Direct and Indirect Effects of Serpentine Soil on Florivores and Pollinators

Total Page:16

File Type:pdf, Size:1020Kb

Direct and Indirect Effects of Serpentine Soil on Florivores and Pollinators Oecologia (2013) 173:1355–1366 DOI 10.1007/s00442-013-2711-y PLANT-MICROBE-ANIMAL INTERACTIONS - ORIGINAL RESEARCH Edaphic factors and plant–insect interactions: direct and indirect effects of serpentine soil on florivores and pollinators George A. Meindl · Daniel J. Bain · Tia‑Lynn Ashman Received: 31 January 2013 / Accepted: 6 June 2013 / Published online: 10 July 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract Edaphic factors can lead to differences in plant florivores relative to non-serpentine plants. In experimental morphology and tissue chemistry. However, whether these arrays, soil environment did not influence pollinator visita- differences result in altered plant–insect interactions for tion (though larger flowers were visited more frequently), soil-generalist plants is less understood. We present evi- but did alter florivore damage, with serpentine-grown plants dence that soil chemistry can alter plant–insect interactions receiving less damage. Our results demonstrate that the soil both directly, through chemical composition of plant tissue, environment can directly and indirectly affect plant–mutu- and indirectly, through plant morphology, for serpentine- alist and plant–antagonist interactions of serpentine-toler- tolerant Mimulus guttatus (Phrymaceae). First, we scored ant plants by altering flower chemistry and floral display. floral display (corolla width, number of open flowers per inflorescence, and inflorescence height), flower chemistry, Keywords Serpentine · Soil chemistry · Pollination · pollinator visitation and florivory of M. guttatus growing Florivory on natural serpentine and non-serpentine soil over 2 years. Second, we conducted a common garden reciprocal soil transplant experiment to isolate the effect of serpentine soil Introduction on floral display traits and flower chemistry.A nd last, we observed arrays of field-collected inflorescences and pot- Biotic interactions can be influenced by abiotic factors, thus ted plants to determine the effect of soil environment in the identical communities found in disparate environments (i.e., field on pollinator visitation and florivore damage, respec- with different resource availability) may differ in both the tively. For both natural and experimental plants, serpentine strength (Breitburg et al. 1997; Alonso 1999; Chalcraft and soil caused reductions in floral display and directly altered Andrews 1999) and direction (Pugnaire and Luque 2001) of flower tissue chemistry. Plants in natural serpentine popu- interactions. Abiotic conditions have been documented to lations received fewer pollinator visits and less damage by alter biotic interactions across a broad range of organisms, including effects of temperature and moisture on insect (Park 1954) and bivalve competition (Connell 1961). Plants, Communicated by Christina Caruso. in particular, are heavily dependent upon their abiotic envi- Electronic supplementary material The online version of this ronment for inorganic nutrient acquisition, and as a conse- article (doi:10.1007/s00442-013-2711-y) contains supplementary quence may be particularly susceptible to abiotic-mediated material, which is available to authorized users. variation (Klanderud and Totland 2005) in morphology and plant tissue chemistry, which in turn may affect how G. A. Meindl (*) · T.-L. Ashman Department of Biological Sciences, University of Pittsburgh, they interact with animals. Chemical and physical aspects Pittsburgh, PA 15260, USA of soils are extremely variable and this variation can alter e-mail: [email protected] both plant morphology and tissue chemistry (e.g., Cunning- ham et al. 1999; Murren et al. 2006; Burnett et al. 2008). D. J. Bain Department of Geology and Planetary Science, University For plants that occur in a variety of soil types, it is unclear of Pittsburgh, Pittsburgh, PA 15260, USA whether interactions with mutualists (e.g., pollinators) or 1 3 1356 Oecologia (2013) 173:1355–1366 antagonists (e.g., herbivores) are affected by soil context, interactions have only begun to be explored (Quinn et al. and whether soil could modify these interactions via direct 2011). Moreover, serpentine soils may generally influence effects on plant chemistry or indirect effects on morphol- plant–animal interactions (i.e., for non-hyperaccumulating ogy. However, such modification of biotic interactions could plants) through changes in tissue chemistry, as concentra- be instrumental in varying patterns of coevolution (i.e., the tions of metals in plant tissues far below hyperaccumulator geographic mosaic of coevolution; Thompson 1999). thresholds have been shown to be toxic to herbivores (Cole- The soil environment can influence plant reproductive man et al. 2005). In addition, while studies of folivory are morphology, which can in turn affect both plant–florivore important, an understanding of how flower chemistry alters and plant–pollinator interactions. Macronutrients in the florivory is needed, as many insects supplement their diets soil, such as N, P, K, Ca, and Mg, have been shown to influ- with nutrient-rich flower tissue (Held and Potter 2004). In ence flower size and number (e.g., Nagy and Proctor 1997; fact, some studies suggest that florivory can be just as com- Murren et al. 2006; Burnett et al. 2008). In addition, toxic mon as leaf herbivory in natural populations (e.g., Zangerl elements, such as heavy metals, often result in stunting and Rutledge 1996; Wolfe 2002), with potentially negative of growth when present in high concentrations in the soil implications for plant reproductive success (Mothershead (Antonovics et al. 1971) and are also known to influence and Marquis 2000). Florivores can affect male and female flower size (Hladun et al. 2011) and flower number (Sai- fitness both directly, through consumption of gamete- kkonen et al. 1998). Soil-induced changes in floral mor- housing structures, and indirectly by altering floral traits phology can have consequences for plant reproduction, as important for biotic interactions (e.g., pollinator attraction; both pollinators (Mitchell et al. 2004; Ivey and Carr 2005) reviewed in McCall and Irwin 2006). Therefore, under- and herbivores (Juenger et al. 2005; Ashman and Penet standing how the soil environment alters plant–florivore 2007) generally favor plants with large floral displays.A s a interactions may be vital towards explaining plant adapta- result, soil chemistry may mediate the quantity and quality tion to unique soils. of plant interactions with florivores and pollinators. Many Serpentine soil is distinct from adjacent soils by having studies have documented the effects of environment on low Ca:Mg ratios, mineral nutrient deficiencies (e.g., P, K), plant reproductive morphology, yet few (e.g., Galen 2000; and relatively high concentrations of several metals (Co, Lau et al. 2008) have determined whether these morpho- Cr, Ni, Fe, Mg, and Zn; Brady et al. 2005; Safford et al. logical changes lead to altered plant–animal interactions 2005; Table S1). These soils provide an ideal model system across different environments. to test whether the soil environment alters plant–florivore Soil chemistry can also have effects on plant tissue and plant–pollinator interactions as they are (1) globally chemistry (Cunningham et al. 1999), although the conse- distributed, (2) host many species of tolerant plants, and quences for plant–animal interactions are less well under- (3) are chemically distinct from adjacent soil types (Brady stood. While plant–herbivore interactions are often studied et al. 2005; Harrison and Rajakaruna 2011). We address in the context of plant secondary compounds (reviewed in whether biotic interactions are soil-dependent by answering Mithöfer and Boland 2012), recent studies suggest that pri- the following questions with respect to a serpentine-toler- mary metabolites (e.g., N, P, K) may also greatly influence ant species, Mimulus guttatus: (1) Does growth on serpen- both herbivore preference (Alonso and Herrera 2003) and tine soil alter traits that mediate plant–animal interactions, fitness (Beanland et al. 2003; Perkins et al. 2004). In addi- i.e., flower size, flower number, and inflorescence height? tion, soils that contain toxic elements can alter plant–herbi- (2) Does serpentine soil directly influence floral chemistry, vore interactions. For instance, Streptanthus polygaloides, a specifically for minerals known to be enriched or deficient serpentine soil endemic, hyperaccumulates Ni (i.e., tissues in serpentine and/or known to influence plant–animal inter- >1,000 ppm Ni; Baker and Brooks 1989), which results actions (macronutrients: Ca, Mg, P, K; micronutrients: Fe, in less leaf damage by herbivores (Boyd and Moar 1999) Ni, Zn, B; or other beneficial nutrients:A l, Na; Marschner and pathogens (Boyd et al. 1994). The effect of metal 1986)? And (3) is (a) pollinator visitation rate, (b) pollina- accumulation on plant–pollinator interactions, however, tor diversity, and/or (c) florivore damage lower for plants is unclear. For example, interactions with pollinators may growing in serpentine versus non-serpentine soils? also be affected if metals are translocated to floral tissues and pollinator rewards (e.g., nectar and pollen). A recent study of a non-metal (Se) hyperaccumulator has shown Materials and methods that flower constituents, including nectar, can accumulate non-essential elements in high concentrations (Hladun Study system et al. 2011), though metal accumulators from serpentines have not been similarly studied, and the implications
Recommended publications
  • Crab Spiders Impact Floral-Signal Evolution Indirectly Through Removal
    ARTICLE DOI: 10.1038/s41467-018-03792-x OPEN Crab spiders impact floral-signal evolution indirectly through removal of florivores Anina C. Knauer1, Moe Bakhtiari1,2 & Florian P. Schiestl1 The puzzling diversity of flowers is primarily shaped by selection and evolutionary change caused by the plant’s interaction with animals. The contribution of individual animal species to net selection, however, may vary depending on the network of interacting organisms. Here 1234567890():,; we document that in the buckler mustard, Biscutella laevigata, the crab spider Thomisus onustus reduces bee visits to flowers but also benefits plants by feeding on florivores. Uninfested plants experience a trade-off between pollinator and spider attraction as both bees and crab spiders are attracted by the floral volatile β-ocimene. This trade-off is reduced by the induced emission of β-ocimene after florivore infestation, which is stronger in plant populations where crab spiders are present than where they are absent, suggesting that plants are locally adapted to the presence of crab spiders. Our study demonstrates the context-dependence of selection and shows how crab spiders impact on floral evolution. 1 Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland. 2Present address: Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, 2000 Neuchatel, Switzerland. Correspondence and requests for materials should be addressedto F.P.S. (email: fl[email protected]) NATURE COMMUNICATIONS | (2018) 9:1367 | DOI: 10.1038/s41467-018-03792-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03792-x lant–animal interactions are a major driver of plant Crab spiders camouflage themselves on flowers to hunt flower- evolution, including both local adaptation and species visiting insects such as pollinators (Fig.
    [Show full text]
  • Florivore Impacts on Plant Reproductive Success and Pollinator Mortality in an Obligate Pollination Mutualism
    Oecologia (2013) 173:1345–1354 DOI 10.1007/s00442-013-2694-8 PLANT-MICROBE-ANIMAL INTERACTIONS - ORIGINAL RESEARCH Florivore impacts on plant reproductive success and pollinator mortality in an obligate pollination mutualism David M. Althoff · Wei Xiao · Sarah Sumoski · Kari A. Segraves Received: 25 October 2012 / Accepted: 23 May 2013 / Published online: 9 July 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract Florivores are present in many pollination analyses of phenotypic selection based on surveys of natu- systems and can have direct and indirect effects on both rally occurring plants revealed temporal variation in the plants and pollinators. Although the impact of florivores plant traits important to plant fitness and the effects of the are commonly examined in facultative pollination mutual- florivores on fitness. Leaf-footed bugs negatively impacted isms, their effects on obligate mutualism remain relatively fitness when fewer plants were flowering and leaf-footed unstudied. Here, we used experimental manipulations and bug density was high, whereas beetles had a positive effect surveys of naturally occurring plants to assess the effect on fitness when there were many plants flowering and their of florivory on the obligate pollination mutualism between densities were low. This positive effect was likely due to yuccas and yucca moths. Yucca filamentosa (Agavaceae) is adult beetles consuming yucca moth eggs while having a pollinated by the moth Tegeticula cassandra (Lepidoptera: negligible effect on floral abscission.T ogether, the actions Prodoxidae), and the mutualism also attracts two florivores: of both florivores either augmented the relationship of a generalist, the leaf-footed bug Leptoglossus phyllopus plant traits and fitness or slightly weakened the relation- (Hemiptera: Coreidae), and a specialist, the beetle Hyme- ship.
    [Show full text]
  • Sue's Pdf Quark Setting
    Cambridge University Press 978-0-521-83488-9 - Insect Ecology: Behavior, Populations and Communities Peter W. Price, Robert F. Denno, Micky D. Eubanks, Deborah L. Finke and Ian Kaplan Excerpt More information Part I Introduction CONTENTS Chapter 1 The scope of insect ecology We introduce insect ecology by looking at the many remarkable features of the insects: their long evolutionary history, important design characteristics, including wings and flight, and the prodigious numbers of species and numbers of individuals per species. Inevitably, such vast richness entails many kinds of interaction, the basis for the study of insect ecology, because individuals and species provide part of the environment which any insect experiences. Ecology is the science of relationships of organisms to their environment: the physical and the biotic components with which they interact. How they relate depends on their design and their behavior, the latter aspect forming Part II of this book. With millions of species of insects comes the question of how so many can evolve and coexist, subjects addressed in this chapter and other parts of the book. Also, we consider the roles that insects play in ecosystems, and the scientific method employed in their study. These introductory considerations set the stage for expanding many themes in subsequent parts and chapters. Part II is devoted to behavioral ecology, Part III to species interactions and Part IV to population ecology. Moving to larger arrays of interacting species we devote Part V to food webs and communities, and Part VI to patterns and processes over the Earth’s surface. We generally are innately fascinated by insects and other arthropods at a young age, but cultural defects tend to diminish this enjoyment, while enhancing dread and avoidance.
    [Show full text]
  • Resubmission of NPH-MS-2015-19634
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Portsmouth University Research Portal (Pure) 1 Ann Bot 2 3 Geographic consistency and variation in conflicting selection generated by pollinators 4 and seed predators 5 6 7 Shi-Guo Sun1, W. Scott Armbruster2, 3 and Shuang-Quan Huang1* 8 9 10 1School of Life Sciences, Central China Normal University, Wuhan 430079, China 11 2School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK 12 3Institute of Arctic Biology, University of Alaska, Fairbanks AK 99775-7000, USA 13 14 Running head: Conflicting selection on floral traits 15 16 The manuscript has four figures, one table and two Appendices (Table S1, and S2), and a 17 supplemental Excel file containing data on 12 phenotypic traits, stigmatic pollen loads in 18 14 populations and seed survival data in 12 populations of Pedicularis rex. 19 20 * Corresponding address: Tel: +86-27-67867221, Fax: +86-27-67861147; 21 E-mail: [email protected] 22 1 23 ABSTRACT 24 Backgrounds and Aims Floral traits that attract pollinators may also attract seed 25 predators, which, in turn, may generate conflicting natural selection on such traits. 26 Although such selection trade-offs are expected to vary geographically, few studies have 27 investigated selection mediated by pollinators and seed predators across a geographic 28 mosaic of environments and floral variation. 29 Methods Floral traits were investigated in 14 populations of the bumblebee-pollinated 30 herb, Pedicularis rex, in which tubular flowers are subtended by cupular bracts holding 31 rain water. To study potentially conflicting selection on floral traits generated by 32 pollinators and florivores, we measured stigmatic pollen loads, initial seed set, 33 pre-dispersal seed predation, and final viable-seed production in 12-14 populations in the 34 field.
    [Show full text]
  • The Overlooked Biodiversity of Flower-Visiting Invertebrates
    The Overlooked Biodiversity of Flower-Visiting Invertebrates Carl W. Wardhaugh1*, Nigel E. Stork2, Will Edwards1, Peter S. Grimbacher3 1 School of Marine and Tropical Biology, James Cook University, Smithfield, Queensland, Australia, 2 Griffith School of Environment, Griffith University, Nathan, Queensland, Australia, 3 Department of Resource Management and Geography, University of Melbourne, Richmond, Victoria, Australia Abstract Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass.
    [Show full text]
  • Floral Asymmetry and Predation Risk Modify Pollinator Behavior, but Only Predation Risk Decreases Plant Fitness
    Oecologia (2016) 181:475–485 DOI 10.1007/s00442-016-3564-y COMMUNITY ECOLOGY – ORIGINAL RESEARCH Floral asymmetry and predation risk modify pollinator behavior, but only predation risk decreases plant fitness Pablo Augusto Poleto Antiqueira1,3 · Gustavo Quevedo Romero2 Received: 28 May 2015 / Accepted: 15 January 2016 / Published online: 10 February 2016 © Springer-Verlag Berlin Heidelberg 2016 Abstract Although predators and floral herbivores can The strong avoidance behavioral response triggered by pre- potentially decrease plant fitness by changing pollinator dation risk may be related to predator pressure upon flow- behaviors, studies comparing the strength of these factors ers. Although floral asymmetry caused by herbivory can as well as their additive and interactive effects on pollina- alter the quality of resources, it should not exert the same tor visitation and plant fitness have not been conducted. In evolutionary pressure as that of predator–prey interactions. this study, we manipulated the floral symmetry and preda- Our study highlights the importance of considering simul- tor presence (artificial crab spiders) on the flowers of the taneous forces, such as predation risk and floral asymmetry, shrub Rubus rosifolius (Rosaceae) in a 2 2 factorial as well as pollinator behavior when evaluating ecological × randomized block design. We found that asymmetry and processes involving mutualistic plant-pollinator systems. predators decreased pollinator visitation (mainly hymenop- terans), and overall these factors did not interact (additive Keywords Trait-mediated indirect interaction · effects). The effect of predation risk on pollinator avoid- Mutualism · Plant reproductive success · Flowering plant ance behavior was 62 % higher than that of floral asym- evolution · Path analysis metry.
    [Show full text]
  • The Importance of Seed Dispersal in the Alexandria Coastal Dunefield, South Africa - 57
    Journal of Coastal Conservation 7: 57-70, 2001 © EUCC; Opulus Press Uppsala. Printed in Sweden - The importance of seed dispersal in the Alexandria Coastal Dunefield, South Africa - 57 The importance of seed dispersal in the Alexandria Coastal Dunefield, South Africa Castley, J.G.1,2*; Bruton, J.-S.1; Kerley1, G.I.H. & McLachlan, A.2 1Terrestrial Ecology Research Unit, Department of Zoology, University of Port Elizabeth, P.O. Box 1600, Port Elizabeth 6000, South Africa; 2Present address South African National Parks, P.O. Box 20419, Humewood 6013, Port Elizabeth, South Africa; 3Present address Dean, College of Science, Sultan Qaboos University, Al Khod 123, Sultanate of Oman; *Corresponding author; Fax +27415085415; E-mail [email protected] Abstract. The endozoochorous dispersal of seeds by mam- Introduction mals and birds between distinct vegetation communities was assessed to determine the importance of these processes in Noss (1983) suggested that the primary goal in the coastal dune field management. Isolated pockets of thicket conservation of natural areas is to ensure the perpetua- vegetation (bush-pockets) within a large coastal dune field tion of ecosystem structure, function and integrity, while provided the opportunity to study vertebrate seed dispersal and its contribution to their origin and maintenance. Mamma- minimizing species loss. These sentiments were sup- lian and avian faeces were collected for the quantification of ported by Walker (1992). However, ecological pro- seeds dispersed via endozoochory. Birds and mammals showed cesses are not generally confined to even large protected considerable overlap, dispersing intact seeds of 17 and 29 areas, and smaller areas may require active management plant species, respectively, but mammals dispersed a greater in an effort to preserve these processes and systems.
    [Show full text]
  • Petrocoptis Grandiflora
    Implicaciones ecológicas y evolutivas del robo de néctar Ecological and evolutionary implications of nectar robbery TESIS DOCTORAL Opta al título de “DOCTOR INTERNACIONAL” SANDRA VICTORIA ROJAS NOSSA Vigo Abstract Plants interact simultaneously with a great variety of organisms that modify their biological success and act as selective agents. In the mutualistic interactions of pollination plants receive the benefit of pollen carryover between flowers, while animals obtain resources as reward. However, rewards and other parts of the plant are also consumed by exploiters which apparently do not provide any benefit in return. Nectar robbers are insects, birds and mammals that use a hole made in the corolla to extract the nectar accumulated at the base of the flowers or spurs without entering "legitimately" through the opening of the flower. Nectar robbery has consequences that differ in direction and magnitude for the reproduction of plants through direct and indirect mechanisms, according to the characteristics of the participants in the interactions. As a result, nectar robbers may act as selective agents, modify population dynamics and constitute important pieces for the maintenance of mutualisms. However, few biological systems have been thoroughly studied making the information about this phenomenon still too scarce, fragmented and limited to specific geographic areas, hindering generalizations. The main goal of this dissertation is to study the ecological and evolutionary implications of nectar robbery from a multiscale perspective. To achieve this we first studied the spatial and temporal variability in the robbery frequency of a vulnerable plant species. We analyzed the consequences of nectar robbery for male and female components of the reproductive success in two plant species of the Iberian Peninsula with different life histories: Petrocoptis grandiflora a perennial herb, self-compatible and restricted distribution, and Lonicera etrusca a scandent shrub, pollinator-dependent and common in Mediterranean ecosystems.
    [Show full text]
  • Feeding Pet Birds, Parrot Diets, and Bird Nutrition Recommendations
    Feeding Pet Birds, Parrot Diets, and Bird Nutrition Recommendations © 2006 Foster & Smith, Inc. Reprinted as a courtesy and with permission from PetEducation.com (http://www.PetEducation.com) On-line store at http://www.DrsFosterSmith.com Free pet supply catalog: 1-800-323-4208 Feeding pet birds the right foods is important for their health. A balanced diet based on sound bird nutrition recommendations is the key. Balancing a parrot's diet from the beginning will prevent many health and behavior problems. But it's never too late to get your pet bird on a sound nutritional footing. It is something you will want to do since an unbalanced diet is the main cause of disease and early death in pet birds. Malnutrition is a human-made disease. Fortunately, it is also preventable. Dietary differences among birds When feeding pet birds, we must realize that the species of birds we have as companion pets do not all have the same dietary needs. Just as our North American wild birds such as chickadees, woodpeckers, and hummingbirds do not eat the same foods, neither do our companion birds. In general, parrot diets can be classified according to their normal diets. Most psittacines (members of the parrot family) are florivores, meaning the main portion of their diet is obtained from plants. Among florivores, there are granivores (birds that eat grain and seed), and frugivores (birds with diets based on fruits). Some pet birds are omnivores, whose diet can consist of both plant and animal components. There is a special class of florivores called nectarivores, who eat mostly nectar.
    [Show full text]
  • Proquest Dissertations
    Interactions between cactus-specialist solitary bees and their host cacti Item Type text; Dissertation-Reproduction (electronic) Authors McIntosh, Margrit Elizabeth Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 15:16:38 Link to Item http://hdl.handle.net/10150/280207 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMl films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMl a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge.
    [Show full text]
  • INVESTIGATION INTO ASPECTS of the BIOLOGY of TUBULAR BLACK THRIPS, Haplothrips Victoriensis BAGNALL (THYSANOPTERA: PHLAEOTHRIPIDAE), in SOUTH AUSTRALIA
    INVESTIGATION INTO ASPECTS OF THE BIOLOGY OF TUBULAR BLACK THRIPS, Haplothrips victoriensis BAGNALL (THYSANOPTERA: PHLAEOTHRIPIDAE), IN SOUTH AUSTRALIA Le Cao Luong (Plant Protection Department, Nong Lam University HCMC, Vietnam) The first instar larva of tubular black thrips with “pollen disguise” feeding on Tyrophagus mite. The thesis submitted for the degree of Master of Science Discipline of Ecology and Evolutionary Biology April, 2008 DECLARATION This thesis contains no material that has been accepted for the award of any other degree or diploma in any university. To the best of knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis. I consent to this thesis being made available for photocopying and loan when deposited in the University Library. Signature: Date: (changing this page by a yellow blank sheet here) Dedicated in loving memories to my mum & older brother Pham Thi Tung (10/01/1945 - 08/10/1998) Le Cao Nguyen (22/06/1971 — 29/12/2005) Acknowledgement Two years can never be a satisfactory time to get everything for done in life but is long enough for every one to do many things successfully. For me, I am also happy to finish this entomological project at the University of Adelaide. The results I found may/may not be significant for future research but in my belief, I have deeply focused on my research and have given it my best efforts. Importantly, I have been very lucky to learn about new things, gain new experiences and have received so much support from my supervisors, the lab groups of Prof.
    [Show full text]
  • Nutrition of Birds in the Order Psittaciformes: a Review Elizabeth A
    Journal of Avian Medicine and Surgery 15(4):257±275, 2001 q 2001 by the Association of Avian Veterinarians Review Article Nutrition of Birds in the Order Psittaciformes: A Review Elizabeth A. Koutsos, MS, Kevin D. Matson, MS, and Kirk C. Klasing, MS, PhD Abstract: Over 350 species of birds make up the order Psittaciformes; many of these are main- tained in captive environments. Malnutrition is commonly diagnosed in captive psittacine birds; therefore, providing nutritionally adequate diets must be a primary concern. This review integrates quantitative information on the dietary habits and nutritional requirements of psittacine birds to facilitate the formulation and evaluation of diets for birds in captivity. Initially, characterization of the diet and feeding strategy of a particular species in the wild can provide insight into appropriate diet choices in captivity. Knowledge of the gastrointestinal anatomy and physiology can be used to elucidate the capacity of that species to utilize various feedstuffs. For example, the presence of a highly muscularized gizzard may allow a bird to utilize a seed-based diet, whereas a species pos- sessing a small gizzard may be unable to process such a diet. Finally, nutrient requirements deter- mined in a particular species or a related species (eg, similar digestive physiology and feeding strategy) may be applied to create a nutritionally adequate diet. Understanding the factors involved in selecting appropriate diets enables aviculturists, veterinarians, and nutritionists to maintain and propagate these birds with increased success. Key words: nutrition, requirements, diets, avian, psittacine, Psittaciformes Introduction ments that were scienti®cally determined for poul- try were adopted, at least in part, as standards for The order Psittaciformes has 2 families, the Ca- diets of captive psittacine birds.
    [Show full text]