Week 2: Calculus II Notes

Total Page:16

File Type:pdf, Size:1020Kb

Week 2: Calculus II Notes Christian Parkinson GRE Prep: Calculus II Notes 1 Week 2: Calculus II Notes We concluded the Calculus I notes with Riemann integration, Fundamental Theorem of Calculus and some helpful integration techniques. However, ofter times, you will be asked to identify whether an integral converges or diverges even when you cannot find the value. This is especially true for improper integrals: those in which the integrand had a singularity or the range goes to infinity. We begin the Calculus II notes by discussing some basic convergence results. Proposition 1 (p-test). Let p 2 R. The integral Z 1 dx p 1 x converges if p > 1 and diverges otherwise. The integral Z 1 dx p 0 x converges if p < 1 and diverges otherwise. Note that as a consequence, the integral Z 1 dx p 0 x never converges. These can all be verified by a straight-forward calculation and hint at some good intuition. The borderline case is 1=x where neither integrals converge, so as a general rule, for Z 1 f(x)dx 1 to converge, we will need f(x) ! 0 faster than 1=x as x ! 1 and if g(x) has a singularity at x = 0, then for Z 1 g(x)dx 0 to converge, we need g(x) to blow up slower than 1=x as x ! 0+. Note, these \general rules" should not be seen has hard-and-fast truths, but rather heuristics which can often make it easy to verify if an integral converges or diverges. The following two theorems give more rigorous forms of these general rules. Theorem 2 (Comparison Test). Suppose that f; g : [0; 1) ! [0; 1) are continuous and that f(x) ≤ g(x) for all x 2 [0; 1). Then Z 1 Z 1 (a) if g(x)dx converges, then so does f(x)dx, 0 0 Christian Parkinson GRE Prep: Calculus II Notes 2 Z 1 Z 1 (b) if f(x)dx diverges, then so does g(x)dx. 0 0 Theorem 3 (Limit Comparison Test). Suppose that f; g : [0; 1) ! [0; 1) are contin- uous and that f(x) lim x!1 g(x) exists as a number in (0; 1)[excluding the endpoints]. Then Z 1 Z 1 f(x)dx and g(x)dx both converge or both diverge. 0 0 Note, the previous two theorems also hold for improper integrals where the functions have singularities at the same point but the limit in the second must be taken at the singularity. This last theorem tells us that the only important thing in determining convergence of an integral with 1 as a limit is the asymptotic behavior of the integrand. We have a special notation for this. If f; g are such that f=g ! L as x ! 1 where L is a finite non-zero number, then we write f ∼ g [note: in most contexts, L is required to be 1 in order to say f ∼ g; for our purposes, it is fine to allow L to be finite and non-zero]. We typically read this as \f is asymptotic to g." Note that if f ∼ g, then there are constants c; C > 0 such that for sufficiently large x, we have cg(x) ≤ f(x) ≤ Cg(x). This shows that we can easily derive the Limit Comparison Test from the ordinary Comparison Test. A relaxed version of this requirement leads to a new definition. If there is C > 0 such that f(x) ≤ Cg(x) for all x sufficiently large, then we write f = O(g) [and say \f is big-oh of g"]. Thus f ∼ g iff f = O(g) and g = O(f). Specifically, f = O(g) iff f=g remains bounded as x ! 1. Finally, note that we can define the same notion for x approaching some other point. For example, sin(x) ∼ x as x ! 0. In order to apply these rules, it is nice to know something about the growth rates of different common functions at 1. We discuss a few here. Proposition 4 (Growth Rates of x; ex; log(x) at 1). Let α; β; γ > 0. Then 1 (a) lim = 0; x!1 log(x)α log(x)α (b) lim = 0; x!1 xβ xβ (c) lim = 0: x!1 eγx What these tells us is that asympotically as x ! 1, any power of x is smaller than any exponential and any power of a logarithm is smaller than any power of x. In asymptotic notation, we write 1 log(x)α xβ eγx where f g means that f=g ! 0 at 1. We can compound these into new relationships xβ xβ log(x)α. Many more such relationships can be proved by simply by taking the required limit. Note that if f g, then f = O(g); Christian Parkinson GRE Prep: Calculus II Notes 3 the converse need not be true. Example 5. Determine the convergence/divergence of the following integrals Z 1 1 (a) p dx. 2 x + x + log(x) Z 1 x6 + 4x3 + 3x2 + 2 (b) 9 dx 1 7x + x + 10 Z 1 (c) csc(x)1=2dx: 0 Solution. p p (a) Since x; log(x) x, there are constants c1; c2 such that for x large enough, x ≤ c1x, log(x) ≤ c2x. Thus Z 1 dx Z 1 dx p ≥ C + 2 x + log(x) + x M (1 + c1 + c2)x where C; M are some constants. The former diverges since the latter does. (b) Notice that if we divide the integrand by 1=x3 (hence multiply by x3) and take the limit, we see x9 + 4x6 + 3x5 + 2x3 1 + 4=x3 + 3=x4 + 2=x6 lim = lim = 1=7: x!1 7x9 + x + 10 x!1 7 + 1=x8 + 10=x9 R 1 dx Thus by the Limit Comparison Test, our integral converges iff 1 x3 converges. The latter converges, so the integral in (b) converges as well. p (c) Since sin(x) ∼ x as x ! 0, we see that csc(x)1=2 ∼ 1= x. Thus the given integral converges iff Z 1 dx p 0 x converges which it does. Next, we discuss applications of the integral. We have already established that it can be used to calculate area under curves but there are a few other applications that show up often on the math subject GRE; most prominently arc-length calculations and surfaces/volumes of revolution. We discuss the formulas for these briefly. Proposition 6 (Arc Length). Let f :[a; b] ! R be continuously differentiable. Then the arc-length of the graph (x; f(x)) between a and b is given by Z b L = p1 + f 0(x)2dx: a Christian Parkinson GRE Prep: Calculus II Notes 4 More generally, if x; y :[a; b] ! R2 are continuously differentiable, then the length of the curve parameterized by (x(t); y(t)) for t 2 [a; b] is given by Z b L = px0(t)2 + y0(t)2dt: a Proposition 7 (Surface / Volume of Revolution). Suppose that f :[a; b] ! R is continuous. If we were tor rotate the graph (x; f(x)) about the x-axis this will create a surface. The surface area of this surface is Z b A = 2π f(x)p1 + f 0(x)2dx a and the volume encapsulated by this surface is Z b V = π f(x)2dx: a These formulas are easy to derive when you have a good picture in your mind; otherwise you can use them as a black box. Note that they agree with our intuition. p Example 8. What is the length of the graph of f(x) = 1 − x2 for x 2 [−1; 1]? Solution. Intuitively, this graph is half of a unit circle so the length should be π. Using the formula, we see Z 1 r x2 Z 1 dx L = 1 + dx = p = arcsin(1) − arcsin(−1) = π=2 − (−π=2) = π; 2 2 −1 1 − x −1 1 − x where the antiderivative can easily be found using the trig. substitution x = sin(t). Example 9. Let f(x) = x for x 2 [0; 1] What surface area and volume result from rotating the graph of f about the x-axis? Solution. Intuitively, this will create a right, circular cone of \height" 1 and radius 1. You π 2 π may recall from geometry, the volume is 3 r h = 3 . According to our formula, Z 1 π V = π x2dx = : 0 3 Likewise, the surface areap (not includingp the \bottom" of the cone; i.e. the unit circle which forms the base) will be πr r2 + h2 = π 2 and our formula gives Z 1 p p A = 2π x 1 + 12 dx = π 2: 0 Note: much like the arc-length formula, the surface area and volume formulas can be adjusted to account for parameterized coordinates or to account for rotation around the Christian Parkinson GRE Prep: Calculus II Notes 5 y-axis or any other line ax + by = c. Also, you may be asked for the volume created when the area between two graphs (x; f(x)) and (x; g(x)) is rotated around the x-axis. This will be given by Z b 2 2 π f(x) − g(x) dx: a The reasoning should be somewhat clear from the geometry. From here we move onto sequences and series. Definition 10 (Sequence). A sequence is a map a : N ! R which assigns a real number to each natural number. The value that a assigns to n 2 N is typically denoted by an rather than a(n) though both may be used.
Recommended publications
  • Abel's Identity, 131 Abel's Test, 131–132 Abel's Theorem, 463–464 Absolute Convergence, 113–114 Implication of Condi
    INDEX Abel’s identity, 131 Bolzano-Weierstrass theorem, 66–68 Abel’s test, 131–132 for sequences, 99–100 Abel’s theorem, 463–464 boundary points, 50–52 absolute convergence, 113–114 bounded functions, 142 implication of conditional bounded sets, 42–43 convergence, 114 absolute value, 7 Cantor function, 229–230 reverse triangle inequality, 9 Cantor set, 80–81, 133–134, 383 triangle inequality, 9 Casorati-Weierstrass theorem, 498–499 algebraic properties of Rk, 11–13 Cauchy completeness, 106–107 algebraic properties of continuity, 184 Cauchy condensation test, 117–119 algebraic properties of limits, 91–92 Cauchy integral theorem algebraic properties of series, 110–111 triangle lemma, see triangle lemma algebraic properties of the derivative, Cauchy principal value, 365–366 244 Cauchy sequences, 104–105 alternating series, 115 convergence of, 105–106 alternating series test, 115–116 Cauchy’s inequalities, 437 analytic functions, 481–482 Cauchy’s integral formula, 428–433 complex analytic functions, 483 converse of, 436–437 counterexamples, 482–483 extension to higher derivatives, 437 identity principle, 486 for simple closed contours, 432–433 zeros of, see zeros of complex analytic on circles, 429–430 functions on open connected sets, 430–432 antiderivatives, 361 on star-shaped sets, 429 for f :[a, b] Rp, 370 → Cauchy’s integral theorem, 420–422 of complex functions, 408 consequence, see deformation of on star-shaped sets, 411–413 contours path-independence, 408–409, 415 Cauchy-Riemann equations Archimedean property, 5–6 motivation, 297–300
    [Show full text]
  • Math 142 – Quiz 6 – Solutions 1. (A) by Direct Calculation, Lim 1+3N 2
    Math 142 – Quiz 6 – Solutions 1. (a) By direct calculation, 1 + 3n 1 + 3 0 + 3 3 lim = lim n = = − . n→∞ n→∞ 2 2 − 5n n − 5 0 − 5 5 3 So it is convergent with limit − 5 . (b) By using f(x), where an = f(n), x2 2x 2 lim = lim = lim = 0. x→∞ ex x→∞ ex x→∞ ex (Obtained using L’Hˆopital’s Rule twice). Thus the sequence is convergent with limit 0. (c) By comparison, n − 1 n + cos(n) n − 1 ≤ ≤ 1 and lim = 1 n + 1 n + 1 n→∞ n + 1 n n+cos(n) o so by the Squeeze Theorem, the sequence n+1 converges to 1. 2. (a) By the Ratio Test (or as a geometric series), 32n+2 32n 3232n 7n 9 L = lim (16 )/(16 ) = lim = . n→∞ 7n+1 7n n→∞ 32n 7 7n 7 The ratio is bigger than 1, so the series is divergent. Can also show using the Divergence Test since limn→∞ an = ∞. (b) By the integral test Z ∞ Z t 1 1 t dx = lim dx = lim ln(ln x)|2 = lim ln(ln t) − ln(ln 2) = ∞. 2 x ln x t→∞ 2 x ln x t→∞ t→∞ So the integral diverges and thus by the Integral Test, the series also diverges. (c) By comparison, (n3 − 3n + 1)/(n5 + 2n3) n5 − 3n3 + n2 1 − 3n−2 + n−3 lim = lim = lim = 1. n→∞ 1/n2 n→∞ n5 + 2n3 n→∞ 1 + 2n−2 Since P 1/n2 converges (p-series, p = 2 > 1), by the Limit Comparison Test, the series converges.
    [Show full text]
  • Cauchy's Cours D'analyse
    SOURCES AND STUDIES IN THE HISTORY OF MATHEMATICS AND PHYSICAL SCIENCES Robert E. Bradley • C. Edward Sandifer Cauchy’s Cours d’analyse An Annotated Translation Cauchy’s Cours d’analyse An Annotated Translation For other titles published in this series, go to http://www.springer.com/series/4142 Sources and Studies in the History of Mathematics and Physical Sciences Editorial Board L. Berggren J.Z. Buchwald J. Lutzen¨ Robert E. Bradley, C. Edward Sandifer Cauchy’s Cours d’analyse An Annotated Translation 123 Robert E. Bradley C. Edward Sandifer Department of Mathematics and Department of Mathematics Computer Science Western Connecticut State University Adelphi University Danbury, CT 06810 Garden City USA NY 11530 [email protected] USA [email protected] Series Editor: J.Z. Buchwald Division of the Humanities and Social Sciences California Institute of Technology Pasadena, CA 91125 USA [email protected] ISBN 978-1-4419-0548-2 e-ISBN 978-1-4419-0549-9 DOI 10.1007/978-1-4419-0549-9 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009932254 Mathematics Subject Classification (2000): 01A55, 01A75, 00B50, 26-03, 30-03 c Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
    [Show full text]
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • 1 Improper Integrals
    July 14, 2019 MAT136 { Week 6 Justin Ko 1 Improper Integrals In this section, we will introduce the notion of integrals over intervals of infinite length or integrals of functions with an infinite discontinuity. These definite integrals are called improper integrals, and are understood as the limits of the integrals we introduced in Week 1. Definition 1. We define two types of improper integrals: 1. Infinite Region: If f is continuous on [a; 1) or (−∞; b], the integral over an infinite domain is defined as the respective limit of integrals over finite intervals, Z 1 Z t Z b Z b f(x) dx = lim f(x) dx; f(x) dx = lim f(x) dx: a t!1 a −∞ t→−∞ t R 1 R a If both a f(x) dx < 1 and −∞ f(x) dx < 1, then Z 1 Z a Z 1 f(x) dx = f(x) dx + f(x) dx: −∞ −∞ a R 1 If one of the limits do not exist or is infinite, then −∞ f(x) dx diverges. 2. Infinite Discontinuity: If f is continuous on [a; b) or (a; b], the improper integral for a discon- tinuous function is defined as the respective limit of integrals over finite intervals, Z b Z t Z b Z b f(x) dx = lim f(x) dx f(x) dx = lim f(x) dx: a t!b− a a t!a+ t R c R b If f has a discontinuity at c 2 (a; b) and both a f(x) dx < 1 and c f(x) dx < 1, then Z b Z c Z b f(x) dx = f(x) dx + f(x) dx: a a c R b If one of the limits do not exist or is infinite, then a f(x) dx diverges.
    [Show full text]
  • Series: Convergence and Divergence Comparison Tests
    Series: Convergence and Divergence Here is a compilation of what we have done so far (up to the end of October) in terms of convergence and divergence. • Series that we know about: P∞ n Geometric Series: A geometric series is a series of the form n=0 ar . The series converges if |r| < 1 and 1 a1 diverges otherwise . If |r| < 1, the sum of the entire series is 1−r where a is the first term of the series and r is the common ratio. P∞ 1 2 p-Series Test: The series n=1 np converges if p1 and diverges otherwise . P∞ • Nth Term Test for Divergence: If limn→∞ an 6= 0, then the series n=1 an diverges. Note: If limn→∞ an = 0 we know nothing. It is possible that the series converges but it is possible that the series diverges. Comparison Tests: P∞ • Direct Comparison Test: If a series n=1 an has all positive terms, and all of its terms are eventually bigger than those in a series that is known to be divergent, then it is also divergent. The reverse is also true–if all the terms are eventually smaller than those of some convergent series, then the series is convergent. P P P That is, if an, bn and cn are all series with positive terms and an ≤ bn ≤ cn for all n sufficiently large, then P P if cn converges, then bn does as well P P if an diverges, then bn does as well. (This is a good test to use with rational functions.
    [Show full text]
  • SFS / M.Sc. (Mathematics with Computer Science)
    Mathematics Syllabi for Entrance Examination M.Sc. (Mathematics)/ M.Sc. (Mathematics) SFS / M.Sc. (Mathematics with Computer Science) Algebra.(5 Marks) Symmetric, Skew symmetric, Hermitian and skew Hermitian matrices. Elementary Operations on matrices. Rank of a matrices. Inverse of a matrix. Linear dependence and independence of rows and columns of matrices. Row rank and column rank of a matrix. Eigenvalues, eigenvectors and the characteristic equation of a matrix. Minimal polynomial of a matrix. Cayley Hamilton theorem and its use in finding the inverse of a matrix. Applications of matrices to a system of linear (both homogeneous and non–homogeneous) equations. Theoremson consistency of a system of linear equations. Unitary and Orthogonal Matrices, Bilinear and Quadratic forms. Relations between the roots and coefficients of general polynomial equation in one variable. Solutions of polynomial equations having conditions on roots. Common roots and multiple roots. Transformation of equations. Nature of the roots of an equation Descarte’s rule of signs. Solutions of cubic equations (Cardon’s method). Biquadratic equations and theirsolutions. Calculus.(5 Marks) Definition of the limit of a function. Basic properties of limits, Continuous functions and classification of discontinuities. Differentiability. Successive differentiation. Leibnitz theorem. Maclaurin and Taylor series expansions. Asymptotes in Cartesian coordinates, intersection of curve and its asymptotes, asymptotes in polar coordinates. Curvature, radius of curvature for Cartesian curves, parametric curves, polar curves. Newton’s method. Radius of curvature for pedal curves. Tangential polar equations. Centre of curvature. Circle of curvature. Chord of curvature, evolutes. Tests for concavity and convexity. Points of inflexion. Multiplepoints. Cusps, nodes & conjugate points. Type of cusps.
    [Show full text]
  • 1 Notes for Expansions/Series and Differential Equations in the Last
    Notes for Expansions/Series and Differential Equations In the last discussion, we considered perturbation methods for constructing solutions/roots of algebraic equations. Three types of problems were illustrated starting from the simplest: regular (straightforward) expansions, non-uniform expansions requiring modification to the process through inner and outer expansions, and singular perturbations. Before proceeding further, we first more clearly define the various types of expansions of functions of variables. 1. Convergent and Divergent Expansions/Series Consider a series, which is the sum of the terms of a sequence of numbers. Given a sequence {a1,a2,a3,a4,a5,....,an..} , the nth partial sum Sn is the sum of the first n terms of the sequence, that is, n Sn = ak . (1) k =1 A series is convergent if the sequence of its partial sums {S1,S2,S3,....,Sn..} converges. In a more formal language, a series converges if there exists a limit such that for any arbitrarily small positive number ε>0, there is a large integer N such that for all n ≥ N , ^ Sn − ≤ ε . (2) A sequence that is not convergent is said to be divergent. Examples of convergent and divergent series: • The reciprocals of powers of 2 produce a convergent series: 1 1 1 1 1 1 + + + + + + ......... = 2 . (3) 1 2 4 8 16 32 • The reciprocals of positive integers produce a divergent series: 1 1 1 1 1 1 + + + + + + ......... (4) 1 2 3 4 5 6 • Alternating the signs of the reciprocals of positive integers produces a convergent series: 1 1 1 1 1 1 − + − + − + ......... = ln 2 .
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Sequences, Series and Taylor Approximation (Ma2712b, MA2730)
    Sequences, Series and Taylor Approximation (MA2712b, MA2730) Level 2 Teaching Team Current curator: Simon Shaw November 20, 2015 Contents 0 Introduction, Overview 6 1 Taylor Polynomials 10 1.1 Lecture 1: Taylor Polynomials, Definition . .. 10 1.1.1 Reminder from Level 1 about Differentiable Functions . .. 11 1.1.2 Definition of Taylor Polynomials . 11 1.2 Lectures 2 and 3: Taylor Polynomials, Examples . ... 13 x 1.2.1 Example: Compute and plot Tnf for f(x) = e ............ 13 1.2.2 Example: Find the Maclaurin polynomials of f(x) = sin x ...... 14 2 1.2.3 Find the Maclaurin polynomial T11f for f(x) = sin(x ) ....... 15 1.2.4 QuestionsforChapter6: ErrorEstimates . 15 1.3 Lecture 4 and 5: Calculus of Taylor Polynomials . .. 17 1.3.1 GeneralResults............................... 17 1.4 Lecture 6: Various Applications of Taylor Polynomials . ... 22 1.4.1 RelativeExtrema .............................. 22 1.4.2 Limits .................................... 24 1.4.3 How to Calculate Complicated Taylor Polynomials? . 26 1.5 ExerciseSheet1................................... 29 1.5.1 ExerciseSheet1a .............................. 29 1.5.2 FeedbackforSheet1a ........................... 33 2 Real Sequences 40 2.1 Lecture 7: Definitions, Limit of a Sequence . ... 40 2.1.1 DefinitionofaSequence .......................... 40 2.1.2 LimitofaSequence............................. 41 2.1.3 Graphic Representations of Sequences . .. 43 2.2 Lecture 8: Algebra of Limits, Special Sequences . ..... 44 2.2.1 InfiniteLimits................................ 44 1 2.2.2 AlgebraofLimits.............................. 44 2.2.3 Some Standard Convergent Sequences . .. 46 2.3 Lecture 9: Bounded and Monotone Sequences . ..... 48 2.3.1 BoundedSequences............................. 48 2.3.2 Convergent Sequences and Closed Bounded Intervals . .... 48 2.4 Lecture10:MonotoneSequences .
    [Show full text]
  • Calculus Online Textbook Chapter 10
    Contents CHAPTER 9 Polar Coordinates and Complex Numbers 9.1 Polar Coordinates 348 9.2 Polar Equations and Graphs 351 9.3 Slope, Length, and Area for Polar Curves 356 9.4 Complex Numbers 360 CHAPTER 10 Infinite Series 10.1 The Geometric Series 10.2 Convergence Tests: Positive Series 10.3 Convergence Tests: All Series 10.4 The Taylor Series for ex, sin x, and cos x 10.5 Power Series CHAPTER 11 Vectors and Matrices 11.1 Vectors and Dot Products 11.2 Planes and Projections 11.3 Cross Products and Determinants 11.4 Matrices and Linear Equations 11.5 Linear Algebra in Three Dimensions CHAPTER 12 Motion along a Curve 12.1 The Position Vector 446 12.2 Plane Motion: Projectiles and Cycloids 453 12.3 Tangent Vector and Normal Vector 459 12.4 Polar Coordinates and Planetary Motion 464 CHAPTER 13 Partial Derivatives 13.1 Surfaces and Level Curves 472 13.2 Partial Derivatives 475 13.3 Tangent Planes and Linear Approximations 480 13.4 Directional Derivatives and Gradients 490 13.5 The Chain Rule 497 13.6 Maxima, Minima, and Saddle Points 504 13.7 Constraints and Lagrange Multipliers 514 CHAPTER Infinite Series Infinite series can be a pleasure (sometimes). They throw a beautiful light on sin x and cos x. They give famous numbers like n and e. Usually they produce totally unknown functions-which might be good. But on the painful side is the fact that an infinite series has infinitely many terms. It is not easy to know the sum of those terms.
    [Show full text]
  • Real Analysis Honors Exam 1 Do the Best That You Can to Respond to The
    Real Analysis Honors Exam 1 Do the best that you can to respond to the following problems. It is not required that you respond to every problem, and, in fact, it is much better to provide complete and clearly explained responses to a subset of the given problems than to provide hurried and incomplete responses to all of them. When a complete response is not possible you are encouraged to clearly explain the partial progress that you can achieve. x2 y2 z2 4 1. Prove that the ellipsoid a2 + b2 + c2 = 1 has volume 3 πabc. You may assume that this formula is correct for the spherical case where a = b = c. 2. Newton's Method: Suppose that f : R ! R is continuously differen- tiable. Newton's method is an iterative algorithm designed to approx- imate the zeros of f. Start with a first guess x0, then for each integer n > 0 find the equation of the tangent line to the graph of f at the point (xn−1; f(xn−1))), and solve for the x intercept of that line which is named xn. Show that the sequence (xn) is guaranteed to converge under the following conditions: (a) f has a zero in the interval (a; b). (b) f is twice continuous differentiable with f 0(x) > 0 and f 00(x) > 0 on (a; b). 2 3. A function f : R ! R is Gateux differentiable at x0 if the limit f(x + hv) − f(x ) lim 0 0 ; h!0 h exists for all v 2 R2, i.e.
    [Show full text]