Nuclear/Particle/Astrophysics Relativistic Heavy Ions Neutrinos & Synergies Fundamental Symmetries - Yale Center for Astronomy and Astrophysics (YCAA) - Yale Center for Research Computing (YCRC) - Yale Quantum Institute (YQI) Elementary Particles Astrophysics & Cosmology Quantum PhysicsFaculty, PIs & Devices 16 faculty 6 adjunct/research faculty 10 postdocs 35 graduate students Scientists, Staff, Students 11 research ~130 total personnel scientists State-of-the-Art Facilities https://wlab.yale.edu New Tools for Discovery Li scintillator detectors for reactor ν coldest cubic meter of Universe to study 0νββ zero point motion close to for dark matter search at South Pole low-background NaI detectors zero Kelectron EDM searches axion searches LAr TPC for ν . ● Most vortical liquid- spins 10 billion trillion times faster than the Relativistic Heavy-Ions at Yale most powerful tornado Caines-Harris Group ● Smallest liquid- experiments can recreate a Quark Gluon Plasma in the laboratory that is about the size of a proton Studying the Quark-Gluon Plasma - Nature’s Most Extreme Liquid Skills Learned ● High Performance Computers Collaborators on STAR - RHIC BNL - New York (Helen CoSpokesperson) How do we study the Quark Gluon Contact: Plasma? Prof.Caines and Harris
[email protected] [email protected] ● Nuclear Physics Collaborators on ● Data analysis techniques ALICE - LHC ● Numerical Methods ● Hardware CERN - Geneva Interested? What makes the Quark Gluon Plasma Extreme? ● Experiments at the LHC and RHIC: smash two Nature’s first liquid -