EXAM 3, SOLUTIONS Math 1220-003 - Calculus II

Total Page:16

File Type:pdf, Size:1020Kb

EXAM 3, SOLUTIONS Math 1220-003 - Calculus II EXAM 3, SOLUTIONS Math 1220-003 - Calculus II Problems 1. Find the limit or say it does not exist, et − 1 lim t!0 t3 Solution. This is an indeterminate form of type 0/0 (when plugging in 0 for t directly). Thus L'Hopital's rule must be applied: et − 1 et lim = lim t!0 t3 t!0 3t2 At this point, notice that plugging in 0 gives 1/0, which is no longer an indeterminate form. In fact, since 3t2 is always positive, the second limit is approaching 1 as t approaches 0. Thus by L'Hopital's rule, the original limit is also 1, or DNE. Note that this example illustrates it is incorrect to continue applying L'Hopital on a form that is not indeterminate. Many students kept applying L'Hopital to arrive at et 6 , stating as the answer 1/6. You MUST check after each application of L'H that it is still indeterminate. 2. Find the limit or say it does not exist, lim x1=x x!1 Solution. This is indeterminate of type 10. Any exponential indeterminate type calls for use of logarithms: L = lim x1=x x!1 ln L = lim ln x1=x x!1 ln x ln L = lim x!1 x 1 The limit on the right is now an indeterminate of type 1 so L'Hopital may be applied: 1 1=x ln L = lim x!1 1 1 ln L = lim x!1 x ln L = 0 L = e0 = 1 3. Compute the following integral or say that it diverges, Z 9 dx 1=3 1 (x − 1) Solution. The integral is improper because the integrand increases to 1 near one of the limits of integration (x = 1). Thus it should be rewritten, Z 9 dx lim 1=3 a!1 a (x − 1) Now compute the integral as normal, first substituting u = x − 1; du = dx: Ignore the limits of integration for now, until after plugging x's back in later. du lim a!1 (u)1=3 3 lim[ u2=3] a!1 2 3 2=3 9 lim[ (x − 1) ]a a!1 2 3 lim [(9 − 1)2=3 − (a − 1)2=3] a!1 2 3 (4) = 6 2 2 4. Find the sum of the following infinite series, or say it diverges: 1 X 2n 3n+1 n=1 Solution. First rewrite the given series as 1 1 X 2n 3 3n n=1 1 1 X 2 ( )n 3 3 n=1 It is now clearly a geometric series with first term a = 2=9 and ratio r = 2=3. Thus, a 2=9 2 3 2 S = = = · = 1 − r 1 − 2=3 9 1 3 5. Find the sum of the following infinite series, or say it diverges: 1 X n2 n2 + 1 n=1 The limit of the terms at 1 is n2 lim = 1 n!1 n2 + 1 by comparing coefficients on the highest powers of n in the top and bottom. Thus by the nth Term Divergence Test, since the limit of the terms is not 0, the series diverges. 6. Use the Integral test to show whether the following series converges or diverges: 1 X 1 n2 n=1 Note: Since I asked you to use the Integral Test, I marked off points for only stating the p-series result without any other work. To use the Integral Test, set up the integral Z 1 1 2 dx 1 x 3 Z t 1 lim 2 dx t!1 1 x 1 t lim [− ]1 t!1 x 1 1 lim [− + ] = 1 t!1 t 1 Since the integral converged, the series converges also. Note. The Integral Test does NOT say that the series converges to 1. It only tells whether it converges or not (I mentioned in class that this series in fact converges to π2=6) 7. Determine whether the given series converges or diverges. You may use the result of the previous problem without having to prove it again. 1 X n + 1 n3 − n n=1 Note. "The Hierarchy" is not a valid answer to a problem like this! I have included a note at the end of the test in regards to this. Note. This problem had an unintended error on my part, and that is that the first term in the series is in fact 2/0, which does not exist (so the series technically diverges!) I should have given full points to anyone that came to this conclusion by either check- ing the first term or using the integral test (which would have given divergence). Solution. What the Hierarchy does help you do is determine what function to use in the comparison test. Ignoring all but the highest power of n in top and bottom, our P P n P 1 suggested comparison series bn is n3 , or n2 . We proved in the previous problem that this series converges, so if the Limit Comparison Test gives a finite number, the series we're interested in converges also. a lim n n!1 bn (n + 1)=(n3 − n) lim n!1 1=n2 4 n + 1 n2 lim · n!1 n3 − n 1 n3 + n lim = 1 n!1 n3 − n Thus by the limit comparison test the original series converges (minus the note above). Note that the problem may have been simplified slightly from the beginning by factor- P 1 ing the bottom and cancelling n + 1 from the top and bottom, leaving n2−n 8. Determine whether the given series converges or diverges. Explain your answer. 1 X n − 1 4n n=1 Note. Same as previous problem, "The Hierarchy" does not suffice as an answer here. See note at the end of the test. Solution. The exponential term suggests using the Ratio Test. a lim n+1 n!1 an (n − 1 + 1)=(4n+1) lim n!1 (n − 1)=(4n) n 4n lim · n!1 4n+1 n − 1 n 1 lim = n!1 4(n − 1) 4 1 Since 4 < 1, the ratio test says that the series converges. Note. The test does NOT say that the series converges to 1/4. n Note. Some students used the Limit Comparison Test to compare the series to 4n and got a ratio of an = 1. This does NOT say that your original series converges! It only bn says that your original series does the same thing as the new one. So if you use this P n test you still have to prove that 4n converges also, which will require the Ratio Test similar to above. 5 9. Determine whether the given series converges or diverges. If it converges, specify whether it converges conditionally or absolutely. 1 X 2n + 1 (−1)n+1 3n − 1 n=1 The series diverges by the nth Term Divergence Test: 2n + 1 lim = 2=3 n!1 3n − 1 The (−1)n+1 will simply throw in negative signs every other term and in fact the limit of the terms DNE (since they bounce back and foth between 2/3 and -2/3 in the limit). Bonus Problems P P P P 1. Give an example of two series an and bn such that an and bn converge, but P anbn diverges. Solution. As Problem 2 below suggests, one or both of the series we find here should have negative terms in it. The easiest example is something of this sort: 1 a = b = (−1)n+1 p n n n P P The series an = bn converge by the Alternating Series Test since the terms go to 0, alternate, and are decreasing. However, X X 1 1 a b = (−1)n+1 p (−1)n+1 p n n n n X 1 = (−1)2n+2 p p n n X 1 = 1 · n This is now the harmonic series (with all positive terms), which diverges. P P 2. Show that for ANY series an and bn which are POSITIVE and converge (an; bn > P 0 for all n) then anbn must converge also. Solution. The easiest way to get to the finish is the following: 6 P Since an converges, its terms must go to 0, that is, lim an = 0 n!1 By the definition of the above limit, there is an index N such that an < 1 for all n > N. Now by the Ordinary Comparison Test, 1 1 X X anbn ≤ 1 · bn N N P The right sum is part of the series bn, which we assumed converges. Thus the left sum must also converge. Furthermore, adding in the first N − 1 terms to the left sum will not affect convergence of the series since this is a finite number of terms. Thus P anbn must converge, which is the desired result. Question. Where does this argument break down if the series an and bn are not both positive? Additional Notes on the Test THE HIERARCHY In class I gave a hierarchy of how functions act against each other at 1: nn > n! > 1000n > 2n > n1000 > n2 > n1=1000 > ln(n) > 1 What the Hierarchy means is the following: 1) If you are finding a limit at infinity of an , the Hierarchy tells you what the result bn will be without any further work. If an > bn on the hierarchy, the result will be 1. If an < bn on the hierarchy, the result will be 0. 2) If you are determining whether a series converges/diverges, you may use the hi- erarchy along with the Limit Comparison Test.
Recommended publications
  • Math 142 – Quiz 6 – Solutions 1. (A) by Direct Calculation, Lim 1+3N 2
    Math 142 – Quiz 6 – Solutions 1. (a) By direct calculation, 1 + 3n 1 + 3 0 + 3 3 lim = lim n = = − . n→∞ n→∞ 2 2 − 5n n − 5 0 − 5 5 3 So it is convergent with limit − 5 . (b) By using f(x), where an = f(n), x2 2x 2 lim = lim = lim = 0. x→∞ ex x→∞ ex x→∞ ex (Obtained using L’Hˆopital’s Rule twice). Thus the sequence is convergent with limit 0. (c) By comparison, n − 1 n + cos(n) n − 1 ≤ ≤ 1 and lim = 1 n + 1 n + 1 n→∞ n + 1 n n+cos(n) o so by the Squeeze Theorem, the sequence n+1 converges to 1. 2. (a) By the Ratio Test (or as a geometric series), 32n+2 32n 3232n 7n 9 L = lim (16 )/(16 ) = lim = . n→∞ 7n+1 7n n→∞ 32n 7 7n 7 The ratio is bigger than 1, so the series is divergent. Can also show using the Divergence Test since limn→∞ an = ∞. (b) By the integral test Z ∞ Z t 1 1 t dx = lim dx = lim ln(ln x)|2 = lim ln(ln t) − ln(ln 2) = ∞. 2 x ln x t→∞ 2 x ln x t→∞ t→∞ So the integral diverges and thus by the Integral Test, the series also diverges. (c) By comparison, (n3 − 3n + 1)/(n5 + 2n3) n5 − 3n3 + n2 1 − 3n−2 + n−3 lim = lim = lim = 1. n→∞ 1/n2 n→∞ n5 + 2n3 n→∞ 1 + 2n−2 Since P 1/n2 converges (p-series, p = 2 > 1), by the Limit Comparison Test, the series converges.
    [Show full text]
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • 1 Improper Integrals
    July 14, 2019 MAT136 { Week 6 Justin Ko 1 Improper Integrals In this section, we will introduce the notion of integrals over intervals of infinite length or integrals of functions with an infinite discontinuity. These definite integrals are called improper integrals, and are understood as the limits of the integrals we introduced in Week 1. Definition 1. We define two types of improper integrals: 1. Infinite Region: If f is continuous on [a; 1) or (−∞; b], the integral over an infinite domain is defined as the respective limit of integrals over finite intervals, Z 1 Z t Z b Z b f(x) dx = lim f(x) dx; f(x) dx = lim f(x) dx: a t!1 a −∞ t→−∞ t R 1 R a If both a f(x) dx < 1 and −∞ f(x) dx < 1, then Z 1 Z a Z 1 f(x) dx = f(x) dx + f(x) dx: −∞ −∞ a R 1 If one of the limits do not exist or is infinite, then −∞ f(x) dx diverges. 2. Infinite Discontinuity: If f is continuous on [a; b) or (a; b], the improper integral for a discon- tinuous function is defined as the respective limit of integrals over finite intervals, Z b Z t Z b Z b f(x) dx = lim f(x) dx f(x) dx = lim f(x) dx: a t!b− a a t!a+ t R c R b If f has a discontinuity at c 2 (a; b) and both a f(x) dx < 1 and c f(x) dx < 1, then Z b Z c Z b f(x) dx = f(x) dx + f(x) dx: a a c R b If one of the limits do not exist or is infinite, then a f(x) dx diverges.
    [Show full text]
  • Series: Convergence and Divergence Comparison Tests
    Series: Convergence and Divergence Here is a compilation of what we have done so far (up to the end of October) in terms of convergence and divergence. • Series that we know about: P∞ n Geometric Series: A geometric series is a series of the form n=0 ar . The series converges if |r| < 1 and 1 a1 diverges otherwise . If |r| < 1, the sum of the entire series is 1−r where a is the first term of the series and r is the common ratio. P∞ 1 2 p-Series Test: The series n=1 np converges if p1 and diverges otherwise . P∞ • Nth Term Test for Divergence: If limn→∞ an 6= 0, then the series n=1 an diverges. Note: If limn→∞ an = 0 we know nothing. It is possible that the series converges but it is possible that the series diverges. Comparison Tests: P∞ • Direct Comparison Test: If a series n=1 an has all positive terms, and all of its terms are eventually bigger than those in a series that is known to be divergent, then it is also divergent. The reverse is also true–if all the terms are eventually smaller than those of some convergent series, then the series is convergent. P P P That is, if an, bn and cn are all series with positive terms and an ≤ bn ≤ cn for all n sufficiently large, then P P if cn converges, then bn does as well P P if an diverges, then bn does as well. (This is a good test to use with rational functions.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Sequences, Series and Taylor Approximation (Ma2712b, MA2730)
    Sequences, Series and Taylor Approximation (MA2712b, MA2730) Level 2 Teaching Team Current curator: Simon Shaw November 20, 2015 Contents 0 Introduction, Overview 6 1 Taylor Polynomials 10 1.1 Lecture 1: Taylor Polynomials, Definition . .. 10 1.1.1 Reminder from Level 1 about Differentiable Functions . .. 11 1.1.2 Definition of Taylor Polynomials . 11 1.2 Lectures 2 and 3: Taylor Polynomials, Examples . ... 13 x 1.2.1 Example: Compute and plot Tnf for f(x) = e ............ 13 1.2.2 Example: Find the Maclaurin polynomials of f(x) = sin x ...... 14 2 1.2.3 Find the Maclaurin polynomial T11f for f(x) = sin(x ) ....... 15 1.2.4 QuestionsforChapter6: ErrorEstimates . 15 1.3 Lecture 4 and 5: Calculus of Taylor Polynomials . .. 17 1.3.1 GeneralResults............................... 17 1.4 Lecture 6: Various Applications of Taylor Polynomials . ... 22 1.4.1 RelativeExtrema .............................. 22 1.4.2 Limits .................................... 24 1.4.3 How to Calculate Complicated Taylor Polynomials? . 26 1.5 ExerciseSheet1................................... 29 1.5.1 ExerciseSheet1a .............................. 29 1.5.2 FeedbackforSheet1a ........................... 33 2 Real Sequences 40 2.1 Lecture 7: Definitions, Limit of a Sequence . ... 40 2.1.1 DefinitionofaSequence .......................... 40 2.1.2 LimitofaSequence............................. 41 2.1.3 Graphic Representations of Sequences . .. 43 2.2 Lecture 8: Algebra of Limits, Special Sequences . ..... 44 2.2.1 InfiniteLimits................................ 44 1 2.2.2 AlgebraofLimits.............................. 44 2.2.3 Some Standard Convergent Sequences . .. 46 2.3 Lecture 9: Bounded and Monotone Sequences . ..... 48 2.3.1 BoundedSequences............................. 48 2.3.2 Convergent Sequences and Closed Bounded Intervals . .... 48 2.4 Lecture10:MonotoneSequences .
    [Show full text]
  • Calculus Online Textbook Chapter 10
    Contents CHAPTER 9 Polar Coordinates and Complex Numbers 9.1 Polar Coordinates 348 9.2 Polar Equations and Graphs 351 9.3 Slope, Length, and Area for Polar Curves 356 9.4 Complex Numbers 360 CHAPTER 10 Infinite Series 10.1 The Geometric Series 10.2 Convergence Tests: Positive Series 10.3 Convergence Tests: All Series 10.4 The Taylor Series for ex, sin x, and cos x 10.5 Power Series CHAPTER 11 Vectors and Matrices 11.1 Vectors and Dot Products 11.2 Planes and Projections 11.3 Cross Products and Determinants 11.4 Matrices and Linear Equations 11.5 Linear Algebra in Three Dimensions CHAPTER 12 Motion along a Curve 12.1 The Position Vector 446 12.2 Plane Motion: Projectiles and Cycloids 453 12.3 Tangent Vector and Normal Vector 459 12.4 Polar Coordinates and Planetary Motion 464 CHAPTER 13 Partial Derivatives 13.1 Surfaces and Level Curves 472 13.2 Partial Derivatives 475 13.3 Tangent Planes and Linear Approximations 480 13.4 Directional Derivatives and Gradients 490 13.5 The Chain Rule 497 13.6 Maxima, Minima, and Saddle Points 504 13.7 Constraints and Lagrange Multipliers 514 CHAPTER Infinite Series Infinite series can be a pleasure (sometimes). They throw a beautiful light on sin x and cos x. They give famous numbers like n and e. Usually they produce totally unknown functions-which might be good. But on the painful side is the fact that an infinite series has infinitely many terms. It is not easy to know the sum of those terms.
    [Show full text]
  • MAT137 Basic Comparison Test and Limit Comparison Test Watch Videos
    MAT137 Course website http://uoft.me/MAT137 . Basic comparison test and limit comparison test Watch Videos 13.2–13.4 before next Monday’s class. Supplementary video: 13.1 Watch Videos 13.5–13.9 before next Wednesday’s class. Francisco Guevara Parra () MAT137 27 February 2019 1 / 11 A simple BCT application ∞ 1 dx We want to determine whether x Z1 x + e is convergent or divergent. We can try at least two comparisons: 1 1 1. Compare and . x x + ex 1 1 2. Compare and . ex x + ex Try both. What can you conclude from each one of them? Francisco Guevara Parra () MAT137 27 February 2019 2 / 11 True or False Let a R. ∈ Let f and g be continuous functions on [a, ). ∞ Assume that x a, 0 f (x) g(x) . ∀ ≥ ≤ ≤ What can we conclude? ∞ ∞ 1. IF f (x)dx is convergent, THEN g(x)dx is convergent. Za Za ∞ ∞ 2. IF f (x)dx = , THEN g(x)dx = . Za ∞ Za ∞ ∞ ∞ 3. IF g(x)dx is convergent, THEN f (x)dx is convergent. Za Za ∞ ∞ 4. IF g(x)dx = , THEN f (x)dx = . Za ∞ Za ∞ Francisco Guevara Parra () MAT137 27 February 2019 3 / 11 True or False - Part II Let a R. ∈ Let f and g be continuous functions on [a, ). ∞ Assume that x a, f (x) g(x) . ∀ ≥ ≤ What can we conclude? ∞ ∞ 1. IF f (x)dx is convergent, THEN g(x)dx is convergent. Za Za ∞ ∞ 2. IF f (x)dx = , THEN g(x)dx = . Za ∞ Za ∞ ∞ ∞ 3. IF g(x)dx is convergent, THEN f (x)dx is convergent.
    [Show full text]
  • Direct and Limit Comparison Tests
    Joe Foster Direct and Limit Comparison Tests We have seen that a given improper integral converges if its integrand is less than the integrand of another integral known to converge. Similarly, a given improper integral diverges if its integrand is greater than the integrand of another integral known to diverge. We now apply the same idea to infinite series instead. Direct Comparison Test for Series: If0 a b for all n N, for some N, then, ≤ n ≤ n ≥ ∞ ∞ 1. If bn converges, then so does an. nX=1 nX=1 ∞ ∞ 2. If an diverges, then so does bn. nX=1 nX=1 a The Limit Comparison Test: Suppose a > 0 and b > 0 for all n. If lim n = L, where L is finite and L> 0, then n n →∞ n bn the two series an and bn either both converge or both diverge. X X ∞ 1 Example 1: Determine whether the series converges or diverges. 2n + n nX=1 1 1 We have for all n 1. So, 2n + n ≤ 2n ≥ ∞ ∞ 1 1 . 2n + n ≤ 2n nX=1 nX=1 1 Since the series on the right is a geometric series with r = , it converges. So we determine that our series of interest also 2 converges. ∞ 1 Example 2: Determine whether the series converges or diverges. n2 + n +1 nX=1 1 1 We have for all n 1. So, n2 + n +1 ≤ n2 ≥ ∞ ∞ 1 1 . n2 + n +1 ≤ n2 nX=1 nX=1 Since the series on the right is a p series with p = 2 > 1, it converges.
    [Show full text]
  • Series Convergence Tests Math 122 Calculus III D Joyce, Fall 2012
    Series Convergence Tests Math 122 Calculus III D Joyce, Fall 2012 Some series converge, some diverge. Geometric series. We've already looked at these. We know when a geometric series 1 X converges and what it converges to. A geometric series arn converges when its ratio r lies n=0 a in the interval (−1; 1), and, when it does, it converges to the sum . 1 − r 1 X 1 The harmonic series. The standard harmonic series diverges to 1. Even though n n=1 1 1 its terms 1, 2 , 3 , . approach 0, the partial sums Sn approach infinity, so the series diverges. The main questions for a series. Question 1: given a series does it converge or diverge? Question 2: if it converges, what does it converge to? There are several tests that help with the first question and we'll look at those now. The term test. The only series that can converge are those whose terms approach 0. That 1 X is, if ak converges, then ak ! 0. k=1 Here's why. If the series converges, then the limit of the sequence of its partial sums n th X approaches the sum S, that is, Sn ! S where Sn is the n partial sum Sn = ak. Then k=1 lim an = lim (Sn − Sn−1) = lim Sn − lim Sn−1 = S − S = 0: n!1 n!1 n!1 n!1 The contrapositive of that statement gives a test which can tell us that some series diverge. Theorem 1 (The term test). If the terms of the series don't converge to 0, then the series diverges.
    [Show full text]
  • Comparison Tests for Integrals
    Joe Foster Direct and Limit Comparison Tests Tests for Convergence: When we cannot evaluate an improper integral directly, we try to determine whether it con- verges of diverges. If the integral diverges, we are done. If it converges we can use numerical methods to approximate its value. The principal tests for convergence or divergence are the Direct Comparison Test and the Limit Comparison Test. Direct Comparison Test for Integrals: If0 ≤ f(x) ≤ g(x) on the interval (a, ∞], where a ∈ R, then, ∞ ∞ 1. If g(x) dx converges, then so does f(x) dx. ˆa ˆa ∞ ∞ 2. If f(x) dx diverges, then so does g(x) dx. ˆa ˆa Why does this make sense? 1. If the area under the curve of g(x) is finite and f(x) is bounded above by g(x) (and below by 0), then the area under the curve of f(x) must be less than or equal to the area under the curve of g(x). A positive number less that a finite number is also finite. 2. If the area under the curve of f(x) is infinite and g(x) is bounded below by f(x), then the area under the curve of g(x) must be “less than or equal to” the area under the curve of g(x). Since there is no finite number “greater than” infinity, the area under g(x) must also be infinite. Example 1: Determine if the following integral is convergent or divergent. ∞ cos2(x) 2 dx. ˆ2 x cos2(x) cos2(x) We want to find a function g(x) such that for some a ∈ R, f(x)= ≤ g(x) or f(x)= ≥ g(x) for all x ≥ a.
    [Show full text]
  • Infinite Sequences and Series Were Introduced Briely in a Preview of Calculus in Con- Nection with Zeno’S Paradoxes and the Decimal Representation of Numbers
    11 Infinite Sequences and Series Betelgeuse is a red supergiant star, one of the largest and brightest of the observable stars. In the project on page 783 you are asked to compare the radiation emitted by Betelgeuse with that of other stars. STScI / NASA / ESA / Galaxy / Galaxy Picture Library / Alamy INFINITE SEQUENCES AND SERIES WERE introduced briely in A Preview of Calculus in con- nection with Zeno’s paradoxes and the decimal representation of numbers. Their importance in calculus stems from Newton’s idea of representing functions as sums of ininite series. For instance, in inding areas he often integrated a function by irst expressing it as a series and then integrating each term of the series. We will pursue his idea in Section 11.10 in order to integrate such functions as e2x 2. (Recall that we have previously been unable to do this.) Many of the func- tions that arise in mathematical physics and chemistry, such as Bessel functions, are deined as sums of series, so it is important to be familiar with the basic concepts of convergence of ininite sequences and series. Physicists also use series in another way, as we will see in Section 11.11. In studying ields as diverse as optics, special relativity, and electromagnetism, they analyze phenomena by replacing a function with the irst few terms in the series that represents it. 693 Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
    [Show full text]