Lecture Notes on Arithmetic Dynamics Arizona Winter School March 13{17, 2010 JOSEPH H. SILVERMAN
[email protected] Contents About These Notes/Note to Students 1 1. Introduction 2 2. Background Material: Geometry 4 3. Background Material: Classical Dynamics 7 4. Background Material: Diophantine Equations 9 5. Preperiodic Points and Height Functions 12 6. Arithmetic Dynamics of Maps with Good Reduction 18 7. Integer Points in Orbits 22 8. Dynamical Analogues of Classical Results 28 9. Additional Topics 29 References 31 List of Notation 33 Index 34 Appendix A. Projects 36 About These Notes/Note to Students These notes are for the Arizona Winter School on Number Theory and Dynamical Systems, March 13{17, 2010. They include background material on complex dynamics and Diophantine equations (xx2{4) and expanded versions of lectures on preperiodic points and height func- tions (x5), arithmetic dynamics of maps with good reduction (x6), and integer points in orbits (x7). Two ¯nal sections give a brief description Date: February 8, 2010. 1991 Mathematics Subject Classi¯cation. Primary: 37Pxx; Secondary: 11G99, 14G99, 37P15, 37P30, 37F10. Key words and phrases. arithmetic dynamical systems. This project supported by NSF DMS-0650017 and DMS-0854755. 1 2 Joseph H. Silverman of dynamical analogues of classical results from the theory of Diophan- tine equations (x8) and some pointers toward other topics in arithmetic dynamics (x9). The study of arithmetic dynamics draws on ideas and techniques from both classical (discrete) dynamical systems and the theory of Diophantine equations. If you have not seen these subjects or want to do further reading, the books [1, 5, 15] are good introductions to complex dynamics and [2, 9, 12] are standard texts on Diophantine equations and arithmetic geometry.