albert Wavering, Frederick Proctor Intelligent Systems Division National Institute of Standards and Technology (NIST) Gaithersburg, MD Email: ([email protected], [email protected], [email protected], [email protected]) In coordination with the Process Control Security Requirements Forum (PCSRF) (http://www.isd.mel.nist.gov/projects/processcontrol/) Abstract The National Institute of Standards and Technology (NIST) is working to improve the information technology (IT) security of networked digital control systems used in industrial applications. This effort is being carried out through the Process Control Security Requirements Forum (PCSRF), an industry group organized under the National Information Assurance Program (NIAP). The PCSRF is working with security professionals to assess the vulnerabilities and establish appropriate strategies for the development of policies to reduce IT security risk within the U.S. process controls industry. The outcome of this work will be the development and dissemination of best practices and ultimately Common Criteria, ISO/IEC 15408 based security specifications that will be used in the procurement, development, and retrofit of industrial control systems. In support of this work this paper addresses the computer control systems used within process control industries, their similarities, and network architectures. A generic set of networking system architectures for industrial process control systems is presented. The vulnerabilities associated with these systems and the IT threats these systems are exposed to are also presented along with a discussion of the Common Criteria and its intended use for these efforts. The current status as well as future efforts of the PCSRF are also discussed.
    [Show full text]
  • Controlling Processes Via Fieldbus Increasing Reliability and Reducing Costs
    SPOTLIGHT: INSTRUMENTATION & CONTROL Controlling Processes via Fieldbus Increasing reliability and reducing costs By John Rezabek proprietary digital bus and smart instruments can limit chemical Aprocess design flexibility and inflate expansion, modification and life- cycle costs. FOUNDATION fieldbus pro- vides a wide selection of optimum or best-in-class field devices. Fieldbus also offers more features than do “smart” instruments and the digital communi- cations of older distributed control sys- tem (DCS) technologies. To automate the first large-scale manufacture of 1,4-butanediol (BDO), BP Chemicals, Lima, Ohio, selected a powerful field-based control architec- ture based on FOUNDATION fieldbus. The new plant produces BDO directly from butane in a process jointly developed by BP Chemicals and Lurgi Oel-Gas Chemie, Frankfurt, Germany. Reliability challenges A bank of fieldbus control and I/O modules, shown here, offers fully distributed logic. With a traditional DCS, reliability is maximized through redundancy in studied the failures possible with vari- good enough in the BDO plant because input/output (I/O), wiring, power sup- ous devices. A fieldbus control valve, for many vessels have short residence times plies, controllers and other areas. A DCS example, has few failure modes: 1) the or rapid changeover. Loss of variable concentrates too much logic in the con- fieldbus cable is severed, shorted or valve control requires a heroic effort on trollers. Dozens or even hundreds of opened, 2) the fieldbus card’s power the part of operators to avoid an upset loops are solved by a single processor.* conditioner fails or 3) the valve fails. or a shutdown.
    [Show full text]
  • Automation and Process Control ISS0080-Automatiseerimine Ja Protsessijuhtimine
    Automation and Process Control ISS0080-Automatiseerimine ja protsessijuhtimine Kristina Vassiljeva Centre for Intelligent Systems, Department of Computer Systems, School of Information Technologies, TUT 31.01.2018 Contacts Automation and Process School of Information Technologies Control Department of Computer Systems Kristina Vassiljeva Centre for Intelligent Systems About the Alpha Control Laboratory course Contacts Assessment methods Lecturer Agenda Knowledge and Skills Associate professor Kristina Vassiljeva Projects Course room:ICT-502D Sources Introduction phone: 6202116 Systems e-mail: kristina.vassiljeva at ttu.ee Production Processes Automation Automation tasks Automation and Process Control 2-1-1 5 ECTS E Automation goals http://www.a-lab.ee/edu/courses History 2 / 46 Assessment methods Automation Tests: 2 (2 × 20 points); and Process Control Labs: 6 with report. Deadline for report is in 2 weeks. Kristina Vassiljeva On time 2 points, With delay 1 point. About the course Exam: written. Contacts Assessment methods Exam prerequisites: Agenda Knowledge and Skills Projects Both tests should be written at least on 5 points. Course Sources Introduction Final grade: Systems Production Processes Automation Automation 1 Tests + reports give max 50+ points tasks Automation goals 2 Written exam gives max 50 points. History 3 / 46 Assessment methods Automation Tests: 2 (2 × 20 points); and Process Control Labs: 6 with report. Deadline for report is in 2 weeks. Kristina Vassiljeva On time 2 points, With delay 1 point. About the course Exam: written. Contacts Assessment methods Exam prerequisites: Agenda Knowledge and Skills Projects Both tests should be written at least on 5 points. Course Sources Introduction Final grade: Systems Production Processes Automation Automation 1 Tests + reports give max 50+ points tasks Automation goals 2 Written exam gives max 50 points.
    [Show full text]
  • ANDRITZ AUTOMATION Process Control Systems DCS / MCS / MMD / A-SCADA
    ANDRITZ AUTOMATION Process Control Systems DCS / MCS / MMD / A-SCADA www.andritz.com ANDRITZ Process Control Systems Convenience in Automation ANDRITZ AUTOMATION increases key performance indicators by implementing tai- lored process control systems and proven expertise in application engineering. ANDRITZ AUTOMATION provides tailored process control systems as an in-house speciality, bringing optimized solutions and exceptional performance to customers around the globe. The engineering experts at ANDRITZ AUTOMATION constantly analyze the latest soft- and hardware components in order to offer each and every customer the best so- lution for their needs. Different components can be integrated individually on a modular basis to serve specific machines, providing optimized results. The most ergonomic so- lutions for operation are implemented. Any extent of control can be acquired and is adjusted precisely according to customer needs. In existing plant control systems, ANDRITZ AUTOMATION also ensures op- erational improvements via custom com- Peformance ponents and system updates. All ANDRITZ Every year, more than 100 plants are fit- smaller areas (1000 IOs) to the biggest DCS AUTOMATION products have been fre- ted with tailored ANDRITZ AUTOMATION (>10000 IOs). Fast hydraulic applications quently tested and approved, guaranteeing systems, bringing improved efficiency and are being replaced by servo-electrical ap- quick, flawless project realization. optimized products. Examples range from plications, such as MCS. Benefits Key account manager for easy project handling Experienced and certified engineers Meticulously screened and assessed state-of-the-art hardware In-depth knowledge of ANDRITZ machines Product optimization via improved efficiency and individually tailored solutions Flexible build-up of control system components Motor control center (MCC) as one component of a com- Proficiency in system integration and implementation plete ANDRITZ AUTOMATION control system.
    [Show full text]