Control Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 3: Transfer Function and Dynamic Response Analysis
Transfer function approach Dynamic response Summary Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis Paweł Malczyk Division of Theory of Machines and Robots Institute of Aeronautics and Applied Mechanics Faculty of Power and Aeronautical Engineering Warsaw University of Technology October 17, 2019 © Paweł Malczyk. Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis 1 / 31 Transfer function approach Dynamic response Summary Outline 1 Transfer function approach 2 Dynamic response 3 Summary © Paweł Malczyk. Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis 2 / 31 Transfer function approach Dynamic response Summary Transfer function approach 1 Transfer function approach SISO system Definition Poles and zeros Transfer function for multivariable system Properties 2 Dynamic response 3 Summary © Paweł Malczyk. Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis 3 / 31 Transfer function approach Dynamic response Summary SISO system Fig. 1: Block diagram of a single input single output (SISO) system Consider the continuous, linear time-invariant (LTI) system defined by linear constant coefficient ordinary differential equation (LCCODE): dny dn−1y + − + ··· + _ + = an n an 1 n−1 a1y a0y dt dt (1) dmu dm−1u = b + b − + ··· + b u_ + b u m dtm m 1 dtm−1 1 0 initial conditions y(0), y_(0),..., y(n−1)(0), and u(0),..., u(m−1)(0) given, u(t) – input signal, y(t) – output signal, ai – real constants for i = 1, ··· , n, and bj – real constants for j = 1, ··· , m. How do I find the LCCODE (1)? . -
A Process Control Primer
A Process Control Primer Sensing and Control Copyright, Notices, and Trademarks Printed in U.S.A. – © Copyright 2000 by Honeywell Revision 1 – July 2000 While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customer. In no event is Honeywell liable to anyone for any indirect, special or consequential damages. The information and specifications in this document are subject to change without notice. Presented by: Dan O’Connor Sensing and Control Honeywell 11 West Spring Street Freeport, Illinois 61032 UDC is a trademark of Honeywell Accutune is a trademark of Honeywell ii Process Control Primer 7/00 About This Publication The automatic control of industrial processes is a broad subject, with roots in a wide range of engineering and scientific fields. There is really no shortcut to an expert understanding of the subject, and any attempt to condense the subject into a single short set of notes, such as is presented in this primer, can at best serve only as an introduction. However, there are many people who do not need to become experts, but do need enough knowledge of the basics to be able to operate and maintain process equipment competently and efficiently. This material may hopefully serve as a stimulus for further reading and study. 7/00 Process Control Primer iii Table of Contents CHAPTER 1 – INTRODUCTION TO PROCESS -
Programmable Logic Controller
Revised 10/07/19 SPECIFICATIONS - DETAILED PROVISIONS Section 17010 - Programmable Logic Controller C O N T E N T S PART 1 - GENERAL ....................................................................................................................... 1 1.01 DESCRIPTION .............................................................................................................. 1 1.02 RELATED SECTIONS ...................................................................................................... 1 1.03 REFERENCE STANDARDS AND CODES ............................................................................ 2 1.04 DEFINITIONS ............................................................................................................... 2 1.05 SUBMITTALS ............................................................................................................... 3 1.06 DESIGN REQUIREMENTS .............................................................................................. 8 1.07 INSTALLED-SPARE REQUIREMENTS ............................................................................. 13 1.08 SPARE PARTS............................................................................................................. 13 1.09 MANUFACTURER SERVICES AND COORDINATION ........................................................ 14 1.10 QUALITY ASSURANCE................................................................................................. 15 PART 2 - PRODUCTS AND MATERIALS......................................................................................... -
Warren Mcculloch and the British Cyberneticians
Warren McCulloch and the British cyberneticians Article (Accepted Version) Husbands, Phil and Holland, Owen (2012) Warren McCulloch and the British cyberneticians. Interdisciplinary Science Reviews, 37 (3). pp. 237-253. ISSN 0308-0188 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/43089/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Warren McCulloch and the British Cyberneticians1 Phil Husbands and Owen Holland Dept. Informatics, University of Sussex Abstract Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him. -
Control Theory
Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data. -
Notices of the American Mathematical Society
Notices of the American Mathematical Society April 1981, Issue 209 Volume 28, Number 3, Pages 217- 296 Providence, Rhode Island USA ISSN 0002-9920 CALENDAR OF AMS MEETINGS THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· 'an Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet· lng. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the offi'e of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Soc:iety in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· strKts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. -
Overview of Distributed Control Systems Formalisms 253
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace at VSB Technical University of Ostrava Overview of distributed control systems formalisms 253 OVERVIEW OF DISTRIBUTED CONTROL SYSTEMS FORMALISMS P. Holeko Department of Control and Information Systems, Faculty of Electrical Engineering, University of Žilina Univerzitná 8216/1, SK 010 26, Žilina, Slovak republic, tel.: +421 41 513 3343, e-mail: [email protected] Summary This paper discusses a chosen set of mainly object-oriented formal and semiformal methods, methodics, environments and tools for specification, analysis, modeling, simulation, verification, development and synthesis of distributed control systems (DCS). 1. INTRODUCTION interconnected by a network for the purpose of communication and monitoring. Increasing demands on technical parameters, In the next section the problem of formalizing reliability, effectivity, safety and other the processes of DCS’s life-cycle will be discussed. characteristics of industrial control systems initiate distribution of its control components across the 3. FORMAL METHODS plant. The complexity requires involving of formal The main motivations of using formal concepts methods in the process of specification, analysis, are [9]: modeling, simulation, verification, development, and ° In the process of formalizing informal in the optimal case in synthesis of such systems. requirements, ambiguities, omissions and contradictions will often be discovered; 2. DISTRIBUTED CONTROL SYSTEM ° The formal model -
An Introduction to Control Systems; K. Warwick
An Introduction to Control Systems; K. Warwick 362 pages; World Scientific, 1996; K. Warwick; 9810225970, 9789810225971; 1996; An Introduction to Control Systems; This significantly revised edition presents a broad introduction to Control Systems and balances new, modern methods with the more classical. It is an excellent text for use as a first course in Control Systems by undergraduate students in all branches of engineering and applied mathematics. The book contains: A comprehensive coverage of automatic control, integrating digital and computer control techniques and their implementations, the practical issues and problems in Control System design; the three-term PID controller, the most widely used controller in industry today; numerous in-chapter worked examples and end-of-chapter exercises. This second edition also includes an introductory guide to some more recent developments, namely fuzzy logic control and neural networks. file download wici.pdf The Breakthrough in Artificial Intelligence; While horror films and science fiction have repeatedly warned of robots running amok, Kevin Warwick takes the threats out of the realm of fiction and into the real world, truly; Computers; K. Warwick; 307 pages; ISBN:0252072235; 1997; March of the Machines Control Bruce O. Watkins; Introduction to control systems; UOM:39015002007683; Technology & Engineering; 625 pages; 1969 Robot Control; ISBN:0863411282; Jan 1, 1988; K. Warwick, Alan Pugh; Technology & Engineering; 238 pages; Theory and Applications Automatic control; ISBN:0750622989; Davinder K. Anand; 730 pages; Since the second edition of this classic text for students and engineers appeared in 1984, the use of computer-aided design software has become an important adjunct to the; Introduction to Control Systems; Jan 1, 1995 An Introduction to Control Systems pdf download 596 pages; Mar 18, 1993; STANFORD:36105004050907; based on the proceedings of a conference on Robotics, applied mathematics and computational aspects; K. -
Quasilinear Control of Systems with Time-Delays and Nonlinear Actuators and Sensors Wei-Ping Huang University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Quasilinear Control of Systems with Time-Delays and Nonlinear Actuators and Sensors Wei-Ping Huang University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Electrical and Electronics Commons Recommended Citation Huang, Wei-Ping, "Quasilinear Control of Systems with Time-Delays and Nonlinear Actuators and Sensors" (2018). Graduate College Dissertations and Theses. 967. https://scholarworks.uvm.edu/graddis/967 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. Quasilinear Control of Systems with Time-Delays and Nonlinear Actuators and Sensors A Thesis Presented by Wei-Ping Huang to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Electrical Engineering October, 2018 Defense Date: July 25th, 2018 Thesis Examination Committee: Hamid R. Ossareh, Ph.D., Advisor Eric M. Hernandez, Ph.D., Chairperson Jeff Frolik, Ph.D. Cynthia J. Forehand, Ph.D., Dean of Graduate College Abstract This thesis investigates Quasilinear Control (QLC) of time-delay systems with non- linear actuators and sensors and analyzes the accuracy of stochastic linearization for these systems. QLC leverages the method of stochastic linearization to replace each nonlinearity with an equivalent gain, which is obtained by solving a transcendental equation. -
Applying Classical Control Theory to an Airplane Flap Model on Real Physical Hardware
Applying Classical Control Theory to an Airplane Flap Model on Real Physical Hardware Edgar Collado Alvarez, BSIE, EIT, Janice Valentin, Jonathan Holguino ME.ME in Design and Controls Polytechnic University of Puerto Rico, [email protected],, [email protected], [email protected] Mentor: Prof. Bernardo Restrepo, Ph.D, PE in Aerospace and Controls Polytechnic University of Puerto Rico Hato Rey Campus, [email protected] Abstract — For the trimester of Winter -14 at Polytechnic University of Puerto Rico, the course Applied Control Systems was offered to students interested in further development and integration in the area of Control Engineering. Students were required to develop a control system utilizing a microprocessor as the controlling hardware. An Arduino Mega board was chosen as the microprocessor for the job. Integration of different mechanical, electrical, and electromechanical parts such as potentiometers, sensors, servo motors, etc., with the microprocessor were the main focus in developing the physical model to be controlled. This paper details the development of one of these control system projects applied to an airplane flap. After physically constructing and integrating additional parts, control was programmed in Simulink environment and further downloads to the microprocessor. MATLAB’s System Identification Tool was used to model the physical system’s transfer function based on input and output data from the physical plant. Tested control types utilized for system performance improvement were proportional (P) and proportional-integrative (PI) control. Key Words — embedded control systems, proportional integrative (PI) control, MATLAB, Simulink, Arduino. I. INTRODUCTION II. FIRST PHASE - POTENTIOMETER AND SERVO MOTOR CONTROL During the master’s course of Mechanical and Aerospace Control System, students were interested in The team started in the development of a potentiometer and developing real-world models with physical components servo motor control circuit. -
Step Response of Series RLC Circuit ‐ Output Taken Across Capacitor
ESE 271 / Spring 2013 / Lecture 23 Step response of series RLC circuit ‐ output taken across capacitor. What happens during transient period from initial steady state to final steady state? 1 ESE 271 / Spring 2013 / Lecture 23 Transfer function of series RLC ‐ output taken across capacitor. Poles: Case 1: ‐‐two differen t real poles Case 2: ‐ two identical real poles ‐ complex conjugate poles Case 3: 2 ESE 271 / Spring 2013 / Lecture 23 Case 1: two different real poles. Step response of series RLC ‐ output taken across capacitor. Overdamped case –the circuit demonstrates relatively slow transient response. 3 ESE 271 / Spring 2013 / Lecture 23 Case 1: two different real poles. Freqqyuency response of series RLC ‐ output taken across capacitor. Uncorrected Bode Gain Plot Overdamped case –the circuit demonstrates relatively limited bandwidth 4 ESE 271 / Spring 2013 / Lecture 23 Case 2: two identical real poles. Step response of series RLC ‐ output taken across capacitor. Critically damped case –the circuit demonstrates the shortest possible rise time without overshoot. 5 ESE 271 / Spring 2013 / Lecture 23 Case 2: two identical real poles. Freqqyuency response of series RLC ‐ output taken across capacitor. Critically damped case –the circuit demonstrates the widest bandwidth without apparent resonance. Uncorrected Bode Gain Plot 6 ESE 271 / Spring 2013 / Lecture 23 Case 3: two complex poles. Step response of series RLC ‐ output taken across capacitor. Underdamped case – the circuit oscillates. 7 ESE 271 / Spring 2013 / Lecture 23 Case 3: two complex poles. Freqqyuency response of series RLC ‐ output taken across capacitor. Corrected Bode GiGain Plot Underdamped case –the circuit can demonstrate apparent resonant behavior. -
From Linear to Nonlinear Control Means: a Practical Progression
Cleveland State University EngagedScholarship@CSU Electrical Engineering & Computer Science Electrical Engineering & Computer Science Faculty Publications Department 4-2002 From Linear to Nonlinear Control Means: A Practical Progression Zhiqiang Gao Cleveland State University, [email protected] Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub Part of the Controls and Control Theory Commons How does access to this work benefit ou?y Let us know! Publisher's Statement NOTICE: this is the author’s version of a work that was accepted for publication in ISA Transactions. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in ISA Transactions, 41, 2, (04-01-2002); 10.1016/S0019-0578(07)60077-9 Original Citation Gao, Z. (2002). From linear to nonlinear control means: A practical progression. ISA Transactions, 41(2), 177-189. doi:10.1016/S0019-0578(07)60077-9 Repository Citation Gao, Zhiqiang, "From Linear to Nonlinear Control Means: A Practical Progression" (2002). Electrical Engineering & Computer Science Faculty Publications. 61. https://engagedscholarship.csuohio.edu/enece_facpub/61 This Article is brought to you for free and open access by the Electrical Engineering & Computer Science Department at EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering & Computer Science Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. From linear to nonlinear control means: A practical progression Zhiqiang Gao* DeP.1l'lll Ie/!/ of EJoclI"icai ami Computer Eng ineering.