Lecture Notes for PHY 405 Classical Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes for PHY 405 Classical Mechanics Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion's Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary's University Department of Astronomy & Physics November 21, 2004 Problem Set #6 due Thursday December 1 at the start of class late homework will not be accepted text problems 10{8, 10{18, 11{2, 11{7, 11-13, 11{20, 11{31 Final Exam Tuesday December 6 10am-1pm in MM310 (note the room change!) Chapter 11: Dynamics of Rigid Bodies rigid body = a collection of particles whose relative positions are fixed. We will ignore the microscopic thermal vibrations occurring among a `rigid' body's atoms. 1 The inertia tensor Consider a rigid body that is composed of N particles. Give each particle an index α = 1 : : : N. The total mass is M = α mα. This body can be translating as well as rotating. P Place your moving/rotating origin on the body's CoM: Fig. 10-1. 1 the CoM is at R = m r0 M α α α 0 X where r α = R + rα = α's position wrt' fixed origin note that this implies mαrα = 0 α X 0 Particle α has velocity vf,α = dr α=dt relative to the fixed origin, and velocity vr,α = drα=dt in the reference frame that rotates about axis !~ . Then according to Eq. 10.17 (or page 6 of Chap. 10 notes): vf,α = V + vr,α + !~ × rα = α's velocity measured wrt' fixed origin and V = dR=dt = velocity of the moving origin relative to the fixed origin. What is vr,α for the the particles that make up this rigid body? 2 Thus vα = V + !~ × rα after dropping the f subscript 1 1 and T = m v2 = m (V + !~ × r )2 is the particle's KE α 2 α α 2 α α N so T = Tα the system's total KE is α=1 X1 1 = MV2 + m V · (!~ × r ) + m (!~ × r )2 2 α α 2 α α α α X X 1 1 = MV2 + V · !~ × m r + m (!~ × r )2 2 α α 2 α α α ! α X X where M = α mα = the system's total mass. P Recall that α mαrα = 0, so thusP T = Ttrans + Trot 1 where T = MV2 = KE due to system's translation trans 2 1 and T = m (!~ × r )2 = KE due to system's rotation rot 2 α α α X Now focus on Trot, and note that (A × B)2 = A2B2 − (A · B)2 see text page 28 for proof. Thus 1 T = m [!2r2 − (!~ · r )2] rot 2 α α α α X 3 In Cartesian coordinates, !~ = !xx^ + !yy^ + !z^z 3 2 2 2 2 2 so ! = !x + !y + !z ≡ !i i=1 3 X and rα = xα;ix^i i=1 X3 so !~ · rα = !ixα;i i=1 X Thus 3 3 3 3 1 T = m !2 x2 − ! x ! x rot 2 α 2 i α;k i α;i 0 j α;j13 α i=1 ! =1 ! i=1 ! j=1 X X Xk X X 4 @ A5 We can also write 3 !i = !jδi;j j=1 X 1 i = j where δ = i;j 0 i 6= j 3 3 2 so !i = !i !jδi;j = !i!jδi;j j=1 j=1 X X and also note that ai bi = aibi ≡ aibi i ! i ! i j i;j X X X X X 4 3 1 so T = m ! ! δ x2 − ! ! x x rot 2 α 2 i j i;j α;k i j α;i α;j3 α i;j =1 ! i;j X X Xk X 3 1 4 5 = m ! ! δ x2 − x x 2 α i j i;j α;k α;i α;j α i;j " k=1 # X X X3 1 = ! ! m δ x2 − x x 2 i j α i;j α;k α;i α;j i;j α " k=1 # X3 3 X X 1 ≡ I ! ! 2 i;j i j i=1 j=1 X X 3 2 where Ii;j ≡ mα δi;j xα;k − xα;ixα;j α " =1 # X Xk are the 9 elements of a 3 × 3 matrix called the inertial tensor fIg. 2 Note that the Ii;j has units of mass×length . Since xα;1 = xα, xα;2 = yα, xα;3 = zα, 2 2 α mα(yα + zα) − α mαxαyα − α mαxαzα fIg = − m y x m (x2 + z2) − m y z 8 P α α α α α Pα α α Pα α α α 9 − m z x − m z y m (x2 + y2 ) < Pα α α α P α α α α α Pα α α = : P P P ; Be sure to write your matrix elements Ii;j consistently; here, the i index increments down along a column while the j index increments across a row. Also note that Ii;j = Ij;i ) the inertia tensor is symmetric. The diagonal elements Ii;i = the moments of inertia while the off–diagonal elements Ii6=j =the products of inertia 5 For a continuous body, mα ! dm = ρ(r)dV 3 2 dIi;j ! δi;j xk − xixj dm =1 ! Xk = the contribution to Ii;j due to mass element dm = ρdV 3 2 thus Ii;j = dIi;j = ρ(r) δi;j xk − xixj dV V V =1 ! Z Z Xk where the integration proceeds over the system's volume V . Example 11.3 Calculate fIg for a cube of mass M and width b and uniform density ρ = M=b3. Place the origin at one corner of the cube. Fig. 11-3. 6 b b b 2 2 2 2 I1;1 = ρ dx dy dz(x + y + z − x ) Z0 Z0 Z0 b 1 = ρb dy(y2b + b3) 0 3 Z1 1 = ρb( b4 + b4) 3 3 2 2 = ρb5 = Mb2 3 3 It is straightforward to show that the other diagonal elements are I2;2 = I3;3 = I1;1. The off–diagonal elements are similarly identical: b b b I1;2 = −ρ dx dy dz · xy Z0 Z0 Z0 1 1 1 1 = −ρ b2 b2 b = − ρb5 = − Mb2 2 2 4 4 = Ii6=j Thus this cube has an inertia tensor 2=3 −1=4 −1=4 fIg = Mb2 −1=4 2=3 −1=4 8 9 < −1=4 −1=4 2=3 = : ; 7 Principal Axes of Inertia The axes x^i that diagonalizes a body's inertia tensor fIg is called the principal axes of inertia. In this case Ii;j = Iiδi;j 3 3 1 so T = I ! ! = rotational KE rot 2 i;j i j i=1 j=1 X3 X 1 = I !2 2 i i i=1 X where the three Ii are the body's principal moments of inertia. If this body is also rotating about one of its principal axis, say, the ^z, then !~ = !^z and 1 T = I !2 rot 2 z which is the familiar formula for the rotational KE in terms of inertia Iz found in the elementary textbooks. 1 2 )those formulae with Trot = 2I! are only valid when the rotation axis !~ lies along one of the body's three principal axes. The procedure for determining the orientation of a body's principal axes of inertia is given in Section 11.5. 8 Angular Momentum The system's total angular momentum relative to the moving/rotating origin Orot is L = mαrα × vα α X where rα and vα are α'a position and velocity relative to Orot. Recall that vα = !~ × rα for this rigid body (Eqn. 10.17), so L = mαrα × (!~ × rα) α X Chapter 1 and problem 1-22 show that A × (B × A) = A2B − (A · B)A 2 so L = mα[rα!~ − (rα · !~ )rα] α X and the ith component of L is 2 Li = mα[rα!i − (rα · !~ )xα;i] α X And again use 3 3 3 2 2 rα = xα;k rα · !~ = xα;j!j !i = !jδi;j =1 j=1 j=1 Xk X X 9 So 3 3 3 L = m x2 ! δ − x ! x i α 0 α;k j i;j α;j j α;i1 α =1 j=1 j=1 X Xk X X 3 @ 3 A 2 = !j mα δi;j xα;k − xα;ixα;j j=1 α k=1 ! X3 X X = Iij!j j=1 X where the Ii;j are the elements of the inertial tensor fIg. Note that 3 3 3 L = Lix^i = Iij!jx^i i=1 i=1 j=1 X X X = fIg · !~ Lets confirm this last step by explicitly doing the matrix multiplication: L1 I11 I12 I13 !1 L = L2 = fIg · !~ = I21 I22 I23 !2 0 1 0 1 0 1 L3 I31 I32 I33 !3 @ A @ A @ A I11!1 + I12!2 + I13!3 j I1j!j = I ! + I ! + I ! = I2 ! 0 21 1 22 2 23 3 1 0 Pj j j 1 I31!1 + I32!2 + I33!3 j I3j!j B P C @ A @ A which confirms L = fIg · !~ . P Evidently the inertia tensor relates the system's angular momentum L to its spin axis !~ . 10 Now examine 3 3 3 1 1 1 ! L = !~ · L = I ! ! 2 i i 2 2 ij i j i=1 i=1 j=1 X X X = Trot = the body's KE due to its rotation 1 1 ) T = !~ · L = !~ · fIg · !~ rot 2 2 Note that the RHS is a scalar (as is should) since fIg · !~ is a vector, and a vector·vector = scalar.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • A Brief History and Philosophy of Mechanics
    A Brief History and Philosophy of Mechanics S. A. Gadsden McMaster University, [email protected] 1. Introduction During this period, several clever inventions were created. Some of these were Archimedes screw, Hero of Mechanics is a branch of physics that deals with the Alexandria’s aeolipile (steam engine), the catapult and interaction of forces on a physical body and its trebuchet, the crossbow, pulley systems, odometer, environment. Many scholars consider the field to be a clockwork, and a rolling-element bearing (used in precursor to modern physics. The laws of mechanics Roman ships). [5] Although mechanical inventions apply to many different microscopic and macroscopic were being made at an accelerated rate, it wasn’t until objects—ranging from the motion of electrons to the after the Middle Ages when classical mechanics orbital patterns of galaxies. [1] developed. Attempting to understand the underlying principles of 3. Classical Period (1500 – 1900 AD) the universe is certainly a daunting task. It is therefore no surprise that the development of ‘idea and thought’ Classical mechanics had many contributors, although took many centuries, and bordered many different the most notable ones were Galileo, Huygens, Kepler, fields—atomism, metaphysics, religion, mathematics, Descartes and Newton. “They showed that objects and mechanics. The history of mechanics can be move according to certain rules, and these rules were divided into three main periods: antiquity, classical, and stated in the forms of laws of motion.” [1] quantum. The most famous of these laws were Newton’s Laws of 2. Period of Antiquity (800 BC – 500 AD) Motion, which accurately describe the relationships between force, velocity, and acceleration on a body.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • Engineering Physics I Syllabus COURSE IDENTIFICATION Course
    Engineering Physics I Syllabus COURSE IDENTIFICATION Course Prefix/Number PHYS 104 Course Title Engineering Physics I Division Applied Science Division Program Physics Credit Hours 4 credit hours Revision Date Fall 2010 Assessment Goal per Outcome(s) 70% INSTRUCTION CLASSIFICATION Academic COURSE DESCRIPTION This course is the first semester of a calculus-based physics course primarily intended for engineering and science majors. Course work includes studying forces and motion, and the properties of matter and heat. Topics will include motion in one, two, and three dimensions, mechanical equilibrium, momentum, energy, rotational motion and dynamics, periodic motion, and conservation laws. The laboratory (taken concurrently) presents exercises that are designed to reinforce the concepts presented and discussed during the lectures. PREREQUISITES AND/OR CO-RECQUISITES MATH 150 Analytic Geometry and Calculus I The engineering student should also be proficient in algebra and trigonometry. Concurrent with Phys. 140 Engineering Physics I Laboratory COURSE TEXT *The official list of textbooks and materials for this course are found on Inside NC. • COLLEGE PHYSICS, 2nd Ed. By Giambattista, Richardson, and Richardson, McGraw-Hill, 2007. • Additionally, the student must have a scientific calculator with trigonometric functions. COURSE OUTCOMES • To understand and be able to apply the principles of classical Newtonian mechanics. • To effectively communicate classical mechanics concepts and solutions to problems, both in written English and through mathematics. • To be able to apply critical thinking and problem solving skills in the application of classical mechanics. To demonstrate successfully accomplishing the course outcomes, the student should be able to: 1) Demonstrate knowledge of physical concepts by their application in problem solving.
    [Show full text]
  • Exercises in Classical Mechanics 1 Moments of Inertia 2 Half-Cylinder
    Exercises in Classical Mechanics CUNY GC, Prof. D. Garanin No.1 Solution ||||||||||||||||||||||||||||||||||||||||| 1 Moments of inertia (5 points) Calculate tensors of inertia with respect to the principal axes of the following bodies: a) Hollow sphere of mass M and radius R: b) Cone of the height h and radius of the base R; both with respect to the apex and to the center of mass. c) Body of a box shape with sides a; b; and c: Solution: a) By symmetry for the sphere I®¯ = I±®¯: (1) One can ¯nd I easily noticing that for the hollow sphere is 1 1 X ³ ´ I = (I + I + I ) = m y2 + z2 + z2 + x2 + x2 + y2 3 xx yy zz 3 i i i i i i i i 2 X 2 X 2 = m r2 = R2 m = MR2: (2) 3 i i 3 i 3 i i b) and c): Standard solutions 2 Half-cylinder ϕ (10 points) Consider a half-cylinder of mass M and radius R on a horizontal plane. a) Find the position of its center of mass (CM) and the moment of inertia with respect to CM. b) Write down the Lagrange function in terms of the angle ' (see Fig.) c) Find the frequency of cylinder's oscillations in the linear regime, ' ¿ 1. Solution: (a) First we ¯nd the distance a between the CM and the geometrical center of the cylinder. With σ being the density for the cross-sectional surface, so that ¼R2 M = σ ; (3) 2 1 one obtains Z Z 2 2σ R p σ R q a = dx x R2 ¡ x2 = dy R2 ¡ y M 0 M 0 ¯ 2 ³ ´3=2¯R σ 2 2 ¯ σ 2 3 4 = ¡ R ¡ y ¯ = R = R: (4) M 3 0 M 3 3¼ The moment of inertia of the half-cylinder with respect to the geometrical center is the same as that of the cylinder, 1 I0 = MR2: (5) 2 The moment of inertia with respect to the CM I can be found from the relation I0 = I + Ma2 (6) that yields " µ ¶ # " # 1 4 2 1 32 I = I0 ¡ Ma2 = MR2 ¡ = MR2 1 ¡ ' 0:3199MR2: (7) 2 3¼ 2 (3¼)2 (b) The Lagrange function L is given by L('; '_ ) = T ('; '_ ) ¡ U('): (8) The potential energy U of the half-cylinder is due to the elevation of its CM resulting from the deviation of ' from zero.
    [Show full text]
  • Euler and the Dynamics of Rigid Bodies Sebastià Xambó Descamps
    Euler and the dynamics of rigid bodies Sebastià Xambó Descamps Abstract. After presenting in contemporary terms an outline of the kinematics and dynamics of systems of particles, with emphasis in the kinematics and dynamics of rigid bodies, we will consider briefly the main points of the historical unfolding that produced this understanding and, in particular, the decisive role played by Euler. In our presentation the main role is not played by inertial (or Galilean) observers, but rather by observers that are allowed to move in an arbitrary (smooth, non-relativistic) way. 0. Notations and conventions The material in sections 0-6 of this paper is an adaptation of parts of the Mechanics chapter of XAMBÓ-2007. The mathematical language used is rather standard. The read- er will need a basic knowledge of linear algebra, of Euclidean geometry (see, for exam- ple, XAMBÓ-2001) and of basic calculus. 0.1. If we select an origin in Euclidean 3-space , each point can be specified by a vector , where is the Euclidean vector space associated with . This sets up a one-to-one correspondence between points and vectors . The inverse map is usually denoted . Usually we will speak of “the point ”, instead of “the point ”, implying that some point has been chosen as an origin. Only when conditions on this origin become re- levant will we be more specific. From now on, as it is fitting to a mechanics context, any origin considered will be called an observer. When points are assumed to be moving with time, their movement will be assumed to be smooth.
    [Show full text]
  • Rigid Body Dynamics 2
    Rigid Body Dynamics 2 CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2017 Cross Product & Hat Operator Derivative of a Rotating Vector Let’s say that vector r is rotating around the origin, maintaining a fixed distance At any instant, it has an angular velocity of ω ω dr r ω r dt ω r Product Rule The product rule of differential calculus can be extended to vector and matrix products as well da b da db b a dt dt dt dab da db b a dt dt dt dA B dA dB B A dt dt dt Rigid Bodies We treat a rigid body as a system of particles, where the distance between any two particles is fixed We will assume that internal forces are generated to hold the relative positions fixed. These internal forces are all balanced out with Newton’s third law, so that they all cancel out and have no effect on the total momentum or angular momentum The rigid body can actually have an infinite number of particles, spread out over a finite volume Instead of mass being concentrated at discrete points, we will consider the density as being variable over the volume Rigid Body Mass With a system of particles, we defined the total mass as: n m m i i1 For a rigid body, we will define it as the integral of the density ρ over some volumetric domain Ω m d Angular Momentum The linear momentum of a particle is 퐩 = 푚퐯 We define the moment of momentum (or angular momentum) of a particle at some offset r as the vector 퐋 = 퐫 × 퐩 Like linear momentum, angular momentum is conserved in a mechanical system If the particle is constrained only
    [Show full text]
  • Lecture Notes for PHY 405 Classical Mechanics
    Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion's Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary's University Department of Astronomy & Physics November 25, 2003 revised November 29 Chapter 11: Dynamics of Rigid Bodies rigid body = a collection of particles whose relative positions are fixed. We will ignore the microscopic thermal vibrations occurring among a `rigid' body's atoms. The inertia tensor Consider a rigid body that is composed of N particles. Give each particle an index α = 1 : : : N. Particle α has a velocity vf,α measured in the fixed reference frame and velocity vr,α = drα=dt in the reference frame that rotates about axis !~ . Then according to Eq. 10.17: vf,α = V + vr,α + !~ × rα where V = velocity of the moving origin relative to the fixed origin. Note that the particles in a rigid body have zero relative velocity, ie, vr,α = 0. 1 Thus vα = V + !~ × rα after dropping the f subscript 1 1 and T = m v2 = m (V + !~ × r )2 is the particle's KE α 2 α α 2 α α N so T = Tα the system's total KE is α=1 X1 1 = MV2 + m V · (!~ × r ) + m (!~ × r )2 2 α α 2 α α α α X X 1 1 = MV2 + V · !~ × m r + m (!~ × r )2 2 α α 2 α α α ! α X X where M = α mα = the system's total mass. P Now choose the system's center of mass R as the origin of the moving frame.
    [Show full text]
  • Rigid Body Dynamics II
    An Introduction to Physically Based Modeling: Rigid Body Simulation IIÐNonpenetration Constraints David Baraff Robotics Institute Carnegie Mellon University Please note: This document is 1997 by David Baraff. This chapter may be freely duplicated and distributed so long as no consideration is received in return, and this copyright notice remains intact. Part II. Nonpenetration Constraints 6 Problems of Nonpenetration Constraints Now that we know how to write and implement the equations of motion for a rigid body, let's consider the problem of preventing bodies from inter-penetrating as they move about an environment. For simplicity, suppose we simulate dropping a point mass (i.e. a single particle) onto a ®xed ¯oor. There are several issues involved here. Because we are dealing with rigid bodies, that are totally non-¯exible, we don't want to allow any inter-penetration at all when the particle strikes the ¯oor. (If we considered our ¯oor to be ¯exible, we might allow the particle to inter-penetrate some small distance, and view that as the ¯oor actually deforming near where the particle impacted. But we don't consider the ¯oor to be ¯exible, so we don't want any inter-penetration at all.) This means that at the instant that the particle actually comes into contact with the ¯oor, what we would like is to abruptly change the velocity of the particle. This is quite different from the approach taken for ¯exible bodies. For a ¯exible body, say a rubber ball, we might consider the collision as occurring gradually. That is, over some fairly small, but non-zero span of time, a force would act between the ball and the ¯oor and change the ball's velocity.
    [Show full text]
  • Newton Euler Equations of Motion Examples
    Newton Euler Equations Of Motion Examples Alto and onymous Antonino often interloping some obligations excursively or outstrikes sunward. Pasteboard and Sarmatia Kincaid never flits his redwood! Potatory and larboard Leighton never roller-skating otherwhile when Trip notarizes his counterproofs. Velocity thus resulting in the tumbling motion of rigid bodies. Equations of motion Euler-Lagrange Newton-Euler Equations of motion. Motion of examples of experiments that a random walker uses cookies. Forces by each other two examples of example are second kind, we will refer to specify any parameter in. 213 Translational and Rotational Equations of Motion. Robotics Lecture Dynamics. Independence from a thorough description and angular velocity as expected or tofollowa userdefined behaviour does it only be loaded geometry in an appropriate cuts in. An interface to derive a particular instance: divide and author provides a positive moment is to express to output side can be run at all previous step. The analysis of rotational motions which make necessary to decide whether rotations are. For xddot and whatnot in which a very much easier in which together or arena where to use them in two backwards operation complies with respect to rotations. Which influence of examples are true, is due to independent coordinates. On sameor adjacent joints at each moment equation is also be more specific white ellipses represent rotations are unconditionally stable, for motion break down direction. Unit quaternions or Euler parameters are known to be well suited for the. The angular momentum and time and runnable python code. The example will be run physics examples are models can be symbolic generator runs faster rotation kinetic energy.
    [Show full text]
  • Rotation: Moment of Inertia and Torque
    Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn that where the force is applied and how the force is applied is just as important as how much force is applied when we want to make something rotate. This tutorial discusses the dynamics of an object rotating about a fixed axis and introduces the concepts of torque and moment of inertia. These concepts allows us to get a better understanding of why pushing a door towards its hinges is not very a very effective way to make it open, why using a longer wrench makes it easier to loosen a tight bolt, etc. This module begins by looking at the kinetic energy of rotation and by defining a quantity known as the moment of inertia which is the rotational analog of mass. Then it proceeds to discuss the quantity called torque which is the rotational analog of force and is the physical quantity that is required to changed an object's state of rotational motion. Moment of Inertia Kinetic Energy of Rotation Consider a rigid object rotating about a fixed axis at a certain angular velocity. Since every particle in the object is moving, every particle has kinetic energy. To find the total kinetic energy related to the rotation of the body, the sum of the kinetic energy of every particle due to the rotational motion is taken. The total kinetic energy can be expressed as ..
    [Show full text]