Giant Gourami

Total Page:16

File Type:pdf, Size:1020Kb

Giant Gourami Giant gourami The giant gourami (Osphronemus goramy) is a species of large gourami native to freshwater habitats in Southeast Asia, with its Giant gourami occurrence in other locations due to introductions. This species is commercially important as a food fish and is also farmed.[2] It can also be found in the aquarium trade.[3] The species has been used for weed control, also on highly invasive aquatic plants like Salvinia molesta, as the giant gourami can be a voracious herbivore.[4][5] It is capable of breathing moist air, so can survive out of water for long periods. It is much larger than most gouramis (only the other Osphronemus species reach a similar size), growing to a maximum standard length of 70 cm (28 in), though most are only around Adult [3] 45 cm (18 in). In colour, it is a pale to golden yellow, with silvery, Conservation status pale blue stripes running vertically along its body. Females can be identified by their thicker lips. Giant gouramis build nests using weeds and twigs. Least Concern (IUCN 3.1)[1] Contents Scientific classification Distribution and habitat Kingdom: Animalia In aquaria Phylum: Chordata Tank specifications Class: Actinopterygii Diet Breeding Order: Anabantiformes As food Family: Osphronemidae References Genus: Osphronemus Species: O. goramy Distribution and habitat Binomial name Osphronemus goramy The giant gourami is native to rivers, streams, marshes, swamps and Lacépède, 1801 lakes in Southeast Asia, where reported from the lower Mekong of Cambodia and Vietnam, and Chao Phraya and Mae Klong of Thailand, as well as river basins in the Thai-Malay Peninsula, Sarawak of Malaysia, and Java, Sumatra and West Kalimantan of Indonesia.[1][3] However, the exact limits of the natural range are often labelled with uncertainty due to confusion with the other Osphronemus species (which only were scientifically described in 1992 and 1994) and the widespread release of giant gouramis Native range in green (widely outside their native range.[6][7] For example, both the giant gourami and elephant ear gourami have been reported from the middle introduced elsewhere, not shown) Mekong, and both the giant gourami and Osphronemus Synonyms septemfasciatus have been reported from Borneo in the Kapuas River and river basins in Sarawak. However, middle Mekong Trichopus goramy (Lacépède, records of the giant gourami are likely misidentifications of elephant 1801) ear gouramis (the only place in the Mekong basin where the giant gourami likely occurs naturally are in the southernmost part, like Trichopodus mentum [8] tributaries originating in the northern Cardamom Mountains). The Lacépède, 1801 presence of giant gouramis in Borneo is possibly the result of introductions.[7] The final species in the genus, the giant red tail Trichopode mentonnier gourami, is restricted to Sabah where the others do not occur. This Lacépède, 1801 suggests that the different Osphronemus species originally had allo- Trichopus satyrus G. Shaw, or parapatric distributions.[6][7] 1803 Whether deliberate or by accident, giant gouramis have been Osphromenus satyrus (G. introduced widely as food fish. In Asia, this has expanded their range to include an area from southern China to India and Sri Shaw, 1803) Lanka, and in other continents they are now found in Australia, Osphromenus olfax G. Cuvier, Mauritius, Réunion, Madagascar and elsewhere.[9] Translocations 1831 within Southeast Asia likely started in ancient times. Even Europeans recognized its value as a food fish several hundred years Osphromenus notatus G. ago. For example, Georges Cuvier (1769–1832) suggested that it Cuvier, 1831 should be introduced to the French colonies.[9] In aquaria Tank specifications The giant gourami is also popular in aquaria. Preferably, the tank should have a dark bottom, and densely planted edges, with room left in the center of the tank for them to swim. They prefer the company of other fish of similar sizes and temperament. They are easy to keep at three months old at around 7.5 cm or 3 in long. At this age, they have a pronounced beak. They can grow rapidly given sufficient food Albino giant gourami and space to move. Even under less than ideal conditions, gourami can grow from 7.5 cm to 50 cm in four years. At this age, in addition to the rounded face, a mature giant gourami will have begun to develop the hump just above its eyes. Taiwanese and Malaysians admired fish with protruding heads, known as 'kaloi' or 'warships', found in the western part of the nation. The slightly protruding forehead and long tail of these fish were prized in Taiwanese society as bringing luck in geomancy. A gourami in a community tank will snap and charge any other fish which are small enough for it to bully. Like most aquarium dwellers, giant gourami can be quickly raised with larger, more passive fish. However, if other fish are added to a tank, either large or small, they might be killed within a short period. Diet Gourami tend towards herbivory, preferring algae-based foods, but will eat meaty foods. An algae-based flake food, along with freeze-dried bloodworms, tubifex, and brine shrimp, provides these fish with the proper nutrition while young. Once of significant size, they can be fed legumes, partially or fully cooked fibrous or starchy vegetables, or fruits. Breeding The giant gourami is an egg layer, and the male will build a bubble nest before spawning. The male and female are distinguished by the dorsal fins and body color. The dorsal fin on the male ends in a point, and the body is darker changing to nearly black during spawning. When breeding, the water in the tank should be decreased to about 20 cm (8 in) deep and the temperature should be 28 °C (82 °F). After spawning, the female should be removed to a separate tank as the male will jealously guard the eggs, in a captive environment, sometimes becoming aggressive towards the female. The eggs hatch in 24 hours. They must be kept in a dark aquarium. As food Partly in consequence of its size, the giant gourami is a significant food fish, and in its native regions it has been harvested as a customary food source.[10] In Asian cuisine, gourami is highly valued as food due to its thick flesh, pleasant texture as well as its tasty flavour. Unlike carp and milkfish, gouramis do not have fine bones within their flesh, which render them easy to consume, thus elevate its economic value. In Southeast Asian market, gourami is one of the most highly-valued freshwater food fish. Gourami flesh is rich in protein and minerals.[11] It is a popular food fish in Indonesian, Malaysian and Thai cuisines. Gouramis are particularly popular in Sundanese cuisine of Indonesia,[12] where they often being fried as ikan goreng, grilled as ikan bakar or cook with spice inside a banana leaf wrap as pepes. In some parts of Southeast Asia, they are salted to preserve and prolong shelf life. Gurame bakar Live fresh gourami (grilled gourami) for sale in a supermarket in Jakarta References 1. Low, B.W. (2019). "Osphronemus goramy" (https://www.iucnredlist.org/species/180720/898051 40). IUCN Red List of Threatened Species. 2019: e.T180720A89805140. doi:10.2305/IUCN.UK.2019-2.RLTS.T180720A89805140.en (https://doi.org/10.2305%2FIUCN. UK.2019-2.RLTS.T180720A89805140.en). 2. "Gourami" (http://www.finedictionary.com/Gourami.html). 3. Froese, Rainer and Pauly, Daniel, eds. (2014). "Osphronemus goramy" (http://www.fishbase.or g/summary/SpeciesSummary.php?genusname=Osphronemus&speciesname=goramy) in FishBase. February 2014 version. 4. FAO - Weed control (http://www.fao.org/DOCREP/003/T0401E/T0401E04.htm) 5. Dinalankara, Senura; Tharaka Sahan Chandrasiri; Dakshitha Dias; Kokila Hettiarachchi (2018). Vision Based Automated Biomass Estimation of Fronds of Salvinia molesta. University of Moratuwa. 6. Roberts, T.R. (1992). Systematic revision of the Southeast Asian anabantoid fish genus Osphronemus, with descriptions of two new species. Ichthyol. Explor. Freshwat. 2(4): 351–360 7. Roberts, T.R. (1994). Osphronemus exodon, a new species of giant gourami with extraordinary dentition from the Mekong. Natural History Bulletin of the Siam Society 42(1): 67–77 8. Rainboth, W.J. (1996). Fishes of the Cambodian Mekong, p. 218. FAO, United Nations. ISBN 92-5-103743-4. 9. Roberts, T.R. (1989). The freshwater fishes of Western Borneo (Kalimantan Barat, Indonesia). Memoirs of the California Academy of Sciences. 14: 1–210. 10. Cultured Gourami in Bogor, Indonesia (http://cinta-gurami.blogspot.com/) 11. "Kandungan Protein Ikan Gurame" (http://www.neraca.co.id/article/35660/kandungan-protein-ik an-gurame). Neraca (in Indonesian). 7 December 2013. 12. "Resep Ikan Gurame" (http://kuliner.ilmci.com/resep/tag/ikan-gurame). Retrieved from "https://en.wikipedia.org/w/index.php?title=Giant_gourami&oldid=931852204" This page was last edited on 21 December 2019, at 18:02 (UTC). Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization..
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Model of Profit Maximization of the Giant Gourami (Osphronemus Goramy) Culture
    Omni-Akuatika, 13 (1): 54–59, 2017 ISSN: 1858-3873 print / 2476-9347 online Research Article Model of Profit Maximization of the Giant Gourami (Osphronemus goramy) Culture Dian Wijayanto1*), Faik Kurohman1, Ristiawan Agung Nugroho1 1Fakultas Perikanan dan Ilmu Kelautan Universitas Diponegoro *Corresponding author: [email protected] Received 7 November 2016; Accepted 16 April 2017; Available online 31 May 2017 ABSTRACT This research’ objective is to develop a model of profit maximization that can be applied to the giant gourami culture. The development of fish growth model uses polynomial growth function. Profit maximization process uses the first derivative of profit equation to culture time equal to zero. This research develop the equations to estimate the culture time to reach the size target of cultured fish. This research model can be applied in the giant gouramy culture. The giant gouramy culture can produce the maximum profit at 324 days with profit of IDR. 7.847.700 per culture cycle. To achieve size target of 500 g per fish, it needs 135 days of culture time. Keywords: bioeconomy, profit maximization, the giant gouramy 1. Introduction (1992), Springborn et al. (1992), Heap (1993), Strand and Mistiaen (1999), and Wijayanto The giant gouramy (Osphronemus (2014). Bjorndal (1988) estimated the optimal goramy) is one of major fisheries commodities harvest in fish culture used fish growth base on in Indonesia. It is also one of favorite food for Beverton-Holt model. Then, Arnason (1992), Indonesian cuisine. The giant gouramy culture Heap (1993), and Strand and Mistiaen (1999) has grown in Indonesia, including the Central also developed optimization profit model base Java province.
    [Show full text]
  • Helostoma Temminckii (Kissing Gourami)
    Kissing Gourami (Helostoma temminckii) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, September 2018 Web Version, 2/14/2019 Photo: 5snake5. Licensed under CC BY-SA 4.0. Available: https://commons.wikimedia.org/wiki/File:Helostoma_temminkii_01.jpg. (September 2018). 1 Native Range and Status in the United States Native Range From Fuller and Neilson (2018): “Tropical Asia, including central Thailand, Malay Peninsula, Sumatra, Borneo, and Java (Berra 1981; Roberts 1989; Talwar and Jhingran 1992).” 1 Status in the United States Fuller and Neilson (2018) report Helostoma temminckii from the following HUCs (hydrologic units) in Florida between 1971 and 1978: Florida Southeast Coast, Little Manatee, and Tampa Bay. From Fuller and Neilson (2018): “Failed at both locations in Florida. No additional specimens have been reported or collected.” This species is in trade in the United States. From Arizona Aquatic Gardens (2018): “Pink Kissing Gourami Fish […] $8.99 Out of stock” Means of Introductions in the United States From Fuller and Neilson (2018): “The introduction resulted from either an aquarium release or a fish-farm escape.” Remarks This species’ name is spelled “Helostoma temminkii” according to ITIS (2018), but the correct spelling according to Fricke et al. (2018) is “Helostoma temminckii”. The misspelling occurs often enough that it was also used when researching in preparation of this report. From Fricke et al. (2018): “temminkii, Helostoma Cuvier [G.] (ex Kuhl & van Hasselt) 1829:228 [Le Règne
    [Show full text]
  • Recent Trends in Breeding and Trade of Ornamental Gourami in India
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331717622 Recent Trends in Breeding and Trade of Ornamental Gourami in India Article in World Aquaculture · March 2019 CITATIONS READS 3 3,032 2 authors: Alok Kumar Jena Pradyut Biswas Central Institute of Fisheries Education Central Agricultural University 29 PUBLICATIONS 37 CITATIONS 62 PUBLICATIONS 132 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Effects of temperature on the Caudal fin regeneration of Flying Barb Esomus danricus (Hamilton, 1822) (Cyprinidae) View project Grow-out rearing of Indian butter catfish, Ompok bimaculatus (Bloch), at different stocking densities in outdoor concrete tanks View project All content following this page was uploaded by Alok Kumar Jena on 13 March 2019. The user has requested enhancement of the downloaded file. Recent Trends in Breeding and Trade of Ornamental Gourami in India Alok Kumar Jena, Pradyut Biswas and Sandeep Shankar Pattanaik FIGURE 2. Blue gourami Trichogaster trichopterus (Left) and pearl gourami Trichogaster leeri (Right). FIGURE 1. Banded gourami Colisa fasciatus juvenile. TABLE 1. List of gouramis indigenous to India. Common Name Scientific Name Rainbow gourami/banded gourami Colisa fasciatus Dwarf gourami/lily gourami Colisa lalia Honey gourami Colisa chuna FIGURE 3. Preparation of bubble nest by a male gourami. The ornamental fish TABLE 2. List of gouramis exotic to India. farms located in the country
    [Show full text]
  • Growth Performance and Survival Rate of Giant Gourami Fingerlings (Osphronemus Goramy Lacepede, 1801) with Potassium Diformate Addition
    Available online at www.worldscientificnews.com WSN 143 (2020) 103-114 EISSN 2392-2192 Growth performance and survival rate of giant gourami fingerlings (Osphronemus goramy Lacepede, 1801) with potassium diformate addition Algi Azmi Nugraha*, Ayi Yustiati, Ibnu Bangkit, Yuli Andriani Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Bandung – Sumedang KM.21 Jatinangor 45363, Indonesia *E-mail address: [email protected] ABSTRACT This research aims to determine the method of adding potassium diformate to commercial feed to increase survival and growth in gourami juvenile. The method used in this research is an experimental method using a Completely Randomized Design (CRD), consists of four treatments and four replications. The treatments used are (A) Without giving Potassium diformate (control), (B) giving potassium diformate by 0.3%, (C) giving potassium diformate by 0.5% and (D) giving potassium diformate by 0.8%. The test fish used was 300 giant gourami with a length of 4-6 cm. The containers used in this research were aquariums with a size of 40 × 30 × 40 cm3 that reared in 16 aquariums. The density of giant gourami fingerlings during the research was 10 fish per aquarium. The rearing period was 40 days. The feed given was 3% of body mass. Water quality parameters (temperature, pH and dissolved oxygen) were observed every 10 days. Other parameters are the daily growth rate, feed efficiency, the survival rate and the acidity of intestinal and stomach which were observed every 10 days. The results showed that the addition of potassium diformate by 0.3% gives the best results of daily growth rate of 1.31%, feeding efficiency of 37.18%, survival rate of 100% and decreased acidity in the intestine and stomach which helps in the process of protein absorption.
    [Show full text]
  • Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus Opercularis)
    animals Article Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus opercularis) Anita Rácz 1,* ,Gábor Adorján 2, Erika Fodor 1, Boglárka Sellyei 3, Mohammed Tolba 4, Ádám Miklósi 5 and Máté Varga 1,* 1 Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] 2 Budapest Zoo, Állatkerti krt. 6-12, H-1146 Budapest, Hungary; [email protected] 3 Fish Pathology and Parasitology Team, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; [email protected] 4 Department of Zoology, Faculty of Science, Helwan University, Helwan 11795, Egypt; [email protected] 5 Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] * Correspondence: [email protected] (A.R.); [email protected] (M.V.) Simple Summary: Paradise fish (Macropodus opercularis) has been a favored subject of behavioral research during the last decades of the 20th century. Lately, however, with a massively expanding genetic toolkit and a well annotated, fully sequenced genome, zebrafish (Danio rerio) became a central model of recent behavioral research. But, as the zebrafish behavioral repertoire is less complex than that of the paradise fish, the focus on zebrafish is a compromise. With the advent of novel methodologies, we think it is time to bring back paradise fish and develop it into a modern model of Citation: Rácz, A.; Adorján, G.; behavioral and evolutionary developmental biology (evo-devo) studies. The first step is to define the Fodor, E.; Sellyei, B.; Tolba, M.; housing and husbandry conditions that can make a paradise fish a relevant and trustworthy model.
    [Show full text]
  • Freshwater Inventory March 28
    African Clawed Frogs Endler's Livebearer Panda Loach Albino Rainbow Shark Fahaka Puffer Panda Platy Archer Fish Fancy Guppies Panda Tetra Peacock Gudgeon Assassin Snail Festae Red Terror Florida Assorted African cichlid Figure Eight Puffer Pearl Leeri Gourami Assorted Angels Firecracker Lelupi Peppermind Pleco L030 Assorted Balloon Molly Firemouth Cichlid Pheonix Tetra Powder Blue Dwarf Assorted Glofish Tetra Florida Plecos Gourami Assorted Lionhead Geophagus Brasiliensis Purple Rose Queen Goldfish Cichlid Cichlid Assorted Platy German Blue Ram Rainbow Shark Red and Black Oranda Assorted Ryukin Goldfish German Gold Ram Goldfish Australian Desert Goby Giant Danio Red Bubble eye Goldfish Australian Rainbow Glass Cats Red Eye Tetra Bala Shark GloFish Danio Red Paradise Gourami BB Puffer Gold Dojo Loach Red Phantom Tetra Gold Firecracker Black Lyretail Molly Tropheus Moori Red Pike Cichlid Black Moor Goldfish Gold Gourami Red Tail shark Black Neon Tetra Gold Severum Red Texas Cichlid Black Phantom Tetra Assorted Platy Redfin Blue Variatus Gold White Cloud Redfin Copadichromas Black Rasbora Het Mountain Minnow Borleyi Cichlid Black Ruby Barb Golden Wonder Killie Redtail Black Variatus Green Platinum Tiger Redtail Sternella Pleco Black Skirt Tetra Barb (L114a) Blackfin Cyprichromis Redtop Emmiltos Cichlid Leptosoma Cichlid Green Texas Cichlid Mphanga Green Yellow Tail Blehri rainbow Dwarf Pike Cichlid Ribbon Guppies Blood Red Parrot Haplochromis Cichlid Obliquidens Cichlid Roseline Shark Heterotilapia Blue Dolphin Cichlid Buttikofferi Cichlid
    [Show full text]
  • Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version
    Designation date: 23/06/99 Ramsar Site no. 999 Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. Dr. Srey Sunleang, DD MM YY Director, Department of Wetlands and Coastal Zones, Ministry of Environment, #48 Preah Sihanouk Blvd., Tonle Bassac, Designation date Site Reference Number Chamkar Morn, Phnom Penh, Cambodia Tel: (855) 77-333-456 Fax: (855)-23-721-073 E-mail: [email protected] 2.
    [Show full text]
  • Croaking Gourami, Trichopsis Vittata (Cuvier, 1831), in Florida, USA
    BioInvasions Records (2013) Volume 2, Issue 3: 247–251 Open Access doi: http://dx.doi.org/10.3391/bir.2013.2.3.12 © 2013 The Author(s). Journal compilation © 2013 REABIC Rapid Communication Croaking gourami, Trichopsis vittata (Cuvier, 1831), in Florida, USA Pamela J. Schofield 1* and Darren J. Pecora2 1 US Geological Survey, Southeast Ecological Science Center, 7920 NW 71st Street, Gainesville, FL 32653, USA 2 US Fish and Wildlife Service, Arthur R. Marshall Loxahatchee National Wildlife Refuge, 10216 Lee Road, Boynton Beach, FL 33473, USA E-mail: [email protected] (PJS), [email protected] (DJP) *Corresponding author Received: 8 February 2013 / Accepted: 30 May 2013 / Published online: 1 July 2013 Handling editor: Kit Magellan Abstract The croaking gourami, Trichopsis vittata, is documented from wetland habitats in southern Florida. This species was previously recorded from the same area over 15 years ago, but was considered extirpated. The rediscovery of a reproducing population of this species highlights the dearth of information available regarding the dozens of non-native fishes in Florida, as well as the need for additional research and monitoring. Key words: canal; croaking gourami; cypress swamp; Florida; Loxahatchee; Osphronemidae; Trichopsis vittata was previously considered extirpated (Shafland Introduction et al. 2008a, b), but is now known to be reproducing in a localised area. Dozens of non-native fishes have been introduced into Florida’s inland waterways, via accidental escape, pet releases, or intentional introduction
    [Show full text]
  • MILLERS FALLS F.?Tnoduced a Little Over a Dec- Ible Symbol of Government Au- Shown No Interest in Lifting It
    Pollution Report SEE STORY PAGE 25 >:'•," . Sunny and Cold Sunny and cold today. Clear, FINAL cold tonight. Fair, milder to- Red Bank, Freehold morrow. Cloudv on Saturday. -Long Branch EDITION 9 Monmouth County's Outstanding Home Newspaper 44 PAGES TEN CENTS VOL.94 .NO. Ill KLD BANK. NJ. THURSD \Y, DECniBL'U 2,1971 To ProbeMedicalExaminer Reports ByHALLIESCHRAEGER manslaughter in the death of Dr. Gilman's testimony, swearing, a lesser offense, in Mrs. Arnold has been out on Mr. Keuper said he also her 31/i-year-oId son, Paul. saying the hemorrhage came that perjury involves lying . bail pending the outcome of conferred with members of her successful appeal. The FREEHOLD - Former March 23. 1969. in Long from a deeper source. Two about a material fact in a his staff, Dr. Oilman and Dr. manslaughter charge against Monmouth County Medical Branch. Dr. Oilman had listed thought that death had oc- case. False swearing could in- Albano before deciding on his her will be dismissed and she Examiner C. Malcolm B. Oil- a fractured skull as one of the curred naturally, from a rup'» clude giving relatively minor course of action. will be retried only on a man will be the subject of a causes of death. Dr. Albano tured blood vessel. misinformation, such as one's During the Vena-Burlew charge of child neglect, the county grand jury in- found no skull fracture. Three Possibilities - wrong name or address. trial. Dr. Oilman was super- prosecutor said. vestigation as the result of his The other contradiction Mr. Keuper said the result False swearing and mis- seded by Dr.
    [Show full text]
  • Review of Wetland and Aquatic Ecosystem in the Lower Mekong River Basin of Cambodia
    FINAL REPORT Review of Wetland and Aquatic Ecosystem in the Lower Mekong River Basin of Cambodia By Kol Vathana Department of Nature Conservation and Protection Ministry of Environment Phnom Penh, Kingdom of Cambodia Submitted to The Cambodian National Mekong Committee Secretariat (CNMCS) and THE MEKONG RIVER COMMISSION SECRETARIAT (MRCS) August 2003 1 TABLE OF CONTENT I. INTRODUCTION..................................................................................................................6 II. WETLAND BIODIVERSITY ..............................................................................................9 2.1 Current Status...................................................................................................................9 2.2 Ecosystem Diversity ........................................................................................................9 2.2.1 Freshwater Ecosystem ..............................................................................................9 2.2.2 Coastal and Marine Ecosystem...............................................................................12 2.3 Species Diversity ...........................................................................................................15 2.3.1 Fauna.......................................................................................................................15 2.3.2 Flora ........................................................................................................................19 2.4 Genetic Diversity ...........................................................................................................20
    [Show full text]
  • Cambodian Journal of Natural History
    Cambodian Journal of Natural History Artisanal Fisheries Tiger Beetles & Herpetofauna Coral Reefs & Seagrass Meadows June 2019 Vol. 2019 No. 1 Cambodian Journal of Natural History Editors Email: [email protected], [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Alison Behie, Australia National University, • Dr Keo Omaliss, Forestry Administration, Cambodia. Australia. • Ms Meas Seanghun, Royal University of Phnom Penh, • Dr Stephen J. Browne, Fauna & Flora International, Cambodia. UK. • Dr Ou Chouly, Virginia Polytechnic Institute and State • Dr Chet Chealy, Royal University of Phnom Penh, University, USA. Cambodia. • Dr Nophea Sasaki, Asian Institute of Technology, • Mr Chhin Sophea, Ministry of Environment, Cambodia. Thailand. • Dr Martin Fisher, Editor of Oryx – The International • Dr Sok Serey, Royal University of Phnom Penh, Journal of Conservation, UK. Cambodia. • Dr Thomas N.E. Gray, Wildlife Alliance, Cambodia. • Dr Bryan L. Stuart, North Carolina Museum of Natural Sciences, USA. • Mr Khou Eang Hourt, National Authority for Preah Vihear, Cambodia. • Dr Sor Ratha, Ghent University, Belgium. Cover image: Chinese water dragon Physignathus cocincinus (© Jeremy Holden). The occurrence of this species and other herpetofauna in Phnom Kulen National Park is described in this issue by Geissler et al. (pages 40–63). News 1 News Save Cambodia’s Wildlife launches new project to New Master of Science in protect forest and biodiversity Sustainable Agriculture in Cambodia Agriculture forms the backbone of the Cambodian Between January 2019 and December 2022, Save Cambo- economy and is a priority sector in government policy.
    [Show full text]