The High Priority and Relevance of Europa Exploration Galileo Galilei's

Total Page:16

File Type:pdf, Size:1020Kb

The High Priority and Relevance of Europa Exploration Galileo Galilei's The High Priority and Relevance of Europa Exploration Galileo Galilei's discovery of moons of to that of Mars exploration6. In 2003, the Jupiter in 1610 advanced the Copernican decadal Solar System Exploration Survey7 of Revolution. Now nearly 400 years later, one the NRC called for a Europa orbiting space- of these moons–Europa–has the potential for craft as the single highest priority large "flag- discoveries just as profound. Europa's icy sur- ship class" exploration mission for the decade face is believed to hide a global subsurface 2003-2013. Such a spacecraft mission would ocean with volume nearly three times that of confirm the existence of Europa's subsurface Earth's oceans1. The moon's surface is young, ocean, characterize in detail the moon's sur- with a nominal age of 50 million years, imply- face and icy shell, and conduct reconnaissance ing that it is most likely geologically active vital for future landed exploration. 2 today . The primitive materials that nourish Much of NASA's current planetary explo- life have rained onto Europa throughout solar ration focus, and that planned for the future in system history, are created by radiation chem- NASA's exploration vision8, is placed on the istry at its surface, and may pour from vents at 3 astrobiological potential of Mars, which likely the ocean's deep bottom . On Earth, microbial once had liquid water on its surface and may extremophiles take advantage of environ- have water underground today. Given that Eu- mental niches arguably as harsh as within Eu- 4 ropa appears to currently possess the three ropa's subsurface ocean . If the subsurface main criteria for the existence of life as we waters of this Galilean moon were found to know it (liquid water, sufficient energy contain life, the discovery would spawn an- sources, and organic building blocks)3, Europa other revolution, this time in our understand- is equally as promising a place to look for ex- ing of life in the universe. tant life in our solar system. Moreover, the The astrobiological potential of Europa proximity of Mars to Earth means that the two has been revealed in recent years through planets could have exchanged biological mate- spectacular data from the Galileo spacecraft. rials over solar system history, transferred in The existence of liquid water in the outer solar meteorites like those found on Earth9. Thus, system was once thought a remote possibility, life originating on one planet could have but the combination of geological, gravita- spread to its neighbor, plausibly resulting in a tional, and magnetic field observations and single tree of life with a common ancestor at theory make it appear quite possible–even some point early in biological history. On the likely–that liquid water exists beneath Eu- other hand, transfer of biological materials ropa's icy surface1. It is now recognized that between Earth and distant Europa is quite un- oceans may exist within many large icy satel- likely, so any life on Europa would probably lites, but Europa's inferred thin ice shell and have a completely independent origin. If or- potentially active surface-ocean exchange ele- ganisms exist there, Europa would provide vate its priority for astrobiological explora- essential evidence for a distinct origin, and tion. A Europa mission is the first step in un- perhaps a distinct chemistry, of life. derstanding the potential for icy satellites as To fully understand the planetary context abodes for life. and origin(s) of life in the solar system, a sys- The high priority and relevance of Europa tematic program of astrobiological exploration to scientific advancement has been recognized is necessary for both Mars and Europa. Eu- by several national committees. In 1994, the ropa is a challenging exploration target be- Space Studies Board of the National Research cause of significant travel times, a severe ra- Council recognized that Europa's geology and diation environment, and the lack of a sub- geophysics along with its potential for extra- stantial atmosphere for aerobraking. Moreo- terrestrial life assigned Jupiter system explora- ver, planetary protection is a vital issue be- tion a priority equal to that of the exploration cause any forward contamination of Europa's of Mars5. In 1999, the Committee on Plane- ocean at one location could enable global ac- tary and Lunar Exploration of the National cess for contaminants10. Nonetheless, Europa's Research Council (NRC), while acknowledg- priority as an exploration target requires that ing the technological challenges involved in technology hurdles be addressed with suffi- Europa exploration, reaffirmed that Europa cient near-term investment. Technology shar- exploration should be assigned a priority equal ing and complementarity between Europa and Mars exploration should be encouraged, most Alfred McEwen, University of Arizona notably in life detection experiments and Xuan-Min Shao, Los Alamos Erik Asphaug, University of California Santa Cruz planetary protection. Bill Kurth, University of Iowa The extremely high priority of Europa ex- Rosaly Lopes, Jet Propulsion Laboratory ploration calls for concomitant attention and Wanda Davis, Ames Research Center dedication to Europa exploration not only in Jody W. Deming, University of Washington the distant future but in the present decade, Dave Atkinson, University of Idaho and with priority equal to that of Mars. Europa Andrew Potter, National Optical Astronomy Obs. Wing Ip, National Central University of Taiwan exploration, which has the potential for find- Bernd Giese, DLR Institute of Planetary Research ing extant life in our solar system, must be Amy C. Barr, University of Colorado central not only to NASA's exploration vision, Irene M. Engle, U.S. Naval Academy but to its exploration implementation. Geoffrey C. Collins, Wheaton College Bruce Hapke, University of Pittsburgh Signed: Heidi B. Hammel, Space Science Institute Robert T. Pappalardo, University of Colorado Nilton O. Renno, University of Michigan Cynthia Phillips, SETI Institute Frank Carsey, Jet Propulsion Laboratory Louise M. Prockter, Applied Physics Laboratory Herb Breneman, Jet Propulsion Laboratory Francis Nimmo, Univ. California Los Angeles Louis Irwin, University of Texas El Paso Paul M. Schenk, Lunar and Planetary Institute Christopher Russell, Univ. California Los Angeles Baerbel Lucchitta, U.S. Geological Survey Dave Slater, Southwest Research Institute Ronald Greeley, Arizona State University Hajo Eicken, University of Alaska Fairbanks Keith Raney, Applied Physics Laboratory Eric Grosfils, Pomona College Kandy S. Jarvis, Lockheed Martin Space Operations Richard Reinert, Ball Aerospace John Spencer, Southwest Research Institute Tom McCord, Planetary Science Institute Jeffrey M. Moore, Ames Research Center Dale P. Winebrenner, University of Washington David Kohlstedt, University of Minnesota Susanne Neuer, Arizona State University Robert W. Carlson, Jet Propulsion Laboratory Chris Paranicas, Applied Physics Laboratory Kevin P. Hand, Stanford University / SETI Institute Jani Radebaugh, University of Arizona Steve Ostro, Jet Propulsion Laboratory David A. Williams, Arizona State University Gregory Hoppa, Raytheon Tom Hill, Rice University Imke de Pater, University of California Berkeley Beth E. Clark Joseph, Ithaca College Diana Blaney, Jet Propulsion Laboratory Carol Stanley, Jet Propulsion Laboratory David Warmflash, University of Houston David Morrison, Ames Research Center Hunter Waite, University of Michigan William Durham, Lawrence Livermore Donald Blankenship, University of Texas Austin Masatoshi Yamauchi, Swedish Inst. Space Physics Chris McKay, Ames Research Center Patricio Figueredo, Exxon-Mobil Nalin Samarasinha, National Optical Astronomy Obs. Robert Kovach, Stanford University Reggie L. Hudson, Eckerd College / Goddard Roger C. Wiens, Lawrence Livermore Norbert I. Köemle, Austrian Academy of Sciences Leslie Tamppari, Jet Propulsion Laboratory Joe Burns, Cornell University Simon Kattenhorn, University of Idaho Mitchell Sogin, Marine Biological Laboratory Wayne F. Zimmerman, Jet Propulsion Laboratory Paul Feldman, Johns Hopkins University Robert E. Johnson, University of Virginia Will Grundy, Lowell Observatory Sean Solomon, Carnegie Institution Tracy K.P. Gregg, University at Buffalo William Smyth, Atmospheric & Environ. Research Dirk Schulze-Makuch, Washington State University Candice Hansen, Jet Propulsion Laboratory Chris Chyba, Stanford University / SETI Institute Michael J.S. Belton, Belton Space Expl Initiatives, LLC 1 Greeley, R., C. Chyba, J. W. Head, T. McCord, W. B. McKinnon, R. T. Pappalardo, and P. Figueredo, Geology of Europa, in Jupiter: The Planet, Satellites & Magnetosphere (F. Bagenal et al., eds.), pp. 329-362, 2004. 2 Zahnle, K., P. Schenk, H. Levison, and L. Dones, Cratering rates in the outer Solar System, Icarus, 163, 263–289, 2003. 3 Chyba, C. F. and C. B. Phillips, Possible ecosystems and the search for life on Europa, Proc. Nat. Acad. Sci., 98, 801-804, 2001. 4 Horikoshi, K. and W.D. Grant (eds.), Extremophiles: Microbial Life in Extreme Environments, Wiley-Liss: New York, 1998. 5 Space Studies Board, National Research Council, An Integrated Strategy for the Planetary Sciences: 1995-2010, National Academy Press, Washington, D.C., 1994. 6 Committee on Planetary and Lunar Exploration, National Research Council, A Science Strategy for the Exploration of Europa, National Academy Press, Washington, D.C., 1999. 7 Solar System Exploration Survey, Space Studies Board, National Research Council, New Frontiers in the Solar System: An Integrated Exploration Strategy, National Academy Press, Washington, D.C., 2003. 8 President's Commission on Implementation of United Spates Space Exploration Policy, A Journey to Inspire, Innovate, and Discover, Washington D.C., 2004. 9 Mileikowsky, C., F. Cucinotta, J.W. Wilson, G. Horneck, L. Lindgrin, H.J. Melosh, H. Rickman, and M. Valtonen, Natural transfer of viable microbes in space: 1. From Mars to Earth and Earth to Mars, Icarus, 145, 391-427, 2000. 10 Space Studies Board, National Research Council, Preventing the Forward Contamination of Europa, National Academy Press, Washington, D.C., 2000. .
Recommended publications
  • The Geology of the Rocky Bodies Inside Enceladus, Europa, Titan, and Ganymede
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2905.pdf THE GEOLOGY OF THE ROCKY BODIES INSIDE ENCELADUS, EUROPA, TITAN, AND GANYMEDE. Paul K. Byrne1, Paul V. Regensburger1, Christian Klimczak2, DelWayne R. Bohnenstiehl1, Steven A. Hauck, II3, Andrew J. Dombard4, and Douglas J. Hemingway5, 1Planetary Research Group, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA ([email protected]), 2Department of Geology, University of Georgia, Athens, GA 30602, USA, 3Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH 44106, USA, 4Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA, 5Department of Earth & Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA. Introduction: The icy satellites of Jupiter and horizontal stresses, respectively, Pp is pore fluid Saturn have been the subjects of substantial geological pressure (found from (3)), and μ is the coefficient of study. Much of this work has focused on their outer friction [12]. Finally, because equations (4) and (5) shells [e.g., 1–3], because that is the part most readily assess failure in the brittle domain, we also considered amenable to analysis. Yet many of these satellites ductile deformation with the relation n –E/RT feature known or suspected subsurface oceans [e.g., 4– ε̇ = C1σ exp , (6) 6], likely situated atop rocky interiors [e.g., 7], and where ε̇ is strain rate, C1 is a constant, σ is deviatoric several are of considerable astrobiological significance. stress, n is the stress exponent, E is activation energy, R For example, chemical reactions at the rock–water is the universal gas constant, and T is temperature [13].
    [Show full text]
  • Astronomy 330 HW 2 Presentations Outline
    Astronomy 330 HW 2 •! Stanley Swat This class (Lecture 12): http://www.ufohowto.com/ Life in the Solar System •! Lucas Guthrie Next Class: http://www.crystalinks.com/abduction.html Life in the Solar System HW 5 is due Wednesday Music: We Are All Made of Stars– Moby Presentations Outline •! Daniel Borup •! Life on Venus? Futurama •! Life on Mars? Life in the Solar System? Earth – Venus comparison •! We want to examine in more detail the backyard of humans. •! What we find may change our estimates of ne. Radius 0.95 Earth Surface gravity 0.91 Earth Venus is the hottest Mass 0.81 Earth planet, the closest in Distance from Sun 0.72 AU size to Earth, the closest Average Temp 475 C in distance to Earth, and Year 224.7 Earth days the planet with the Length of Day 116.8 Earth days longest day. Atmosphere 96% CO2 What We Used to Think Turns Out that Venus is Hell Venus must be hotter, as it is closer the Sun, but the cloud •! The surface is hot enough to melt lead cover must reflect back a large amount of the heat. •! There is a runaway greenhouse effect •! There is almost no water In 1918, a Swedish chemist and Nobel laureate concluded: •! There is sulfuric acid rain •! Everything on Venus is dripping wet. •! Most of the surface is no doubt covered with swamps. •! Not a place to visit for Spring Break. •! The constantly uniform climatic conditions result in an entire absence of adaptation to changing exterior conditions. •! Only low forms of life are therefore represented, mostly no doubt, belonging to the vegetable kingdom; and the organisms are nearly of the same kind all over the planet.
    [Show full text]
  • Exomoon Habitability Constrained by Illumination and Tidal Heating
    submitted to Astrobiology: April 6, 2012 accepted by Astrobiology: September 8, 2012 published in Astrobiology: January 24, 2013 this updated draft: October 30, 2013 doi:10.1089/ast.2012.0859 Exomoon habitability constrained by illumination and tidal heating René HellerI , Rory BarnesII,III I Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany, [email protected] II Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195, [email protected] III NASA Astrobiology Institute – Virtual Planetary Laboratory Lead Team, USA Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge”. We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons.
    [Show full text]
  • Moons Phases and Tides
    Moon’s Phases and Tides Moon Phases Half of the Moon is always lit up by the sun. As the Moon orbits the Earth, we see different parts of the lighted area. From Earth, the lit portion we see of the moon waxes (grows) and wanes (shrinks). The revolution of the Moon around the Earth makes the Moon look as if it is changing shape in the sky The Moon passes through four major shapes during a cycle that repeats itself every 29.5 days. The phases always follow one another in the same order: New moon Waxing Crescent First quarter Waxing Gibbous Full moon Waning Gibbous Third (last) Quarter Waning Crescent • IF LIT FROM THE RIGHT, IT IS WAXING OR GROWING • IF DARKENING FROM THE RIGHT, IT IS WANING (SHRINKING) Tides • The Moon's gravitational pull on the Earth cause the seas and oceans to rise and fall in an endless cycle of low and high tides. • Much of the Earth's shoreline life depends on the tides. – Crabs, starfish, mussels, barnacles, etc. – Tides caused by the Moon • The Earth's tides are caused by the gravitational pull of the Moon. • The Earth bulges slightly both toward and away from the Moon. -As the Earth rotates daily, the bulges move across the Earth. • The moon pulls strongly on the water on the side of Earth closest to the moon, causing the water to bulge. • It also pulls less strongly on Earth and on the water on the far side of Earth, which results in tides. What causes tides? • Tides are the rise and fall of ocean water.
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
    An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data.
    [Show full text]
  • Dwarf Planet Ceres
    Dwarf Planet Ceres drishtiias.com/printpdf/dwarf-planet-ceres Why in News As per the data collected by NASA’s Dawn spacecraft, dwarf planet Ceres reportedly has salty water underground. Dawn (2007-18) was a mission to the two most massive bodies in the main asteroid belt - Vesta and Ceres. Key Points 1/3 Latest Findings: The scientists have given Ceres the status of an “ocean world” as it has a big reservoir of salty water underneath its frigid surface. This has led to an increased interest of scientists that the dwarf planet was maybe habitable or has the potential to be. Ocean Worlds is a term for ‘Water in the Solar System and Beyond’. The salty water originated in a brine reservoir spread hundreds of miles and about 40 km beneath the surface of the Ceres. Further, there is an evidence that Ceres remains geologically active with cryovolcanism - volcanoes oozing icy material. Instead of molten rock, cryovolcanoes or salty-mud volcanoes release frigid, salty water sometimes mixed with mud. Subsurface Oceans on other Celestial Bodies: Jupiter’s moon Europa, Saturn’s moon Enceladus, Neptune’s moon Triton, and the dwarf planet Pluto. This provides scientists a means to understand the history of the solar system. Ceres: It is the largest object in the asteroid belt between Mars and Jupiter. It was the first member of the asteroid belt to be discovered when Giuseppe Piazzi spotted it in 1801. It is the only dwarf planet located in the inner solar system (includes planets Mercury, Venus, Earth and Mars). Scientists classified it as a dwarf planet in 2006.
    [Show full text]
  • The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
    Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring.
    [Show full text]
  • Projection of Meteosat Images Into World Geodetic System WGS-84 Matching Spot/Vegetation Grid
    Projection of Meteosat images into World Geodetic system WGS-84 matching Spot/Vegetation grid Bruno COMBAL, Josué NOEL EUR 23945 EN - 2009 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environ- ment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Address: Global Environment Monitoring Unit, Institute for Environment and Sustainability, Joint Research Centre, via E. Fermi, 2749, I-21027 Ispra (VA), Italy E-mail: [email protected] Tel.: +39 03 32 78 93 78 Fax: +39 03 32 78 90 73 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is re- sponsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 52438 EUR 23945 EN ISBN 978-92-79-12953-7 ISSN 1018-5593 DOI 10.2788/2452 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2009 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of contents 1 Introduction.........................................................................................
    [Show full text]
  • THE PENNY MOON and QUARTER EARTH School Adapted from a Physics Forum Activity At
    ~ LPI EDUCATION/PUBLIC OUTREACH SCIENCE ACTIVITIES ~ Ages: 5th grade – high THE PENNY MOON AND QUARTER EARTH school Adapted from a Physics Forum activity at: http://www.phvsicsforums.com/ Duration: 10 minutes OVERVIEW — The students will use a penny and a quarter to model the Moon’s rotation on its axis and Materials: revolution around the Earth, and demonstrate that the Moon keeps the same face toward One penny and one the Earth. quarter per pair of students OBJECTIVE — Overhead projector, or The students will: elmo, or video Demonstrate the motion of the Moon’s rotation and revolution. projector Compare what we would see of the Moon if it did not rotate to what we see when its period of rotation is the same as its orbital period. Projected image of student overhead BEFORE YOU START: Do not introduce this topic along with the reason for lunar phases; students may become confused and assume that the Moon’s rotation is related to its phases. Prepare to show the student overhead projected for the class to see. ACTIVITY — 1. Ask your students to describe which parts of the Moon they see. Does the Moon turn? Can we see its far side? Allow time for your students to discuss this and share their opinions. 2. Hand out the pennies and quarters so that each pair of students has both. Tell the students that they will be creating a model of the Earth and Moon. Which object is Earth? [the quarter] Which one is the Moon? [the penny] 3. Turn on the projected student overhead.
    [Show full text]
  • Outer Planets Flagship Mission Studies
    OuterOuterOuter PlanetsPlanetsPlanets FlagshipFlagshipFlagship MissionMissionMission StudiesStudiesStudies Curt Niebur OPF Program Scientist NASA Headquarters Planetary Science Subcommittee June 23, 2008 Overview ¾ NASA is currently mid way through a six month long Phase II study of the remaining two candidate Outer Planet Flagship Missions ¾Europa Jupiter System Mission (EJSM) ¾Titan Saturn System Mission (TSSM) ¾ NASA plans to select a single Outer Planet Flagship mission to be pursued jointly with ESA and other international partners. ¾ The study plan includes a NASA only option in addition to the collaborative options. According to Phase II study ground rules the funding cap is $2.1B FY07 2 Outer Planet Flagship Mission Study Process Submitted 8/07 Downselected 12/07 Titan Saturn System Mission Downselect 11/08 Review 8-11/07 Started 2/08 Titan Saturn System Mission TMC and Phase II or Science Europa Study Europa Jupiter Panel Jupiter System Mission System Mission 3 NASA Phase II Study – Key Milestones • Joint SDT members selected…………………………………….Feb 1, 2008 • Study Kickoff……………………………………………………..Feb 9, 2008 • First Interim Review…………………………………………….April 9, 2008 • ESA Concurrent Design Facility Studies –kickoff…………….May 21, 2008 • Science Instrument Workshop………………………………….June 3-5, 2008 • Second Interim Review………………………………………….June 19-20, 2008 • ESA Concurrence Design Facility Studies – Outbrief…………July 27, 2008 • Phase II Initial Report…………………………………………..Aug 4, 2008 • Science and TMC Panels reviews ……………………………...Sep 9-11, 2008 – Europa Jupiter
    [Show full text]
  • There Are Eight Phases of the Moon. the New Moon Is the First Phase
    By: Sydney There are eight phases of the moon. The new moon is the first phase. When we look at the new moon we see only a shadow. You cannot see the lighted half of the moon. In the new moon phase the moon, the sun, and the Earth are lined up. It rises in the east, the same as the sun and sets in the west the same time as the sun. The second phase of the moon is the waxing crescent. Waxing means getting larger. We only see a small part of the moon. The light is on the right side. The moon is no longer between the Earth and the sun. The waxing crescent is a thin crescent shape. The third phase of the moon is the first quarter. The first quarter is about one week after the new moon. Half of the moon is lit on the right in this phase. It is one-quarter of the way around the Earth. The first quarter moon looks like a semi-circle. It is also one-quarter of its way through the monthly phases. The fourth phase of the moon is the waxing gibbous. The waxing gibbous is when more than half of the moon is lit. It is almost a full moon. More of the moon is moving into the sunlight. The waxing gibbous is almost halfway through its orbit. The fifth phase of the moon is the full moon. The full moon is when you can see all of the lighted part of the moon. It happens about two weeks after the new moon.
    [Show full text]