Plum Prunus Domestica L.; Prunus Salicina Lindl
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planting and Aftercare of New Trees
Where to start? • Fruit plants that fit into to small spaces Producing Fruit for the Home – Apple … on dwarfing rootstocks • Most traditional and local garden centers do not identify specific rootstock ….”Dwarf”, “Semi Dwarf” Ron Perry • Eventual tree size within Dwarf and Semi Dwarf is large Professor Tree Spacing Nursery ID Hort. Department Rootstocks Eventual Height Between Trees Between Rows MSU M.27 or P.22 Dwarf 6 5 10 M.9 Dwarf 8 8 12 M.26 Dwarf 16 10 16 M.7 Semi Dwarf 18 14 22 MM.106 or 111 Semi Dwarf 20 16 22 Where to start? Where to start? • Fruit plants that fit into to small spaces – Cherry - Sour • Select desired fruit which will grow in your area. Tree Spacing Rootstocks • Determine how much space you have available. Varieties Eventual Height Between Trees Between Rows Northstar Mahaleb 10 8 12 • Select varieties which are easiest to grow. Montmorency Gi.5 or 6 12 10 12 Montmorency Mahaleb 12 10 14 – Disease or insect resistant varieties to reduce pest Montmorency Mazzard 14 12 16 pressures. Balaton Mahaleb 14 12 16 – Cherry - Sweet – Assess soil / site conditions Tree Spacing • Full sun VS shade or partial Nursery ID • Soil internal drainage Rootstocks Eventual Height Between Trees Between Rows • Weed competition (lawns are too competitive) Gi.5 Dwarf 12 12 16 Gi.6 Dwarf 14 14 16 Mahaleb Semi Dwarf 20 14 16 Mazzard Semi Dwarf 24 16 20 Average Annual Minimum Temperatures Where to start? (USDA Plant Hardiness Zone Map) Most MI fruit sites Zone 5 (-20oF to -10oF) to 6 (-10oF to 0oF) • Fruit plants that fit into to small spaces – Peach, Nectarine, Apricot and Plums – Can generally plant at a spacing of 10 ft X 15 ft* • * If trained to open center or vase shape • Closer spacing, needs to be trained in Chistmas Tree form (Vertical Axe). -
(Prunus Spp) Using Random Amplified Microsatellite Polymorphism Markers
Assessment of genetic diversity and relationships among wild and cultivated Tunisian plums (Prunus spp) using random amplified microsatellite polymorphism markers H. Ben Tamarzizt, S. Ben Mustapha, G. Baraket, D. Abdallah and A. Salhi-Hannachi Laboratory of Molecular Genetics, Immunology & Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar, Tunis, Tunisia Corresponding author: A. Salhi-Hannachi E-mail: [email protected] Genet. Mol. Res. 14 (1): 1942-1956 (2015) Received January 8, 2014 Accepted July 8, 2014 Published March 20, 2015 DOI http://dx.doi.org/10.4238/2015.March.20.4 ABSTRACT. The usefulness of random amplified microsatellite polymorphism markers to study the genetic diversity and relationships among cultivars belonging to Prunus salicina and P. domestica and their wild relatives (P. insititia and P. spinosa) was investigated. A total of 226 of 234 bands were polymorphic (96.58%). The 226 random amplified microsatellite polymorphism markers were screened using 15 random amplified polymorphic DNA and inter-simple sequence repeat primers combinations for 54 Tunisian plum accessions. The percentage of polymorphic bands (96.58%), the resolving power of primers values (135.70), and the polymorphic information content demonstrated the efficiency of the primers used in this study. The genetic distances between accessions ranged from 0.18 to 0.79 with a mean of 0.24, suggesting a high level of genetic diversity at the intra- and interspecific levels. The unweighted pair group with arithmetic mean dendrogram Genetics and Molecular Research 14 (1): 1942-1956 (2015) ©FUNPEC-RP www.funpecrp.com.br Genetic diversity of Tunisian plums using RAMPO markers 1943 and principal component analysis discriminated cultivars efficiently and illustrated relationships and divergence between spontaneous, locally cultivated, and introduced plum types. -
Report of a Working Group on Prunus: Sixth and Seventh Meetings
European Cooperative Programme for Plant Genetic Report of a Working Resources ECP GR Group on Prunus Sixth Meeting, 20-21 June 2003, Budapest, Hungary Seventh Meeting, 1-3 December 2005, Larnaca, Cyprus L. Maggioni and E. Lipman, compilers IPGRI and INIBAP operate under the name Bioversity International Supported by the CGIAR European Cooperative Programme for Plant Genetic Report of a Working Resources ECP GR Group on Prunus Sixth Meeting, 20 –21 June 2003, Budapest, Hungary Seventh Meeting, 1 –3 December 2005, Larnaca, Cyprus L. Maggioni and E. Lipman, compilers ii REPORT OF A WORKING GROUP ON PRUNUS: SIXTH AND SEVENTH MEETINGS Bioversity International is an independent international scientific organization that seeks to improve the well- being of present and future generations of people by enhancing conservation and the deployment of agricultural biodiversity on farms and in forests. It is one of 15 centres supported by the Consultative Group on International Agricultural Research (CGIAR), an association of public and private members who support efforts to mobilize cutting-edge science to reduce hunger and poverty, improve human nutrition and health, and protect the environment. Bioversity has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through four programmes: Diversity for Livelihoods, Understanding and Managing Biodiversity, Global Partnerships, and Commodities for Livelihoods. The international status of Bioversity is conferred under an Establishment Agreement which, by January 2006, had been signed by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mali, Mauritania, Morocco, Norway, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovakia, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. -
Plums on the Prairies by Rick Sawatzky
Plums on the Prairies by Rick Sawatzky Information from Literature Much has been published about pollination, pollinators, pollinizers, fertilization and fruit set in text books and periodicals. The definitions are not difficult. Pollination is the movement of pollen among compatible flowering plants (cross-pollination) or from anthers to stigmas on the same plant or different plants of the same clone (self-pollination). Many plants will self-pollinate but set very few fruit; some authors consider them self- pollinating but they are definitely not self-fruitful. Self-fruitful plants (and clones) set a crop of fruit after self-pollination; some of these plants bear fruit with no seeds (parthenocarpy); others develop seeds with embryos that are genetically identical to the parent plant (apomixis); and others produce haploid seeds that develop from an unfertilized egg cell. (When haploid seeds germinate they are very weak seedlings with only half the chromosomes of normal seedlings.) Regarding temperate zone tree fruits, self-pollination and fruit set does not mean self-fertility and the development of normal seeds. Many temperate zone small fruit species (e.g. strawberries and raspberries) are self-fertile and develop maximum yields of fruit with normal seeds as the result of self-pollination by insects. Pollinators, usually insects, are vectors of pollen movement. Pollinizers are plants which provide the appropriate pollen for other plants. Fertilization is the process in which gametes from the pollen unite with egg cells in the ovary of the flower. Normal seeds are usually the result of this process. Also, the principles are easily understood. Poor fertilization in plums and other Prunus species results in a poor fruit set. -
Investigations of the Plum Pox Virus in Chile in the Past 20 Years
REVIEW Investigations of the Plum pox virus in Chile in the past 20 years Guido Herrera1 Sharka disease, which is caused by Plum pox virus (PPV), is one of the most serious diseases affecting stone fruit trees around the world. Identified in Bulgaria in 1931, it was restricted to the European continent until 1992 when the virus was identified in Chile. It was subsequently verified in the USA, Canada, and Argentina. After 20 years since first detecting PPV in Chile, it seems clear that the disease cannot be eradicated in spite of various measures. Considering the seriousness of this problem for the domestic industry, a series of studies have been conducted to determine the distribution and degree of transmission of the disease, its biological and molecular characterization and epidemiological aspects, etc. The available information has allowed national phytosanitary control agencies to take steps to decrease the effects of the virus. However, there is a lack of data with respect to epidemiological factors for a more accurate understanding of the performance of the virus under Chilean conditions. Key words: Sharka disease, virus, stone fruit. INTRODUCTION more precise diagnosis techniques like Polymerase Chain Reaction (PCR) (Wetzel et al., 1991; Hadidi and Levy, The first symptoms of Sharka or Pox were observed by 1994), resulting in greater knowledge about the range of farmers in southwest Bulgaria after the First World War hosts and viral strains. As well, biotechnological methods and the first scientist to describe the viral nature of the associated with genetic transformation generated plant disease was Dimitar Atanasov in 1933 (Dzhuvinov et al., varieties with characteristics of immunity to the virus 2007), calling it Sharka disease or Plum pox virus (PPV). -
(Prunus Domestica L.) AGAINST FOUR CHILEAN PLUM POX VIRUS ISOLATES THROUGH MICRO-GRAFTING
372RESEARCH CHIL. J. AGR. RES. - VOL. 70 - Nº 3 - 2010 EVALUATION OF THE RESISTANCE OF TRANSGENIC C5 PLUM (Prunus domestica L.) AGAINST FOUR CHILEAN PLUM POX VIRUS ISOLATES THROUGH MICRO-GRAFTING Wendy Wong1, Paola Barba2, Catalina Álvarez2, Álvaro Castro3, Manuel Acuña2, Pablo Zamora3, Marlene Rosales2, Paola Dell´Orto4, Michael R. Moynihan4, Ralph Scorza5, and Humberto Prieto2* ABSTRACT The transgenic plum (Prunus domestica L.) C5, in which the coat protein (CP) gene of the Plum pox virus (PPV) is inserted, represents a unique example of the use of genetic engineering for fruit crop improvement in Prunus spp. Field trials in Poland, Romania, and Spain have demonstrated resistance of C5 to several D and M strain PPV isolates. In Chile, the quarantine regulations for PPV and for genetically modified (GM) plants require that the testing of C5 for resistance to Chilean PPV isolates be done under controlled isolated conditions. To carry out these tests C5 shoots were multiplied in vitro and micro-grafted onto four Adesoto101 (Prunus insititia L.) rootstock populations that had been previously infected each with one of four Chilean PPV-Ds. Tests were carried out under controlled conditions in a biosafety greenhouse. Symptoms appearance, virus detection, and viral mRNA levels for the cylindrical inclusion (CI) and CP genes were determined during three consecutive growing seasons. Complete resistance to all PPV isolates was demonstrated during the first 2 yr in all of the C5 plants. In the third season, four of 10 C5 plants showed mild symptoms on leaves close to the graft union and low but detectable CI mRNA levels in the C5 scions. -
Plums, Nectarines, Apricots, Cherries, Almonds and Prunus Hybrids
E-612 2-13 Texas Fruit and Nut Production lums, Nectarines, Apricots Cherries, Almonds and Prunus hybrids Larry Stein, Jim Kamas, and Monte Nesbitt Extension Fruit Specialists, The Texas A&M University System s closely related members of the rose family, plums and apricots typically require similar management. Both fruits have performed Amuch better in Texas than nectarines, almonds, sweet cherries, and Prunus hybrids because they are less susceptible to disease, varmints, and crop loss due to premature blooming. Plums The plum tree has white flowers and sets fruit on buds from previous season’s growth (Fig. 1). Usually Figure 1. A plum orchard in full bloom. the fruit has a dusty white coating or wax bloom that is easily rubbed off (Fig. 2). Plums can be sweet to tart; the skin is typically quite tart. The two main species used in the United States are the European plum, Prunus domestica, and the Japanese plum, Prunus salycina. The European plum includes varieties such as ‘Stanley’, which is grown for fresh fruit and often dried for use as prunes. These varieties have produced poorly in Texas because they require cold climates and are susceptible to fungal diseases such as brown rot. The varieties adapted to Texas are usually hybrids Figure 2. The dusty white coating associated with between P. domestica and P. salycina and are known plums is known as wax bloom. 1 Figure 4. Eating a ripe, juicy Figure 5. ‘Bruce’ plums. ‘Methley’ plum right off the tree. as Japanese or Japanese hybrid varieties. Most plum varieties are not self-fruitful. -
Extraction Characterization and Evaluation of Prunus Doemstica Seed- As an Excipient a Review
© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162) EXTRACTION CHARACTERIZATION AND EVALUATION OF PRUNUS DOEMSTICA SEED- AS AN EXCIPIENT A REVIEW 1Pravalika Garipelli, 2R.Shireesh kiran, 3Dr Sowjanya battu,4Dr Abbulu konde Department of pharamaceutics, CMR college of pharmacy, Medchal, Telangana-501401, India. ABSTRACT Binders are pharamaceutical excipients that are commonly employed to impact cohesiveness to the granules. This ensure the tablet remain intact after compression. The development of new excipients for potential use as a binding agent in tablet formulation continues to be of interest. In recent years, plant derived polymers have evolved tremendous interest due to their diverse pharamaceutical application such as binders, diluents, disintegrates in tablets. Natural polymers are biocompatible, cheap and easily available and are preferable than semi synthetic and synthetic excipients because of their lack of toxicity, low cost, availability and non irritant nature. To evaluate binding potential of prunus domestica seed powder in tablet formulations. Prunus domestica seed powder as binder and also compared to the other binding agents. Uniterms: Excipients, Binding agents, Natural polymers, Prunus domestica INTRODUCTION : One of the most important stone fruits crops of the world is plum fruit. These also include several familiar stone fruits like apricot , cherry and peach. Fresh plum fruits are traditionally processed into products with longer shelf life such as prunus ( dried plums ) . There are more than 2000 different varieties of plums among which relatively few more of commercial importance. Plums are fruits best adapted to moderate climate , but they are widely grown all throughout the world , from the cold climate of Siberia to the sub-tropical conditions of the Mediterranean region china , Romania and U.S.A are leading countries for the production of plum fruits . -
Genome-Wide SNP Identification in Prunus Rootstocks Germplasm
www.nature.com/scientificreports OPEN Genome-wide SNP identifcation in Prunus rootstocks germplasm collections using Genotyping-by- Sequencing: phylogenetic analysis, distribution of SNPs and prediction of their efect on gene function Verónica Guajardo1, Simón Solís1, Rubén Almada1, Christopher Saski2, Ksenija Gasic2 & María Ángeles Moreno3* Genotyping-by-Sequencing (GBS) was applied in a set of 53 diploid Prunus rootstocks and fve scion cultivars from three subgenera (Amygdalus, Prunus and Cerasus) for genome-wide SNP identifcation and to assess genetic diversity of both Chilean and Spanish germplasm collections. A group of 45,382 high quality SNPs (MAF >0.05; missing data <5%) were selected for analysis of this group of 58 accessions. These SNPs were distributed in genic and intergenic regions in the eight pseudomolecules of the peach genome (Peach v2.0), with an average of 53% located in exonic regions. The genetic diversity detected among the studied accessions divided them in three groups, which are in agreement with their current taxonomic classifcation. SNPs were classifed based on their putative efect on annotated genes and KOG analysis was carried out to provide a deeper understanding of the function of 119 genes afected by high-impact SNPs. Results demonstrate the high utility for Prunus rootstocks identifcation and studies of diversity in Prunus species. Also, given the high number of SNPs identifed in exonic regions, this strategy represents an important tool for fnding candidate genes underlying traits of interest and potential functional markers for use in marker-assisted selection. Prunus is a genus belonging to the subfamily Prunoideae of the family Rosaceae1. Several species of this large genus, known as stone fruits, are among the most important for the world fruit industry, providing edible and tasty fruits highly appreciated by consumers (e.g., peaches, plums, cherries, apricots and almonds). -
Bio-Agronomic Characterization of Twelve Plum Cultivars on Two Clonal Rootstocks in a Semi-Arid Environment in Sicily
Fruits, 2015, vol. 70(4), p. 249-256 c Cirad / EDP Sciences 2015 DOI: 10.1051/fruits/2015022 Available online at: www.fruits-journal.org Original article Bio-agronomic characterization of twelve plum cultivars on two clonal rootstocks in a semi-arid environment in Sicily Filippo Ferlito1,2, Alberto Continella1, Elisabetta Nicolosi1, Biagio Dimauro3, Massimiliano Brugaletta1, Antonio Cicala1 and Stefano La Malfa1, 1 Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Via Valdisavoia, 5 -95123 Catania, Italy 2 Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di Ricerca per l’Agrumicoltura e le Colture Mediterranee (CRA-ACM), Corso Savoia 190, 95024 Acireale (CT), Italy 3 Assessorato Regionale Risorse Agricole e Alimentari, Dipartimento Interventi Infrastrutturali, UOS Centro Colture Protette, Comiso (RG), Italy Received 28 June 2014 – Accepted 28 February 2015 Abstract – Introduction. Plum cultivation in Southern Italy is of great interest due to the possibility of obtaining produce over an extended period using early and late varieties. The objective of this study was to choose the best combination of cultivars and rootstock to make the production period as long as possible. Materials and methods. The r influence of two rootstocks i.e. Myrobalan 29C (Prunus cerasifera Ehrn.) and Montclar [Prunus persica (L.) Batsch] on growth, yield and fruit quality of nine Japanese and three European plum cultivars was evaluated. Results and r discussion. Four years after planting, the trees on Montclar rootstock displayed higher vigour. The highest yield was recorded on Shiro and Obilnaya grafted on both rootstocks. Black Amber produced the largest fruit and Obilnaya the smallest. -
Gene Flow in Prunus Species in the Context of Novel Trait Risk Assessment
Environ. Biosafety Res. 9 (2010) 75–85 Available online at: c ISBR, EDP Sciences, 2011 www.ebr-journal.org DOI: 10.1051/ebr/2010011 Gene flow in Prunus species in the context of novel trait risk assessment S. Zahra H. Cici* and Rene C. Van Acker1 Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G2W1, Canada Prunus species are important commercial fruit (plums, apricot, peach and cherries), nut (almond) and orna- mental trees cultivated broadly worldwide. This review compiles information from available literature on Prunus species in regard to gene flow and hybridization within this complex of species. The review serves as a resource for environmental risk assessment related to pollen mediated gene flow and the release of transgenic Prunus. It reveals that Prunus species, especially plums and cherries show high potential for transgene flow. A range of characteristics including; genetic diversity, genetic bridging capacity, inter- and intra-specific genetic compat- ibility, self sterility (in most species), high frequency of open pollination, insect assisted pollination, perennial nature, complex phenotypic architecture (canopy height, heterogeneous crown, number of flowers produced in an individual plant), tendency to escape from cultivation, and the existence of ornamental and road side Prunus species suggest that there is a tremendous and complicated ability for pollen mediated gene movement among Prunus species. Ploidy differences among Prunus species do not necessarily provide genetic segregation. The characteristics of Prunus species highlight the complexity of maintaining coexistence between GM and non-GM Prunus if there were commercial production of GM Prunus species. The results of this review suggest that the commercialization of one GM Prunus species can create coexistence issues for commercial non-GM Prunus production. -
Agronomic Properties and Nutritional Status of Plum Trees (Prunus Domestica L.) Influenced by Different Cultivars
Journal of Soil Science and Plant Nutrition , 2013, 13(3), 706-714 Agronomic properties and nutritional status of plum trees (Prunus domestica L.) influenced by different cultivars T. Milošević1*, N. Milošević2 and I. Glišić1 1Department of Fruit Growing and Viticulture, Faculty of Agronomy, University of Kragujevac, Cara Dusana 34, 32000 Cacak, Serbia. 2Department of Pomology and Fruit Breeding, Fruit Research Institute Cacak, Kralja Petra I/9, 32000 Cacak, Serbia. *Corresponding author: [email protected] Abstract The tree growth, fruit weight and leaf mineral status of ten plum cultivars grafted on rootstock of autochthonous plum ‘Belošljiva’ under high density planting system (HDP) on acidic soil was investigated in the fifth and sixth leaf. Results indicated that tree vigour, fruit weight and productivity significantly depend on the cultivar. ‘Čačanska Najbolja’ had the most vigorous trees, while ‘Čačanska Lepotica’ had the smallest. The fruit weight was the highest in ‘Čačanska Rana’, and the lowest in ‘d’Agen’. ‘Stanley’ was the most productive cultivar in 2006 and ‘Čačanska Rodna’ in 2007. Yield efficiency was the highest in ‘Čačanska Lepotica’ and the lowest in ‘Ruth Gerstetter’, ‘Čačanska Rana’, ‘Čačanska Najbolja’ and ‘Opal’, respectively. Significant differences were observed among cultivars for leaf major nutrient (N, P, K, Ca, Mg) levels at 120 DAFB. Larger imbalance of leaf major elements was observed in ‘d’Agen’, whereas good balance was found in ‘Violeta’. Keywords: Fruit weight, leaf nutrient content, plum, yield efficiency 1. Introduction European plum (Prunus domestica L.) commonly al., 2010a). Serbian plum production in 2011 was known as “Šljiva” is an important commercial fruits, 581,874 tons or 5.29% of the total world production which has been traditionally cultivated in most of (FAOSTAT, 2013), being the second largest world the areas of Serbia.