UC Berkeley UC Berkeley Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distribution of Rational Points on Toric Varieties: a Multi-Height Approach
Distribution of Rational Points on Toric Varieties: A Multi-Height Approach Arda H. Demirhan University of Illinois at Chicago March 19, 2021 Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach Height Machine associates counting devices to divisor classes. ( ) ( ) geometric facts arithmetic facts , given by divisor relations given by height relations Height Machine is useful for other fields too. How to Count Rational Points? X: an algebraic variety in Pn over a number field Main Idea: We use height functions to count rational points. Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach Height Machine is useful for other fields too. How to Count Rational Points? X: an algebraic variety in Pn over a number field Main Idea: We use height functions to count rational points. Height Machine associates counting devices to divisor classes. ( ) ( ) geometric facts arithmetic facts , given by divisor relations given by height relations Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach How to Count Rational Points? X: an algebraic variety in Pn over a number field Main Idea: We use height functions to count rational points. Height Machine associates counting devices to divisor classes. ( ) ( ) geometric facts arithmetic facts , given by divisor relations given by height relations Height Machine is useful for other fields too. Arda H. Demirhan Distribution of Rational Points on Toric Varieties: A Multi-Height Approach Counting Function: N(U(K); B) = cardfx 2 U(K): HK (x) ≤ Bg Let U ⊆ X be a Zariski open with some rational points. -
Algebraic Curves and Surfaces
Notes for Curves and Surfaces Instructor: Robert Freidman Henry Liu April 25, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR8293 Algebraic Curves & Surfaces . Let me know when you find errors or typos. I'm sure there are plenty. 1 Curves on a surface 1 1.1 Topological invariants . 1 1.2 Holomorphic invariants . 2 1.3 Divisors . 3 1.4 Algebraic intersection theory . 4 1.5 Arithmetic genus . 6 1.6 Riemann{Roch formula . 7 1.7 Hodge index theorem . 7 1.8 Ample and nef divisors . 8 1.9 Ample cone and its closure . 11 1.10 Closure of the ample cone . 13 1.11 Div and Num as functors . 15 2 Birational geometry 17 2.1 Blowing up and down . 17 2.2 Numerical invariants of X~ ...................................... 18 2.3 Embedded resolutions for curves on a surface . 19 2.4 Minimal models of surfaces . 23 2.5 More general contractions . 24 2.6 Rational singularities . 26 2.7 Fundamental cycles . 28 2.8 Surface singularities . 31 2.9 Gorenstein condition for normal surface singularities . 33 3 Examples of surfaces 36 3.1 Rational ruled surfaces . 36 3.2 More general ruled surfaces . 39 3.3 Numerical invariants . 41 3.4 The invariant e(V ).......................................... 42 3.5 Ample and nef cones . 44 3.6 del Pezzo surfaces . 44 3.7 Lines on a cubic and del Pezzos . 47 3.8 Characterization of del Pezzo surfaces . 50 3.9 K3 surfaces . 51 3.10 Period map . 54 a 3.11 Elliptic surfaces . -
Heights, Algebraic Dynamics and Berkovich Analytic Spaces
HEIGHTS, ALGEBRAIC DYNAMICS AND BERKOVICH ANALYTIC SPACES JORGE PINEIRO Abstract. The present paper is an exposition on heights and their importance in the modern study of algebraic dynamics. We will explain the idea of canonical height and its surprising relation to algebraic dynamics, invariant measures, arithmetic intersection theory, equidistribution and p-adic analytic geometry. 1. Introduction In many situations, solving mathematical problems involves study the solution set of a system of polynomial equations. The language of algebraic varieties is developed for that purpose. An algebraic variety is a topological locally ringed space whose underlying topological space \behave locally like" the zero set of a system of polynomials in an a±ne space. A formal de¯nition can be found for example in Chapter 1 of [18]. A projective variety is an algebraic variety that can be embedded into some projective space. Many number theoretic questions are nat- urally expressed as diophantine problems. Suppose that the algebraic variety X is de¯ned over the number ¯eld F . An algebraic dynamical system ' : X ! X is a ¯nite map from the algebraic variety X to itself. One of the tools to study algebraic dynamics over number ¯elds is the de¯nition of height functions. A (canonical) height function as- ^ ¹ sociated to ' is a function h' : X(F ) ! R, that attempts to compute the complexity of the point P 2 X(F¹) relative to the map '. For in- stance the points of ¯nite forward orbits for ' will be exactly the points ^ of height h'(P ) = 0. The notion of height can be also generalized to subvarieties Y ½ X, still measuring the behavior under iteration. -
K3 Surfaces and String Duality
RU-96-98 hep-th/9611137 November 1996 K3 Surfaces and String Duality Paul S. Aspinwall Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 ABSTRACT The primary purpose of these lecture notes is to explore the moduli space of type IIA, type IIB, and heterotic string compactified on a K3 surface. The main tool which is invoked is that of string duality. K3 surfaces provide a fascinating arena for string compactification as they are not trivial spaces but are sufficiently simple for one to be able to analyze most of their properties in detail. They also make an almost ubiquitous appearance in the common statements concerning string duality. We arXiv:hep-th/9611137v5 7 Sep 1999 review the necessary facts concerning the classical geometry of K3 surfaces that will be needed and then we review “old string theory” on K3 surfaces in terms of conformal field theory. The type IIA string, the type IIB string, the E E heterotic string, 8 × 8 and Spin(32)/Z2 heterotic string on a K3 surface are then each analyzed in turn. The discussion is biased in favour of purely geometric notions concerning the K3 surface itself. Contents 1 Introduction 2 2 Classical Geometry 4 2.1 Definition ..................................... 4 2.2 Holonomy ..................................... 7 2.3 Moduli space of complex structures . ..... 9 2.4 Einsteinmetrics................................. 12 2.5 AlgebraicK3Surfaces ............................. 15 2.6 Orbifoldsandblow-ups. .. 17 3 The World-Sheet Perspective 25 3.1 TheNonlinearSigmaModel . 25 3.2 TheTeichm¨ullerspace . .. 27 3.3 Thegeometricsymmetries . .. 29 3.4 Mirrorsymmetry ................................. 31 3.5 Conformalfieldtheoryonatorus . ... 33 4 Type II String Theory 37 4.1 Target space supergravity and compactification . -
Intersection Theory on Algebraic Stacks and Q-Varieties
Journal of Pure and Applied Algebra 34 (1984) 193-240 193 North-Holland INTERSECTION THEORY ON ALGEBRAIC STACKS AND Q-VARIETIES Henri GILLET Department of Mathematics, Princeton University, Princeton, NJ 08544, USA Communicated by E.M. Friedlander Received 5 February 1984 Revised 18 May 1984 Contents Introduction ................................................................ 193 1. Preliminaries ................................................................ 196 2. Algebraic groupoids .......................................................... 198 3. Algebraic stacks ............................................................. 207 4. Chow groups of stacks ....................................................... 211 5. Descent theorems for rational K-theory. ........................................ 2 16 6. Intersection theory on stacks .................................................. 219 7. K-theory of stacks ........................................................... 229 8. Chcrn classes and the Riemann-Roth theorem for algebraic spaces ................ 233 9. comparison with Mumford’s product .......................................... 235 References .................................................................. 239 0. Introduction In his article 1161, Mumford constructed an intersection product on the Chow groups (with rational coefficients) of the moduli space . fg of stable curves of genus g over a field k of characteristic zero. Having such a product is important in study- ing the enumerative geometry of curves, and it is reasonable -
Small Dynamical Heights for Quadratic Polynomials and Rational Functions.1.1
Experimental Mathematics, 23:433–447, 2014 Copyright C Taylor & Francis Group, LLC ISSN: 1058-6458 print / 1944-950X online DOI: 10.1080/10586458.2014.938203 Small Dynamical Heights for Quadratic Polynomials and Rational Functions Robert L. Benedetto1, Ruqian Chen1, Trevor Hyde2, Yordanka Kovacheva3, and Colin White1 1Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts, USA 2Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA 3Department of Mathematics, University of Chicago, Chicago, Illinois, USA CONTENTS Let φ ∈ Q(z) be a polynomial or rational function of degree 2. A spe- 1. Introduction cial case of Morton and Silverman’sdynamical uniform boundedness 2. Background conjecture states that the number of rational preperiodic points of φ 3. Quadratic Polynomials is bounded above by an absolute constant. A related conjecture of 4. Quadratic Rational Functions Silverman states that the canonical height hˆφ (x) of a nonpreperiodic Acknowledgments rational point x is bounded below by a uniform multiple of the height Funding of φ itself. We provide support for these conjectures by computing References the set of preperiodic and small-height rational points for a set of degree-2 maps far beyond the range of previous searches. 1. INTRODUCTION In this paper, we consider the dynamics of a rational func- tion φ(z) ∈ Q(z) acting on P1(Q). The degree of φ = f/g is deg φ := max{deg f, deg g}, where f, g ∈ Q[z]haveno common factors. Define φ0(z) = z, and for every n ≥ 1, let Downloaded by [] at 10:38 03 August 2015 φn(z) = φ ◦ φn−1(z); that is, φn is the nth iterate of φ un- der composition. -
Intersection Theory
William Fulton Intersection Theory Second Edition Springer Contents Introduction. Chapter 1. Rational Equivalence 6 Summary 6 1.1 Notation and Conventions 6 .2 Orders of Zeros and Poles 8 .3 Cycles and Rational Equivalence 10 .4 Push-forward of Cycles 11 .5 Cycles of Subschemes 15 .6 Alternate Definition of Rational Equivalence 15 .7 Flat Pull-back of Cycles 18 .8 An Exact Sequence 21 1.9 Affine Bundles 22 1.10 Exterior Products 24 Notes and References 25 Chapter 2. Divisors 28 Summary 28 2.1 Cartier Divisors and Weil Divisors 29 2.2 Line Bundles and Pseudo-divisors 31 2.3 Intersecting with Divisors • . 33 2.4 Commutativity of Intersection Classes 35 2.5 Chern Class of a Line Bundle 41 2.6 Gysin Map for Divisors 43 Notes and References 45 Chapter 3. Vector Bundles and Chern Classes 47 Summary 47 3.1 Segre Classes of Vector Bundles 47 3.2 Chern Classes . ' 50 • 3.3 Rational Equivalence on Bundles 64 Notes and References 68 Chapter 4. Cones and Segre Classes 70 Summary . 70 . 4.1 Segre Class of a Cone . 70 X Contents 4.2 Segre Class of a Subscheme 73 4.3 Multiplicity Along a Subvariety 79 4.4 Linear Systems 82 Notes and References 85 Chapter 5. Deformation to the Normal Cone 86 Summary 86 5.1 The Deformation 86 5.2 Specialization to the Normal Cone 89 Notes and References 90 Chapter 6. Intersection Products 92 Summary 92 6.1 The Basic Construction 93 6.2 Refined Gysin Homomorphisms 97 6.3 Excess Intersection Formula 102 6.4 Commutativity 106 6.5 Functoriality 108 6.6 Local Complete Intersection Morphisms 112 6.7 Monoidal Transforms 114 Notes and References 117 Chapter 7. -
'Cycle Groups for Artin Stacks'
Cycle groups for Artin stacks Andrew Kresch1 28 October 1998 Contents 1 Introduction 2 2 Definition and first properties 3 2.1 Thehomologyfunctor .......................... 3 2.2 BasicoperationsonChowgroups . 8 2.3 Results on sheaves and vector bundles . 10 2.4 Theexcisionsequence .......................... 11 3 Equivalence on bundles 12 3.1 Trivialbundles .............................. 12 3.2 ThetopChernclassoperation . 14 3.3 Collapsing cycles to the zero section . ... 15 3.4 Intersecting cycles with the zero section . ..... 17 3.5 Affinebundles............................... 19 3.6 Segre and Chern classes and the projective bundle theorem...... 20 4 Elementary intersection theory 22 4.1 Fulton-MacPherson construction for local immersions . ........ 22 arXiv:math/9810166v1 [math.AG] 28 Oct 1998 4.2 Exteriorproduct ............................. 24 4.3 Intersections on Deligne-Mumford stacks . .... 24 4.4 Boundedness by dimension . 25 4.5 Stratificationsbyquotientstacks . .. 26 5 Extended excision axiom 29 5.1 AfirsthigherChowtheory. 29 5.2 The connecting homomorphism . 34 5.3 Homotopy invariance for vector bundle stacks . .... 36 1Funded by a Fannie and John Hertz Foundation Fellowship for Graduate Study and an Alfred P. Sloan Foundation Dissertation Fellowship 1 6 Intersection theory 37 6.1 IntersectionsonArtinstacks . 37 6.2 Virtualfundamentalclass . 39 6.3 Localizationformula ........................... 39 1 Introduction We define a Chow homology functor A∗ for Artin stacks and prove that it satisfies some of the basic properties expected from intersection theory. Consequences in- clude an integer-valued intersection product on smooth Deligne-Mumford stacks, an affirmative answer to the conjecture that any smooth stack with finite but possibly nonreduced point stabilizers should possess an intersection product (this provides a positive answer to Conjecture 6.6 of [V2]), and more generally an intersection prod- uct (also integer-valued) on smooth Artin stacks which admit stratifications by global quotient stacks. -
Computing Points of Small Height for Cubic Polynomials
COMPUTING POINTS OF SMALL HEIGHT FOR CUBIC POLYNOMIALS ROBERT L. BENEDETTO, BENJAMIN DICKMAN, SASHA JOSEPH, BENJAMIN KRAUSE, DANIEL RUBIN, AND XINWEN ZHOU Abstract. Let φ Q[z] be a polynomial of degree d at least two. The associated ∈ canonical height hˆφ is a certain real-valued function on Q that returns zero precisely at preperiodic rational points of φ. Morton and Silverman conjectured in 1994 that the number of such points is bounded above by a constant depending only on d. A related conjecture claims that at non-preperiodic rational points, hˆφ is bounded below by a positive constant (depending only on d) times some kind of height of φ itself. In this paper, we provide support for these conjectures in the case d = 3 by computing the set of small height points for several billion cubic polynomials. Let φ(z) Q[z] be a polynomial with rational coefficients. Define φ0(z) = z, and for every n ∈ 1, let φn(z) = φ φn−1(z); that is, φn is the n-th iterate of φ under composition.≥ A point x is said to◦ be periodic under φ if there is an integer n 1 such that φn(x) = x. In that case, we say x is n-periodic; the smallest such positive≥ integer n is called the period of x. More generally, x is preperiodic under φ if there are integers n>m 0 such that φn(x)= φm(x); equivalently, φm(x) is periodic for some m 0. In 1950,≥ using the theory of arithmetic heights, Northcott proved that if deg≥φ 2, then φ has only finitely many preperiodic points in Q. -
Intersection Theory
APPENDIX A Intersection Theory In this appendix we will outline the generalization of intersection theory and the Riemann-Roch theorem to nonsingular projective varieties of any dimension. To motivate the discussion, let us look at the case of curves and surfaces, and then see what needs to be generalized. For a divisor D on a curve X, leaving out the contribution of Serre duality, we can write the Riemann-Roch theorem (IV, 1.3) as x(.!Z'(D)) = deg D + 1 - g, where xis the Euler characteristic (III, Ex. 5.1). On a surface, we can write the Riemann-Roch theorem (V, 1.6) as 1 x(!l'(D)) = 2 D.(D - K) + 1 + Pa· In each case, on the left-hand side we have something involving cohomol ogy groups of the sheaf !l'(D), while on the right-hand side we have some numerical data involving the divisor D, the canonical divisor K, and some invariants of the variety X. Of course the ultimate aim of a Riemann-Roch type theorem is to compute the dimension of the linear system IDI or of lnDI for large n (II, Ex. 7.6). This is achieved by combining a formula for x(!l'(D)) with some vanishing theorems for Hi(X,!l'(D)) fori > 0, such as the theorems of Serre (III, 5.2) or Kodaira (III, 7.15). We will now generalize these results so as to give an expression for x(!l'(D)) on a nonsingular projective variety X of any dimension. And while we are at it, with no extra effort we get a formula for x(t&"), where @" is any coherent locally free sheaf. -
2 May 2020 Real Intersection Theory (II)
Real intersection theory (II) B. Wang (汪 镔) May 5, 2020 Abstract Continuing from part (I), we develop properties of real intersection theory that turns out to be an extension of the well-established theory in algebraic geometry. Contents 1 Introduction 2 2 Basic properties 3 2.1 Basicproperties.......................... 7 2.2 ProductandInclusion ...................... 11 3 Dependence of the local data 18 3.1 Realcase ............................. 18 arXiv:1801.01364v4 [math.AG] 2 May 2020 3.2 Complexcase........................... 25 4 Tools for application 30 4.1 Correspondenceofacurrent . 30 4.2 Functoriality ........................... 35 4.3 Familyofcurrents ........................ 38 5 Generalized Hodge conjecture on 3-folds 41 Key words: currents, De Rham, intersection. 2000 Mathematics subject classification : 53C65, 32C30, 14C17, 14C30. 1 1 INTRODUCTION 2 Appendices 43 A Support of the projection 43 1 Introduction Intersection in mathematics has a long history. But the systemically devel- oped theories only started appearing in the 20th century. They are centered around the quotient rings that are derived from freely generated Abelian groups of non-quotient objects. While the quotient rings fit into the known axiomatic system well, the non-quotient groups do not. For instance in classical approach the topological intersection for a real compact manifold X in homology or/and cohomology (quotient groups) are obtained from the non quotient objects – singular chains. Once the theory is set up, quotient groups are well-adapted to the axiomatic environment, but the groups of singular chains are not. Using cohomology we can let Hi(X; Z) be the cohomology of degree i with integer coefficients. The product is defined in an elaborated method through the intersection of chains as the cup product, ∪ : Hp(X; Q) × Hq(X; Z) → Hp+q(X; Z). -
Rationality of Dynamical Canonical Height 11
RATIONALITY OF DYNAMICAL CANONICAL HEIGHT LAURA DE MARCO AND DRAGOS GHIOCA Abstract. We present a dynamical proof of the well-known fact that the N´eron-Tate canonical height (and its local counterpart) takes rational values at points of an elliptic curve over a function field k = C(X), where X is a curve. More generally, we investigate the mechanism for which the local canonical height for a map f : P1 ! P1 defined over a function field k can take irrational values (at points in a local completion of k), providing examples in all degrees deg f ≥ 2. Building on Kiwi's classification of non-archimedean Julia sets for quadratic maps [Ki1], we give a complete answer in degree 2 characterizing the existence of points with irrational local canonical heights. As an application we prove that if the heights bhf (a); bhg(b) are rational and positive, for maps f and g of multiplicatively 1 ¯ n m independent degrees and points a; b 2 P (k), then the orbits ff (a)gn≥0 and fg (b)gm≥0 intersect in at most finitely many points, complementing the results of [GTZ1]. 1. Introduction Throughout this article, we let K be an algebraically closed field of characteristic 0, X a smooth projective curve defined over K, and k = K(X) its function field. We examine the values of the canonical height function associated to dynamical systems 1 1 f : P ! P defined over k, of degree deg(f) ≥ 2. The canonical height bhf was introduced in [CS] for general polarized dynamical systems f on projective varieties.