The Plumbing Systems and Parental Magma Compositions Of

Total Page:16

File Type:pdf, Size:1020Kb

The Plumbing Systems and Parental Magma Compositions Of THE PLUMBING SYSTEMS AND PARENTAL MAGMA COMPOSITIONS OF SHIELD VOLCANOES IN THE CENTRAL OREGON HIGH CASCADES AS INFERRED FROM MELT INCLUSION DATA by STANLEY PAUL MORDENSKY II A THESIS Presented to the Department of Geological Sciences and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Master of Science September 2012 THESIS APPROVAL PAGE Student: Stanley Paul Mordensky II Title: The Plumbing Systems and Parental Magma Compositions of Shield Volcanoes in the Central Oregon High Cascades as Inferred from Melt Inclusion Data This thesis has been accepted and approved in partial fulfillment of the requirements for the Master of Science degree in the Department of Geological Sciences by: Dr. Paul Wallace Chair Dr. Ilya Bindeman Member Dr. Katharine Cashman Member Dr. Dana Johnston Member and Kimberly Andrews Espy Vice President for Research & Innovation/Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded September 2012 ii © 2012 Stanley Paul Mordensky II iii THESIS ABSTRACT Stanley Paul Mordensky II Master of Science Department of Geological Sciences September 2012 Title: The Plumbing Systems and Parental Magma Compositions of Shield Volcanoes in the Central Oregon High Cascades as Inferred from Melt Inclusion Data Long-lived and short-lived volcanic vents often form in close proximity to one another. However, the processes that distinguish between these volcano types remain unknown. Here, I investigate the differences of long-lived (shield volcano) and short- lived (cinder cone) magmatic systems using two approaches. In the first, I use melt inclusion volatile contents for shield volcanoes and compare them to published data for cinder cones to investigate how shallow magma storage conditions differ between the two vent types in the Oregon Cascades. In the second, I model the primitive magmas that fed shield volcanoes and compare these compositions to those of nearby cinder cones to determine if the volcanoes are drawing magma from the same sources. The volatile concentrations suggest that long-lived and short-lived magmatic plumbing systems are distinct. Modeling of parental magmas and differentiation processes further suggest that long-lived and short-lived volcanoes have erupted lava from the same mantle magma source. iv CURRICULUM VITAE NAME OF AUTHOR: Stanley Paul Mordensky II GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: University of Oregon, Eugene, Oregon The George Washington University, Washington, DC DEGREES AWARDED: Master of Science in Geological Sciences, 2012, University of Oregon Bachelor of Arts in Geological Sciences, 2009, The George Washington University Bachelor of Science in Economics, 2009, The George Washington University AREAS OF SPECIAL INTEREST: Volcanology Shallow Crustal Magmatic Processes Igneous Petrology PROFESSIONAL EXPERIENCE: Graduate Teaching/Research Fellow, University of Oregon, 2010-2012 Geologist (USGS/NAGT Intern), US Geological Survey, 2010 Substitute Teacher, Montgomery Country Schools, 2010 Teaching Assistant, The George Washington University, 2009 Field Assistant, US Geological Survey, 2009 Field/Lab Assistant, Department of Marine and Wildlife Resources, 2008 Intern, Joint Program in Survey Methodology, 2007 v Intern, New Economy Strategies, 2007 Lab Intern, Science Applications International Corporation, 2004-2005 GRANTS, AWARDS, AND HONORS: Honors Program Graduate, The George Washington University Honors Program, 2009 Foshag Award, Razor Ridge Mapping Project, Mineralogical Society of the District of Columbia, 2009 Eagle Scout, Boy Scouts of America, 2004 vi ACKNOWLEDGMENTS The initiation, continuation, and finalization of this thesis would not have been possible without the wide array of supportive individuals who helped me along this path. My family has always stood by me. They were continually supportive of my decision to go to graduate school and move to Oregon. More importantly, they always reminded me to keep a balanced life even when my studies and research were at full force. Dr. Paul Wallace, my advisor, deserves my sincerest thanks for direction and guidance during the countless times I entered his office with new ideas, new data, or just a general concern regarding my research. His open-door advising policy is admirable for a man of his position and speaks to the nature of his professional and personal character. I always enjoyed working in the field with him – whether it was collecting samples or teaching field camp. Although Dr. Katharine Cashman left for sabbatical in Bristol, England a year before the completion of this research, she remained resolute in offering sincere and helpful guidance. This project would have been incomplete without her efforts and I wish to express a great deal of thanks. Without the use of Dr. Wallace’s and Dr. Cashman’s National Science Foundation grant, this project would have been impossible. I would also like to thank Dr. Ilya Bindeman and Dr. Dana Johnston for finding time in their busy schedules to meet with me and provide different perspectives and fresh ideas about the roles and possibilities of my research and the potential implications of my data. Additionally, I extend my thanks to John Donovan for helping me use the microprobe and scanning electron microscope to collect my data. I doubt I would have been permitted to continue my geologic studies into graduate school without the opportunities provided by Professor Richard Tollo, my vii undergraduate advisor at The George Washington University. The unparalleled dedication he gives to his students is unique and laudable. He extended every opportunity I could imagine to me, a senior just entering the world of geology. Under his guidance, I learned petrology and developed my love for volcanology. The long and extensive conversations I held with Professor Tollo gave me a perspective on not just my future in geology but what is important in life. After sharing all those long hours spent in the abyss of the GWU petrology lab and traversing about out in the field, I thank Paul Shakotko for being able to call him a trusted colleague and, now, an old friend. As for all the friends I have made in Oregon, thank you for sharing this experience with me. Some individuals require personal mention. To Ryan Seward – without you and your garage, my only means of transit would have died a long time ago. To Scott “Meet the Mets” Maguffin – we did it, man. We met the Mets. To Katie Marks, Win McLaughlin, and Nick Famoso – thank you for helping me to remember what it is like to live strong. To Lucy Walsh – for that too often necessary infectious laugh. To Mike Darin – for always expecting me to see with the blast shield down. To the many I have not mentioned, thank you for being there in whatever way you were. My graduate studies would have been lacking something without all of you. viii In the memory of Professor George Stephens The field has never known a more thorough man or kinder soul. ix TABLE OF CONTENTS Chapter Page I. INTRODUCTION .................................................................................................... 1 1.0. Background ..................................................................................................... 1 1.1. Regional Geology ........................................................................................... 2 1.2.0. Terminology ................................................................................................. 5 1.2.1. Melt Inclusions....................................................................................... 5 1.2.2. Calc-alkaline and Low-K Tholeiite Magmas ......................................... 6 1.2.3. Vent Classification ................................................................................. 7 1.3.0. Geochemical Characteristics of the Volcanoes in this Study ...................... 10 1.3.1. Belknap .................................................................................................. 11 1.3.2. Mount Washington................................................................................. 11 1.3.3. North Sister ............................................................................................ 12 II. METHODS.............................................................................................................. 14 2.0. Sample Collection ........................................................................................... 14 2.1. Sample Preparation ......................................................................................... 15 2.2. FTIR ................................................................................................................ 16 2.3. EPMA ............................................................................................................. 19 2.4. SEM ................................................................................................................ 19 2.5. Modeling Primary Shield Magmas ................................................................. 20 2.6. Modeling Primitive Low-K Tholeiites............................................................ 21 III. DATA .................................................................................................................... 23 3.0. Volatile Data ................................................................................................... 23 x Chapter Page 3.1. Major Element Geochemistry ........................................................................
Recommended publications
  • Hydrogeologic Applications for Historical Records and Images from Rock Samples Collected at the Nevada National Security Site An
    A. 1,461 ft 1,600 ft 2,004.5 ft Lithology interpreted by Richard G. Warren, Comprehensive Volcanic Petrographics, LLC 2,204 ft Figure 3. Representation of rock column derived from lithologic records (A) compared with core samples and thin sections thin-section images (B–E) from the UE-19p borehole. B. Adularia (AA) – Orthoclase (a K-spar polymorph typical of granite), that has formed under hydrothermal rather than magmatic conditions. Image from 2,204 ft at 30 degrees polarization. Acmite (AC) – A Na- and Fe3-rich pyroxene typically found as a Allanite (AL) – An epidote-group mineral containing high contents groundmass phase within devitrified peralkaline rock. Image from of rare-earth elements, found in alkali-calcic volcanic rocks. Image 2,004.5 ft at 90 degrees polarization. from 1,600 ft at 30 degrees polarization. C. Biotite (BT) – A hydrated mafic mineral typical of evolved volcanic rocks. Generally lacking in peralkaline units. Image from 1,461 ft at 90 degrees polarization. Glass (GL) – Typically Ca- and Fe-poor, compositionally at the “granite eutectic” within rhyolitic rocks such as those dominant within the Southwestern Nevada Volcanic Field (SWNVF). Unpolarized image from 1,461 ft. Clinopyroxene (CX) – A Ca-rich pyroxene and anhydrous mafic mineral found in a wide variety of volcanic rocks. Image from 1,461 ft at 30 degrees polarization. D. K-feldspar (KF) – A felsic phenocryst ubiquitous as sanidine within the SWNVF, except absent within the wahmonie Formation. Image from 2,004.5 ft at 30 degrees polarization. Lithic (LI) – A rock fragment incorporated into tuff during eruption, Perrierite/Chevkinite (PE) – A pseudobrookite-group mineral usually from the vent.
    [Show full text]
  • Mineralogy and Petrology of the Santo Tomas-Black Mountain Basalt Field, Potrillo Volcanics, South-Central New Mexico
    JERRY M. HOFFER Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79900 Mineralogy and Petrology of the Santo Tomas-Black Mountain Basalt Field, Potrillo Volcanics, South-Central New Mexico ABSTRACT called the Santo Tomas-Black Mountain basalt field (Hoffer, 1969c). The Santo Tomas-Black Mountain basalts The Santo Tomas-Black Mountain basalt were erupted during the Quaternary from field includes four major centers, each with four centers. Six lava flows are present at one or more cones and associated flows Black Mountain, three at Santo Tomas, and (Hoffer, 1969a). From north to south, the one each at Little Black Mountain and San four volcanic centers are Santo Tomas, San Miguel. The basalts are grouped into three Miguel, Little Black Mountain, and Black major types of phenocryst mineralogy: (l) Mountain. The largest volume of lava has plagioclase abundant, (2) olivine abundant, been extruded from the Black Mountain and and (3) both olivine and plagioclase abundant. Santo Tomas centers where six and three All three types are alkali-olivine basalts, individual flows, respectively, have been showing high alkali-silica ratios and total mapped (Hoffer, 1969a). Each of the two alkali content increasing with silica. intervening centers, Little Black Mountain Seven periods of basaltic extrusion among and San Miguel, shows only a single flow. the centers have been established on the No flow from a given center coalesces with basis of field evidence, phenocryst mineralogy, those from neighboring centers, but all ap- and pyroxene-olivine ratios. K-Ar dates show pear to be closely related in time (Kottlowski, the basalts to be less than 0.3 X 106 m.y.
    [Show full text]
  • Compositional Zoning of the Bishop Tuff
    JOURNAL OF PETROLOGY VOLUME 48 NUMBER 5 PAGES 951^999 2007 doi:10.1093/petrology/egm007 Compositional Zoning of the Bishop Tuff WES HILDRETH1* AND COLIN J. N. WILSON2 1US GEOLOGICAL SURVEY, MS-910, MENLO PARK, CA 94025, USA 2SCHOOL OF GEOGRAPHY, GEOLOGY AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF AUCKLAND, PB 92019 AUCKLAND MAIL CENTRE, AUCKLAND 1142, NEW ZEALAND Downloaded from https://academic.oup.com/petrology/article/48/5/951/1472295 by guest on 29 September 2021 RECEIVED JANUARY 7, 2006; ACCEPTED FEBRUARY 13, 2007 ADVANCE ACCESS PUBLICATION MARCH 29, 2007 Compositional data for 4400 pumice clasts, organized according to and the roofward decline in liquidus temperature of the zoned melt, eruptive sequence, crystal content, and texture, provide new perspec- prevented significant crystallization against the roof, consistent with tives on eruption and pre-eruptive evolution of the4600 km3 of zoned dominance of crystal-poor magma early in the eruption and lack of rhyolitic magma ejected as the BishopTuff during formation of Long any roof-rind fragments among the Bishop ejecta, before or after onset Valley caldera. Proportions and compositions of different pumice of caldera collapse. A model of secular incremental zoning is types are given for each ignimbrite package and for the intercalated advanced wherein numerous batches of crystal-poor melt were plinian pumice-fall layers that erupted synchronously. Although released from a mush zone (many kilometers thick) that floored the withdrawal of the zoned magma was less systematic than previously accumulating rhyolitic melt-rich body. Each batch rose to its own realized, the overall sequence displays trends toward greater propor- appropriate level in the melt-buoyancy gradient, which was self- tions of less evolved pumice, more crystals (0Á5^24 wt %), and sustaining against wholesale convective re-homogenization, while higher FeTi-oxide temperatures (714^8188C).
    [Show full text]
  • Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the Re-Opening of Lava Lands Visitor Center Inside
    Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the re-opening of Lava Lands Visitor Center Inside.... Be Safe! 2 LAWRENCE A. CHITWOOD Go To Special Places 3 EXHIBIT HALL Lava Lands Visitor Center 4-5 DEDICATED MAY 30, 2009 Experience Today 6 For a Better Tomorrow 7 The Exhibit Hall at Lava Lands Visitor Center is dedicated in memory of Explore Newberry Volcano 8-9 Larry Chitwood with deep gratitude for his significant contributions enlightening many students of the landscape now and in the future. Forest Restoration 10 Discover the Natural World 11-13 Lawrence A. Chitwood Discovery in the Kids Corner 14 (August 4, 1942 - January 4, 2008) Take the Road Less Traveled 15 Larry was a geologist for the Deschutes National Forest from 1972 until his Get High on Nature 16 retirement in June 2007. Larry was deeply involved in the creation of Newberry National Volcanic Monument and with the exhibits dedicated in 2009 at Lava Lands What's Your Interest? Visitor Center. He was well known throughout the The Deschutes and Ochoco National Forests are a recre- geologic and scientific communities for his enthusiastic support for those wishing ation haven. There are 2.5 million acres of forest including to learn more about Central Oregon. seven wilderness areas comprising 200,000 acres, six rivers, Larry was a gifted storyteller and an ever- 157 lakes and reservoirs, approximately 1,600 miles of trails, flowing source of knowledge. Lava Lands Visitor Center and the unique landscape of Newberry National Volcanic Monument. Explore snow- capped mountains or splash through whitewater rapids; there is something for everyone.
    [Show full text]
  • GEOLOGIC MAP of the MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE of SOUTHERN WASHINGTON by Wes Hildreth and Judy Fierstein
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-2460 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE OF SOUTHERN WASHINGTON By Wes Hildreth and Judy Fierstein When I climbed Mount Adams {17-18 August 1945] about 1950 m (6400') most of the landscape is mantled I think I found the answer to the question of why men by dense forests and huckleberry thickets. Ten radial stake everything to reach these peaks, yet obtain no glaciers and the summit icecap today cover only about visible reward for their exhaustion... Man's greatest 2.5 percent (16 km2) of the cone, but in latest Pleis­ experience-the one that brings supreme exultation­ tocene time (25-11 ka) as much as 80 percent of Mount is spiritual, not physical. It is the catching of some Adams was under ice. The volcano is drained radially vision of the universe and translating it into a poem by numerous tributaries of the Klickitat, White Salmon, or work of art ... Lewis, and Cis pus Rivers (figs. 1, 2), all of which ulti­ William 0. Douglas mately flow into the Columbia. Most of Mount Adams and a vast area west of it are Of Men and Mountains administered by the U.S. Forest Service, which has long had the dual charge of protecting the Wilderness Area and of providing a network of logging roads almost INTRODUCTION everywhere else. The northeast quadrant of the moun­ One of the dominating peaks of the Pacific North­ tain, however, lies within a part of the Yakima Indian west, Mount Adams, stands astride the Cascade crest, Reservation that is open solely to enrolled members of towering 3 km above the surrounding valleys.
    [Show full text]
  • Flow Differentiation, Phenocryst Alignment, and Compositional Trends Within a Dolerite Dike at Rockport, Massachusetts
    Flow differentiation, phenocryst alignment, and compositional trends within a dolerite dike at Rockport, Massachusetts MARTIN E. ROI3S Department of Earth Sciences, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115 ABSTRACT Systematic variations in the volume per- cent, size, and orientation of plagioclase phe- nocrysts up to 12.0 cm long occur across a 5.6-m-thick porphyritic, alkaline dolerite dike in Rockport, Massachusetts. Field measure- ments indicate that phenocryst concentra- tions increase froim nearly zero at the dike margin to 46.0 vol. % at its center. Average phenocryst size increases inward from 4.1 x 2.2 mm at the dike margin to 19.2 * 7.9 mm at the center. The increase in size and abun- dance of phenocrysts toward the center of the dike is interpreted as resulting from flow differentiation. The magma-flow direction is assumed to have been upward and parallel to the dike margins (N7°W strike, 88°E dip). The strikes and dips of all elongate phenocrysts (viewed in cross section) within one traverse across the dike were measured and compared to the dike attitude to determine the degree of flow alignment across I he dike. Average pheno- cryst strike deviations from dike strike in- crease inward 21.8° from the dike margin to Figure 1. Map showing location of the porphyritic dolerite dike exposed as en echelon its midpoint. Phenocryst dip-angle deviations segments (B, C, and D) along the shoreline of Rockport, Massachusetts. Locality B is the from dike dip increase inward by 18.8°. This Headlands segment, subject of this investigation.
    [Show full text]
  • A Tale of Three Sisters: Reconstructing the Holocene Glacial History and Paleoclimate Record at Three Sisters Volcanoes, Oregon, United States
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 2005 A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States Shaun Andrew Marcott Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Glaciology Commons Let us know how access to this document benefits ou.y Recommended Citation Marcott, Shaun Andrew, "A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States" (2005). Dissertations and Theses. Paper 3386. https://doi.org/10.15760/etd.5275 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. THESIS APPROVAL The abstract and thesis of Shaun Andrew Marcott for the Master of Science in Geology were presented August II, 2005, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: (Z}) Representative of the Office of Graduate Studies DEPARTMENT APPROVAL: MIchael L. Cummings, Chair Department of Geology ( ABSTRACT An abstract of the thesis of Shaun Andrew Marcott for the Master of Science in Geology presented August II, 2005. Title: A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States. At least four glacial stands occurred since 6.5 ka B.P. based on moraines located on the eastern flanks of the Three Sisters Volcanoes and the northern flanks of Broken Top Mountain in the Central Oregon Cascades.
    [Show full text]
  • Geology Along the Taylor Highway Alaska
    Geology Along the Taylor Highway Alaska By HELEN L. FOSTER and TERRY E. C. KEITH GEOLOGICAL SURVEY BULLETIN 128 1 A log describing the geology across the Yukon-Tanana Upland, Alaska UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Ubrary of Congress catalog-card No. 71-602340 For sale by the Superintendent of Documents, U.S. Government Prlntln~ Office Washln~ton. D.C. 20402 IV CONTENTS Pal:e FIGURE 13. A typical entrenched meander of South Fork of Fortymile lliver_______________________________________________ 20 14. Abandoned gold dredge_________________________________ 21 15. Plunging anticline______________________________________ 22 16. Mining on Wade CreeL________________________________ 23 17. A large meander of the Fortymile lliver___________________ 25 18. Vertical marble bed___ __ _______________ ___ _ ___ 26 19. Taylor Highway bridge across Fortymile lliver_____________ 27 20. Intricately folded marble and quartzite____________________ 28 21. Woli Mountain________________________________________ 30 22. Steep cliffs of columnar basaIL___________________________ 31 23. Ultramafic rock along the canyon of American Creek_______ 32 24. Eagle and the Yukon lliver- ____________________________ 34 TABLE Page TABLE 1. Approximate sequence and age of geologic events in the country along the Taylor Highway_____________________ 4 GLOSSARY Actinolite. A green mineral which commonly occurs in needlelike crystals. AmygdaloidaI. An adjective that describes a volcanic rock in which many small gas cavities have been filled by secondary minerals. Amygdule. A small gas cavity in a volcanic rock that has been filled with a secondary mineral such as quartz or calcite. Augen gneiss. In the Fortymile area, a gneiss which has light-gray or pink feldspar crystals that are much larger than the other crystals in the rock.
    [Show full text]
  • Description of Map Units
    GEOLOGIC MAP OF THE LATIR VOLCANIC FIELD AND ADJACENT AREAS, NORTHERN NEW MEXICO By Peter W. Lipman and John C. Reed, Jr. 1989 DESCRIPTION OF MAP UNITS [Ages for Tertiary igneous rocks are based on potassium-argon (K-Ar) and fission-track (F-T) determinations by H. H. Mehnert and C. W. Naeser (Lipman and others, 1986), except where otherwise noted. Dates on Proterozoic igneous rocks are uranium-lead (U-Pb) determinations on zircon by S. A. Bowring (Bowring and others, 1984, and oral commun., 1985). Volcanic and plutonic rock names are in accord with the IUGS classification system, except that a few volcanic names (such as quartz latite) are used as defined by Lipman (1975) following historic regional usage. The Tertiary igneous rocks, other than the peralkaline rhyolites associated with the Questa caldera, constitute a high-K subalkaline suite similar to those of other Tertiary volcanic fields in the southern Rocky Mountains, but the modifiers called for by some classification schemes have been dropped for brevity: thus, a unit is called andesite, rather than alkali andesite or high-K andesite. Because many units were mapped on the basis of compositional affinities, map symbols were selected to emphasize composition more than geographic identifier: thus, all andesite symbols start with Ta; all quartz latites with Tq, and so forth.] SURFICIAL DEPOSITS ds Mine dumps (Holocene)—In and adjacent to the inactive open pit operation of Union Molycorp. Consist of angular blocks and finer debris, mainly from the Sulphur Gulch pluton Qal Alluvium (Holocene)—Silt, sand, gravel, and peaty material in valley bottoms.
    [Show full text]
  • DIAMOND PEAKS Information Guide
    DIAMOND PEAKS Information Guide COMMUNITY: Pristine one plus acre dream sites located in Southern Central Oregon near the Diamond Peak Wilderness Area and only minutes from Crescent Lake, Odell Lake, Waldo Lake, Davis Lake and the Willamette Pass Ski Resort. LOCATION: We are located off Highway 58 (Willamette Pass) near Crescent Lake Junction, approximately 75 miles east of Eugene, 65 miles south of Bend, and 3 ½ hours south of Portland. We are situated in the Oregon Cascade Range adjacent to the Diamond Peak Wilderness Area and the Deschutes National Forest in one of Oregon's most beautiful areas. ELEVATION: Approximately 4600 feet, dry and healthy. TREES: Douglas Fir, Noble Fir, Cedar, Lodge pole and Ponderosa Pine. Ground cover is native bunch grass and deer forage, manzanita, wild strawberries and serviceberry. TOPOGRAPHY: Sloped to gently rolling with a spectacular view of surrounding peaks and wilderness area. SOIL: Sandy volcanic soil – there is no fill on any home site. RAIN & SNOW: Total approximately 160 inches per year, approximately 25" rain. Snow on ground November to March. Young and old enjoy the winter season with snowmobiles and cross-country skiing. RECREATIONAL Unlimited!! - Only minutes away, including: OPPORTUNITIES: Downhill skiing, cross-country skiing, snowmobiling, sledding, mountain biking, water-skiing, boating, fly fishing, lake fishing, bird watching, hiking, sailing, wind surfing, swimming & sunbathing on Crescent Lake Beaches, Horseback riding. LAKES & RIVERS: More than 80 lakes, rivers, streams and reservoirs within one hour. Odell Lake and Crescent Lake only 5 minutes away. FISHING: Brook Trout, Rainbow Trout, Dolly Varden, German Brown Trout, Mackinaws, Kokanee, Bass and Atlantic Landlocked Salmon are from 3 minutes to 1 hour.
    [Show full text]
  • Plagioclase-Mantled K-Feldspar in the Carboniferous Porphyritic Microgranite Of… 53
    Plagioclase-mantled K-feldspar in the Carboniferous porphyritic microgranite of… 53 PLAGIOCLASE-MANTLED K-FELDSPAR IN THE CARBONIFEROUS PORPHYRITIC MICROGRANITE OF ALTENBERG-FRAUENSTEIN, EASTERN ERZGEBIRGE / KRUVSNÉ HORY AXEL MÜLLER AND REIMAR SELTMANN MÜLLER, AXEL and SELTMANN, REIMAR 2002. Plagioclase-mantled K- feldspar in the Carboniferous porphyritic microgranite of Altenberg-Frauenstein, Eastern Erzgebirge/Kruvsné Hory. Bulletin of the Geological Society of Finland 74, Parts 1–2, 53–78. The Upper Carboniferous porphyritic microgranite of Altenberg-Frauenstein, formerly known as Granitporphyr (Dalmer 1896) and here abbreviated as GP, forms a 36 km long and up to 18 km wide complex of ring dykes related to the Teplice-Altenberg caldera in the German–Czech border region of the Eastern Erzgebirge/Kruvsné Hory. The microgranites are characterized by the occurrence of plagioclase-mantled K-feldspar phenocrysts. The microgranite varieties rep- resent two main stages of intrusion evolved from acid (GP I) to intermediate rocks (GP II) within the intrusion. The most acid rock (GP Icum) occurs as en- claves in GP I and GP II and is interpreted as a cumulate of K-feldspar and quartz phenocrysts. The porphyritic microgranites show field, textural and geochemi- cal evidence suggesting that some of them have formed as a result of interac- tion between felsic and mafic magmas. Mixing features are abundant in the por- phyritic quartz-feldspar-hornblende microgranite (GP II) interpreted as a hybrid rock. They are less discrete in the early phase (GP I) and not obvious in the acid enclaves (GP Icum). This trend seems to reflect a continuous deflation of the magma chamber from the top to the bottom.
    [Show full text]
  • Geologic Framework of the Regional Ground-Water Flow System in the Upper Deschutes Basin, Oregon
    Cover photographs: Top: Steelhead Falls on the Deschutes River near Crooked River Ranch, Oregon. Middle: Crooked River Canyon at Crooked River Ranch, Oregon. Bottom: North and Middle Sister with a wheel-line irrigation system in the foreground near Sisters, Oregon. (Photographs by Rodney R. Caldwell, U.S. Geological Survey.) U.S. Department of the Interior U.S. Geological Survey Geologic Framework of the Regional Ground-Water Flow System in the Upper Deschutes Basin, Oregon By KENNETH E. LITE JR. and MARSHALL W. GANNETT Water-Resources Investigations Report 02–4015 Prepared in cooperation with Oregon Water Resources Department; Cities of Bend, Redmond, and Sisters; Deschutes and Jefferson Counties; The Confederated Tribes of the Warm Springs Reservation of Oregon; and U.S. Environmental Protection Agency Portland, Oregon 2002 U. S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director The use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. For additional information: Copies of this report may be purchased from: District Chief U.S. Geological Survey USGS Information Services 10615 S.E. Cherry Blossom Dr. Box 25286 Portland, OR 97216-3103 Denver, CO 80225-0286 E-mail: [email protected] Telephone: 1-888-ASK-USGS Internet: http://or.water.usgs.gov Suggested citation: Lite, K.E., Jr., and Gannett, M.W., 2002, Geologic framework of the regional ground-water flow system in the upper Deschutes Basin, Oregon: U.S. Geological Survey Water-Resources Investigations Report 02–4015, p.
    [Show full text]